
The implementation of graphodynamic paradigm
using the metagraph approach

Yuriy E. Gapanyuk
Computer Science and Control Systems Department

Bauman Moscow State Technical University
Moscow, Russia
gapyu@bmstu.ru

Yuriy T. Kaganov
Computer Science and Control Systems Department

Bauman Moscow State Technical University
Moscow, Russia

kaganov.y.t@bmstu.ru

Georgiy I. Revunkov
Computer Science and Control Systems Department

Bauman Moscow State Technical University
Moscow, Russia

revunkov@bmstu.ru

Abstract—This paper proposes an approach for implementa-
tion of graphodynamic paradigm using complex graphs. The
metagraph model is used as complex graph model. The brief
history of metagraph model development is discussed. It is
shown that proposed version of the metagraph model provides
the implementation of emergence principle using metavertices.
Metavertices include vertices, edges and lower-level metavertices.
Metaedges are used for process description. The metagraph
and hypergraph models comparison is given. It is shown that
the hypergraph model does not fully implement the emergence
principle. The metagraph and hypernetwork models comparison
are given. It is shown that the metagraph model is more flexible
then hypernetwork model. Metagraph agents provide dynamical
part of graphodynamic paradigm.

Keywords—graphodynamic paradigm, metagraph, metavertex,
metaedge, hypergraph, hypernetwork, metagraph agent

I. INTRODUCTION

The graphodynamic paradigm was proposed by Profes-
sor Vladimir Golenkov with colleagues in monography [1].
Nowadays the ideas of graphodynamics are widely used in
intelligent systems.

The graphodynamic paradigm assumes the following provi-
sions:

• The graph-based model is used as a data model.
• The ways for graph-based data model transformation

should be considered.
Currently, complex graph models are used increasingly

instead of plain graph models.
The main idea of this paper is the combination of grapho-

dynamic paradigm with complex graph model. We propose
to use the metagraph model as a data model. The metagraph
agents are used for model transformation.

II. THE METAGRAPH MODEL

A. The brief history of metagraph model

At present time there is no single version of metagraph
model. There are several “complex graphs with emergence”

models that are similar in the basic provisions, but differ in
details.

The original version of metagraph model (and term “meta-
graph”) was proposed by A. Basu and R. Blanning in their
monography [2].

The terms “metavertex” and “metaedge” were proposed in
paper [3]. According to this model, metavertex is a set of
vertices (which is isomorphic to the hyperedge of hypergraph).
An edge connects two vertices while metaedge connects vertex
and metavertex or two metavertices.

The model [4] (presented at OSTIS-2015) used term
“metavertex” in the sense of model [3] for fuzzy knowledge-
bases representation.

Our paper [5] also used term “metavertex” and “metaedge”
but in a different sense compared to [3]. The definition of
metavertex is recursive and metavertex may include vertices,
edges and other metavertices.

In our model, the metavertex is used for complex data de-
scription while metaedge is used for process description. The
set of metagraph agents are used for model transformation.

In the following sections we will describe our model in
details.

B. The proposed version of metagraph model

The metagraph is described as follows: MG =
〈V,MV,E,ME〉, where MG – metagraph; V – set of meta-
graph vertices; MV – set of metagraph metavertices; E – set
of metagraph edges; ME – set of metagraph metaedges.

A metagraph vertex is described by the set of attributes:
vi = {atrk}, vi ∈ V , where vi – metagraph vertex and atrk –
attribute.

A metagraph edge is described by set of attributes, the
source and destination vertices (or metavertices) and edge
direction flag: ei = 〈vS , vE , eo, {atrk}〉, ei ∈ E, eo =
true|false, where ei – metagraph edge; vS – source vertex
(metavertex) of the edge; vE – destination vertex (metavertex)

147



of the edge; eo – edge direction flag (eo = true – directed
edge, eo = false – undirected edge); atrk – attribute.

The metagraph fragment is defined as MGi = {evj}, evj ∈
(V ∪E∪MV ∪ME), where MGi – metagraph fragment; evj –
an element that belongs to union of vertices, metavertices,
edges and metaedges.

The metagraph metavertex: mvi = 〈{atrk},MGj〉,mvi ∈
MV , where mvi – metagraph metavertex belongs to set
of metagraph metavertices MV ; atrk – attribute, MGj –
metagraph fragment.

The metagraph metaedge: mei =
〈vS , vE , eo, {atrk},MGj〉,mei ∈ ME, eo = true|false,
where mei – metagraph metaedge belongs to set of
metagraph metaedges ME; vS – source vertex (metavertex)
of the metaedge; vE – destination vertex (metavertex) of
the metaedge; eo – metaedge direction flag (eo = true –
directed metaedge, eo = false – undirected metaedge); atrk
– attribute, MGj – metagraph fragment.

C. The examples of proposed metagraph model

The example of metavertices representation is shown in
figure 1.

Figure 1. The example of metavertices representation.

This example contains three metavertices: mv1, mv2 and
mv3. Metavertex mv1 contains vertices v1, v2, v3 and connect-
ing them edges e1, e2, e3. Metavertex mv2 contains vertices
v4, v5 and connecting them edge e6. Edges e4, e5 are examples
of edges connecting vertices v2− v4 and v3− v5 respectively,
and are contained in different metavertices mv1 and mv2.
Edge e7 is an example of an edge connecting metavertices mv1

and mv2. Edge e8 is an example of an edge connecting vertex
v2 and metavertex mv2. Metavertex mv3 contains metavertex
mv2, vertices v2, v3 and edge e2 from metavertex mv1 and
also edges e4, e5, e8 showing the complex nature of the
metagraph structure.

Thus a metavertex in addition to the attributes includes a
fragment of the metagraph. The presence of private attributes
and connections for a metavertex is distinguishing feature of a

metagraph model. It makes the definition of metagraph holonic
– a metavertex may include a number of lower level elements
and in turn, may be included in a number of higher level
elements.

From the general system theory point of view, a metavertex
is a special case of the manifestation of the emergence princi-
ple, which means that a metavertex with its private attributes
and connections become a whole that cannot be separated into
its component parts.

The figure 1 helps us to show differences between meta-
graph model [3] and our model.

In sense of model [3] edges cannot be included in metaver-
tex. In our model metavertex may include both vertices
(metavertices) and edges.

Also in sense of model [3] edges e7 (connecting two
metavertices) and e8 (connecting vertex and metavertex) are
metaedges. In our model metaedge is used for process descrip-
tion. The example of metaedge is shown in figure 2.

The directed metaedge contains metavertices
mvS , . . .mvi, . . .mvE and connecting them edges. The
source vertex contains a nested metagraph fragment. During
the transition to the destination vertex the nested metagraph
fragment became more complex, new vertices, edges, and
metavertices are added. Thus, metaedge allows binding the
stages of nested metagraph fragment development to the steps
of the process described with metaedge.

III. THE COMPARISON OF METAGRAPH MODEL AND OTHER
COMPLEX GRAPH MODELS

Currently, there are two well-known complex graph models
exist: hypergraph model and hypernetwork model. In this
section we will compare these models with the metagraph
model.

A. The metagraph and hypergraph models comparison

Hypergraph definition according to [6]: HG =
〈V,HE〉, vi ∈ V, hej ∈ HE, where HG – hypergraph;
V – set of hypergraph vertices; HE – set of non-empty
subsets of V called hyperedges; vi – hypergraph vertex; hej
– hypergraph hyperedge.

A hypergraph may be directed or undirected. A hyperedge in
an undirected hypergraph only includes vertices whereas, in a
directed hypergraph, a hyperedge defines the order of traversal
of vertices. The example of an undirected hypergraph is shown
in figure 3.

This example contains thee hyperedges: he1, he2, and he3.
Hyperedge he1 contains vertices v1, v2, v4, v5. Hyperedge he2

contains vertices v2 and v3. Hyperedge he3 contains vertices
v4 and v5. Hyperedges he1 and he2 have a common vertex v2.
All vertices of hyperedge he3 are also vertices of hyperedge
he1.

Comparing metagraph and hypergraph models, it should be
noted that the metagraph model is more expressive than the
hypergraph model. Comparing figures 1 and 3 it is possible
to note some similarities between the metagraph metavertex
and the hypergraph hyperedge, but the metagraph offers more

148



Figure 2. The example of metaedge representation.

Figure 3. The example of the hypergraph.

details and clarity because the metavertex explicitly defines
metavertices, vertices and edges inclusion, whereas the hyper-
edge does not. The inclusion of hyperedge he3 in hyperedge
he1 is only graphical and informal, because according to
hypergraph definition a hyperedge inclusion operation is not
explicitly defined.

Thus the metagraph is a holonic graph model whereas the
hypergraph is a near flat graph model that does not fully
implement the emergence principle.

B. The metagraph and hypernetwork models comparison

Currently, there are two versions of hypernetwork model
exist.

The first version of the hypernetwork model was pro-
posed by Professor Vladimir Popkov with colleagues in
1980s. Professor V. Popkov proposes several kinds of hy-
pernetwork models with complex formalization and there-
fore only main ideas of hypernetworks will be discussed
in this section. According to [7] given the hypergraphs
PS ≡ WS0,WS1,WS2, . . .WSK . The hypergraph PS ≡
WS0 is called primary network. The hypergraph WSi is
called secondary network of order i. Also given the se-
quence of mappings between networks of different orders:
WSK

ΦK−−→ WSK−1
ΦK − 1−−−−−→ . . .WS1

Φ1−−→ PS. Then the hi-
erarchical abstract hypernetwork of order K may be defined
as ASK = 〈PS,WS1, . . .WSK ; Φ1, . . .ΦK〉. The emergence
in this model occurs because of the mappings Φi between the
layers of hypergraphs.

The second version of the hypernetwork model was pro-
posed by Professor Jeffrey Johnson in his monography [8].
The main idea of Professor J. Johnson variant of hypernetwork
model is the idea of hypersimplex (the term is adopted from
polyhedral combinatorics). According to [8] a hypersimplex is
an ordered set of vertices with an explicit n-ary relation and
hypernetwork is a set of hypersimplices. In hierarchical sys-
tem, the hypersimplex combines k elements at level N (base)
with one element at level N+1 (apex). Thus, hypersimplex
establishes an emergence between two adjoining levels.

The example of hypernetwork that combines the ideas of
two approaches is shown in figure 4.

Figure 4. The example of hypernetwork.

149



The primary network PS is formed by the vertices of
hyperedges he1 and he2. The first level WS1 of secondary
network is formed by the vertices of hyperedge he3. Mapping
Φ1 is shown with an arrow. The hypersimplex is emphasized
with the dash-dotted line. The hypersimplex is formed by the
base (vertices v3 and v4 of PS) and apex (vertex v5 of WS1).

It should be noted that unlike the relatively simple hyper-
graph model the hypernetwork model is full model with emer-
gence. Consider the differences between the hypernetwork and
metagraph models.

According to the definition of a hypernetwork, it is a layered
description of graphs. It is assumed that the hypergraphs may
be divided into homogeneous layers and then mapped with
mappings or combined with hypersimplices. Metagraph ap-
proach is more flexible. It allows combining arbitrary elements
that may be layered or not using metavertices.

Comparing the hypernetwork and metagraph models we can
make the following notes:

• Hypernetwork model may be considered as “horizontal”
or layer-oriented. The emergence appears between adjoin-
ing levels using hypersimplices. The metagraph model
may be considered as “vertical” or aspect-oriented. The
emergence appears at any levels using metavertices.

• In hypernetwork model the elements are organized using
hypergraphs inside layers and using mappings or hyper-
simplices between layers. In metagraph model metaver-
tices are used for organizing elements both inside layers
and between layers. Hypersimplex may be considered as
a special case of metavertex.

• Metagraph model allows organizing the results of previ-
ous organizations. The fragments of flat graph may be
organized into metavertices, metavertices may be orga-
nized in higher-level metavertices and so on. Metavertex
organization is more flexible then hypersimplex organiza-
tion because hypersimplex assumes base and apex usage
and metavertex may include general form graph.

• Metavertex may represent a separate aspect of organiza-
tion. The same fragment of a flat graph may be included
in different metavertices whether these metavertices are
used for modeling different aspects.

Thus, we can draw a conclusion that metagraph model is
more flexible then hypernetwork model. However, it must
be emphasized that from the historical point of view the
hypernetwork model was the first complex graph with an
emergence model and it helps to understand many aspects of
complex graphs with an emergence.

IV. THE METAGRAPH MODEL TRANSFORMATION USING
METAGRAPH AGENTS

The metagraph itself is not more than a complex data struc-
ture. To process and transform metagraph data the metagraph
agents are used. There are two kinds of metagraph agents: the
metagraph function agent (agF ) and the metagraph rule agent
(agR). Thus agMG = agF |agR.

The metagraph function agent serves as a function with
input and output parameter in form of metagraph: agF =

〈MGIN ,MGOUT , AST 〉, where agF – metagraph function
agent; MGIN – input parameter metagraph; MGOUT –
output parameter metagraph; AST – abstract syntax tree of
metagraph function agent in form of metagraph.

The metagraph rule agent uses rule-based approach: agR =
〈MG,R,AGST 〉, R = {ri}, ri : MGj → OPMG, where
agR – metagraph rule agent; MG – working metagraph,
a metagraph on the basis of which the rules of agent are
performed; R – set of rules ri; AGST – start condition
(metagraph fragment for start rule check or start rule); MGj –
a metagraph fragment on the basis of which the rule is
performed; OPMG – set of actions performed on metagraph.

The antecedent of a rule is a condition over metagraph
fragment, the consequent of rule is a set of actions performed
on metagraph. Rules can be divided into open and closed. If
the agent contains only open rules it is called open agent. If
the agent contains only closed rules it is called closed agent.

The consequent of an open rule is not permitted to change
metagraph fragment occurring in rule antecedent. In this case,
the input and output metagraph fragments may be separated.
The open rule is similar to the template that generates the
output metagraph based on the input metagraph.

The consequent of closed rule is permitted to change meta-
graph fragment occurring in rule antecedent. The metagraph
fragment changing in rule consequent cause to trigger the
antecedents of other rules bound to the same metagraph
fragment. But incorrectly designed closed rules system can
cause an infinite loop of metagraph rule agent.

Thus metagraph rule agent can generate the output meta-
graph based on the input metagraph (using open rules) or can
modify the single metagraph (using closed rules).

The distinguishing feature of metagraph agent is its ho-
moiconicity which means that it can be a data structure for
itself. This is due to the fact that according to definition
metagraph agent may be represented as a set of metagraph
fragments and this set can be combined in a single metagraph.
Thus higher-level metagraph agent can change the structure of
lower-level metagraph agents.

The example of metagraph rule agent is shown in figure 5.
The metagraph rule agent “metagraph rule agent 1” is

represented as metagraph metavertex. According to definition,
it is bound to the working metagraph MG1, which is shown
with edge e4.

The metagraph rule agent description contains inner
metavertices corresponds to agent rules (rule 1 . . . rule N).
Each rule metavertex contains antecedent and consequent
inner vertices. In given example mv2 metavertex bound with
antecedent which is shown with edge e2 and mv3 metaver-
tex bound with consequent which is shown with edge e3.
Antecedent conditions and consequent actions are defined
in form of attributes bound to antecedent and consequent
corresponding vertices.

The start condition is given in form of attribute “start=true”.
If the start condition is defined as a start metagraph frag-
ment then the edge bound start metagraph fragment to agent
metavertex (edge e1 in given example) is annotated with

150



Figure 5. The example of metagraph rule agent.

attribute “start=true”. If the start condition is defined as a
start rule then the rule metavertex is annotated with attribute
“start=true” (rule 1 in given example), fig. 5 shows both cases
corresponding to the start metagraph fragment and to the start
rule.

Thus, metagraph agents provide “dynamical” part of
graphodynamic paradigm.

V. MODELLING THE POLYPEPTIDE CHAIN SYNTHESIS FOR
LEARNING SOFTWARE

In this section, we will consider the example of metagraph
approach usage for the learning software in the field of
molecular biology.

Molecular biology is considered to be one of the most
difficult to study topics of biological science. It’s hard to
believe that the complexity of functioning of the biological
cell invisible to the human eye exceeds the complexity of func-
tioning of a large ERP-system, which can contain thousands of
business processes. The difficulty of studying biological pro-
cesses is also because in studying it is impossible to abstract
from the physical and chemical features that accompany these
processes. Therefore, the development of learning software
that helps to understand even one complex process better is a
valid task.

We will review the process of synthesis of a polypeptide
chain which is also called “translation” in molecular biology.
Translation is an essential part of the protein biosynthesis. This
process is very valid from an educational point of view because
protein biosynthesis is considered in almost all textbooks of
molecular biology. The translation process is very complicated,
and in this section, we review it in a simplified way.

The first main actor of the translation process is messenger
RNA or mRNA, which may be represented as a chain of
codons. The second main actor of the translation process is

ribosome consisting of the large subunit and a small subunit.
The small subunit is responsible for reading information
from mRNA, and large subunit is responsible for generating
fragments of the polypeptide chain.

According to [9] the translation process consists of three
stages.

The first stage is initiation. At this stage the ribosome
assembles around the target mRNA. The small subunit is
attached at the start codon.

The second stage is elongation. The small subunit reads
information from the current codon. Using this information the
large subunit generates fragment of polypeptide chain. Then
ribosome moves (translocates) to the next mRNA codon.

The third stage is termination. When the stop codon is
reached, the ribosome releases the synthesized polypeptide
chain. Under some conditions the ribosome may be disassem-
bled.

From the graphodynamic paradigm point of view the trans-
lation process may be considered as a kind of graph automaton
that reads codon information and generates polypeptide chain.
We will use metagraph approach for translation process mod-
elling. The representation is shown in figure 6.

Figure 6. The representation of the translation process based on metagraph
approach.

The mRNA is shown in figure 6 as metaedge meRNA =
〈CSTART , CSTOP , eo = true, {atrk},MGRNA〉, where
CSTART – source metavertex (start codon); CSTOP – destina-
tion metavertex (stop codon); eo = true – directed metaedge;
atrk – attribute, MGRNA – metagraph fragment, containing
inner codons of mRNA (CK) linked with edges.

Codon (shown in figure 6 as elementary vertex) may also be
represented as metavertex, containing inner vertices and edges
according to the required level of detailing.

Ribosome may be represented as metagraph rule agent
agRB = 〈meRNA, R, CSTART 〉, R = {ri}, ri : CK → PK ,
where meRNA – mRNA metaedge representation used as
working metagraph; R – set of rules ri; CSTART – start codon
used as start agent condition; CK – codon on the basis of
which the rule is performed; PK – the added fragment of
polypeptide chain.

The antecedent of rule is approximately corresponds to the
small subunit of ribosome modelling. The consequent of rule
is approximately corresponds to the large subunit of ribosome
modelling.

151



Agent agRB is open agent generating output metagraph
MGP based on input metaedge meRNA. The input and output
metagraph fragments don’t contain common elements.

While processing codons of mRNA agent agRB sequen-
tially adds fragments of polypeptide chain PK to the output
metagraph MGP . Vertices PK are linking using undirected
edges.

The process represented in figure 6 is very higher-level. But
metagraph approach allows representing linked processes with
different levels of abstraction.

For example for each codon or peptide we can link metaver-
tex with its inner representation. And we can modify this rep-
resentation during translation process using metagraph agents.

Thus, metagraph approach allowed us to represent a model
of polypeptide chain synthesis which can be the basis for the
learning software. And this is a special case of graphodynamic
paradigm.

VI. CONCLUSION

• The main idea of this paper is the combination of
graphodynamic paradigm and complex graph model.

• As complex graph model, we propose to use metagraph
model.

• The metagraph model includes vertices, edges, metaver-
tices and metaedges.

• The proposed version of the metagraph model pro-
vides the implementation of emergence principle using
metavertices. Metavertices include vertices, edges and
lower-level metavertices.

• For process description metaedges are used.
• The hypergraph model does not fully implement the

emergence principle.
• The hypernetwork model fully implements the emergence

principle using hypersimplices. The metagraph model is
more flexible then hypernetwork model.

• For metagraph model processing the metagraph function
agents and the metagraph rule agents are used. Thus
metagraph agents provide “dynamical” part of grapho-
dynamic paradigm.

REFERENCES

[1] Knowledge Representation and Processing in Graph-Dynamic Associa-
tive Computers. V.V. Golenkov, O.E. Eliseeva, V.P. Ivashenko and others.
Edited by V.V. Golenkov. Minsk, BSUIR, 2001. 412 p.

[2] A. Basu, R. Blanning. Metagraphs and their applications. New York,
Springer, 2007. 173 p.

[3] S.V. Astanin, N.V. Dragnish, N.K. Zhukovskaya. Vlozhennye metagrafy
kak modeli slozhnykh ob”ektov [Nested metagraphs as models of
complex objects]. Inzhenernyj vestnik Dona, 2012, vol. 23, no. 4-2 (23),
p. 76.

[4] L.S. Globa, M.Y. Ternovoy, O.S. Shtogrina. Metagrafy kak osnova
dlya predstavleniya i ispol’zovaniya baz nechetkih znaniy [Metagraph
based representation and processing of fuzzy knowledgebases] Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh system
[Open semantic technologies for intelligent systems], 2015, pp. 237-240.

[5] E.N. Samokhvalov, G.I. Revunkov, Yu.E. Gapanyuk Ispolzovaniye
metagraphov dlya opisaniya semantiki i pragmatiki informatsionnykh
sistem [Metagraphs for information systems semantics and pragmatics
definition]. Vestnik MGTU im. N.E. Baumana, seriya “Priborostroeniye”
[Herald of the Bauman Moscow State Technical University, “Instrument
Engineering”], 2015, no. 1, pp. 83-99.

[6] Vitaly I. Voloshin. Introduction to Graph and Hypergraph Theory. New
York, Nova Science Publishers, 2009. 303 p.

[7] A.T. Akhmediyarova, J.R. Kuandykova, B.S. Kubekov, I.T. Utep-
bergenov, V.K. Popkov. Objective of Modeling and Computation of
City Electric Transportation Networks Properties. In: International Con-
ference on Information Science and Management Engineering (Icisme
2015), Destech Publications, Phuket, 2015, pp. 106–111.

[8] J. Johnson. Hypernetworks in the Science of Complex Systems. London,
Imperial College Press, 2013. 349 p.

[9] I. Samish. Computational Protein Design. New York, Springer Sci-
ence+Business Media, 2017. 450 p.

РЕАЛИЗАЦИЯ ГРАФОДИНАМИЧЕСКОЙ
ПАРАДИГМЫ С ИСПОЛЬЗОВАНИЕМ

МЕТАГРАФОВОГО ПОДХОДА
Гапанюк Ю.Е., Каганов Ю.Т., Ревунков Г.И.
Московский государственный технический

университет имени Н. Э. Баумана, факультет
“Информатика и системы управления”.

В статье рассматривается реализация графодинами-
ческой парадигмы на основе сложных сетей. В каче-
стве модели сложной сети используется метаграфовая
модель. Рассматривается краткая история развития
метаграфовой модели. Показано, что предложенная
версия метагарфовой модели обеспечивает реализацию
принципа эмерджентности с использованием метавер-
шин. Метавершины могут включать вершины, ребра и
метвершины нижнего уровня. Метаребра используются
для описания процессов. Проведено сравнение моделей
метаграфа и гиперграфа. Показано, что гиперграфовая
модель не в полной мере реализует принцип эмер-
джентности. Проведено сравнение моделей метаграфа
и гиперсети. Показано, что метаграфовая модель явля-
ется более гибкой по сравнению с гиперсетевой моде-
лью. Метаграфовые агенты реализуют динамическую
часть графодинамической парадигмы.

152


