Model Transformations for Intelligent Systems
Engineering

Nikita O. Dorodnykh
and Alexander Yu. Yurin

Matrosov Institute for System Dynamics and Control Theory,
Siberian Branch of the Russian Academy of Sciences (IDSTU SB RAS),

Irkutsk, Russia
tualatin32 @mail.ru
iskander@icc.ru

Abstract—The paper discusses the application of model trans-
formations in the process of intelligent systems engineering.
The model-driven approach is used as a basic methodology
and the own its implementation is proposed. The conceptual
models presented in XML-like formats are used as the initial
data. Particular attention is paid to the first stage in the chain
of model transformations: the stage of the formation of a
computation-independent model. A new domain-specific language
— Transformation Model Representation Language (TMRL) and
special tools are used for implementing model transformations.
The description of the main TMRL constructions and an example
of its application are presented.

Keywords—model transformation, code generation, intelligent
system, knowledge base, domain-specific language.

I. INTRODUCTION

The model transformation is one of the main principles of
the Model Driven Engineering (MDE) [1]. MDE approach is
based on the use of software information models of varying de-
grees of abstraction as the main artifacts in the development of
software systems. In this case, the process itself is a sequence
(chain) of transformation of these models. In this paper we
proposed to consider the application of model transformations
in the process of intelligent systems engineering, in particular,
for development of knowledge bases (KB) with the use of
transformation of conceptual models presented in XML-like
formats. The main results are analysis of related works in the
field of model transformation and the new domain-specific
declarative language for the description of transformations
— Transformation Model Representation Language (TMRL),
designed for transforming conceptual models to the KB.

II. MODEL TRANSFORMATION

Recently, in the field of software engineering there has been
a tendency to use approaches that consider models not only
as artifacts of documentation (technical specifications), but
also as central artifacts in software development providing
automatic synthesis of program codes. This allows any to
significantly reduce development time, reduce the risk of
programming errors, to involve end-users in the process of
software engineering. These approaches are related to the

7

Nikolai Yu. Pavlov, Sergey A. Korshunov
and Dmitriy Yu. Sopp
CentraSib LLC.,
Irkutsk, Russia
Telephone: (3952) 603-911
info@centrasib.ru

Model Driven engineering (MDE) or Model Driven Develop-
ment (MDD) areas [2]. Today, the main MDE implementations
(initiatives) are the following: OMG Model Driven Archi-
tecture (MDA), Eclipse Modeling Framework (EMF), Model
Integrated Computing (MIC), Microsoft Software Factories,
JetBrains MPS.

The central concepts of MDE/MDD are:

¢ A model is an abstract description of the some character-
istics of the system (process) in a formal language. As a
rule, the models are visualized with the aid of a certain
graphic notation and serialized in XML.

« A metamodel is a model of a language used to create
models (model of models).

« A meta-metamodel is a language that describes metamod-
els. The most common languages for metamodeling are:
MOF (Meta-Object Facility), Ecore, KM3 (Kernel Meta
Meta Model), etc.

o A four-layer metamodeling architecture is the concept
that defines the different layers of abstraction (M0-M3),
where the objects of reality are represented at the lowest
level (MO), then the level of models (M1), the level of
metamodels (M2) and the level of the meta-metamodel
(M3).

e A model transformation is automatic generation of a
target model from a source model with the accordance
of a set of transformation rules [3]. In this case, each
transformation rule describes the correspondence between
the elements of the source and target metamodels.

A more detailed description of these concepts can be found
in [2], [4].

There are many works devoted to the model transformations.
At the same time, model transformations can be considered
from different viewpoints.

In particular, there are two types of transformation [5]:

o Model-to-Model (M2M);

e Model-to-Text (M2T) and Text-to-Model (T2M). In this
case, the output text can be in the form of a source code,
documentation, specifications, and etc.

Two types of model transformations in accordance with the
modelling languages used to describe the source and target
models [5]:

« an endogenous transformation is a transformation be-
tween models that are using one modeling language;

« an exogenous transformation is a transformation between
models that are using different modeling languages.

The model transformations can be classified according to
the abstraction level on which the source and target model are
resided [5]:

o a vertical transformation is a transformation of models of
different abstraction levels;

o a horizontal transformation is transformation of models
of the same abstraction level.

The model transformations can also be classified according
to the transformation direction:

e an unidirectional transformation is a transformation
where only the target model can be obtained from the
source model;

« a bidirectional transformation is a transformation where
the target model can be obtained from the source model
and vice versa.

Currently, there are some ways to implement the model
transformation:

 using graph grammars (graph rewriting) (e.g., VIsual Au-
tomated model TRAnsformations (VIATRA?2) [6], Graph
REwriting And Transformation (GReAT) [7], etc.);

« using visual design of transformation rules and category
theory (e.g., Henshin [8]);

o using transformation standards (e.g., Query/View/Trans-
formation [9]);

« using hybrid (declarative-imperative) approach for speci-
fying and constructing transformation rules (e.g., ATLAS
Transformation Language [10]);

« using declarative and procedural programming languages
[11];

o using languages for transforming XML documents (e.g.,
eXtensible Stylesheet Language Transformations [12],
etc.).

The transformations constructed using these ways should
satisfy the following main requirements [13], [14], [15]:

o completeness: it should allows one to represent any
necessary transformation in accordance with the defined
models;

o formality: it should allows automatic execution;

« flexibility: it should not depends on a specific subject
domain.

In this paper, it is proposed to consider the application of
model transformations in the process of intelligent systems
engineering and KBs based on the implementation of MDE /
MDD.

78

III. MODEL TRANSFORMATIONS FOR INTELLIGENT
SYSTEMS ENGINEERING

The MDE/MDD implementation used is based on the prin-
ciples of MDA [16] and assumes a clear separation of three
levels (viewpoints) of the software representation:

« A computation-independent level, which is a description
of the basic concepts and relationships of the subject
domain, we will express it in the form of ontologies.
Various conceptual models can be used to automate
its formation. It is proposed to limit the number of
conceptual models by XML-like formats, in particular,
for representation: UML models — XMI (XML Metadata
Interchange), concept maps — CXL (Concept Mapping
Extensible Language), event trees — ETXL (Event Tree
Mapping Extensible Language).

« A platform-independent level, which provides a repre-
sentation of the domain model in the context of the
formalism used to represent knowledge. In particular,
logical rules or frames. It is advisable to use problem-
oriented notations or UML profiles, in particular RVML
(Rule Visual Modeling Language) [17].

o A platform-dependent level representing a formalized
description of KBs, taking into account a certain software
platform. In the context of intelligent systems engineer-
ing, such a platform is the programming languages for
KBs, for example, CLIPS.

Thus, the process of intelligent systems engineering is a
sequential transition between the considered levels and can be
described by the following sequence of steps:

« Formation of a conceptual model by means of third-party
programs. At this step some problem-oriented notations
are used: UML, concept maps or memory cards, event
trees. At the end of the step, the conceptual model is
presented in XML-like formats: XMI (StarUML, IBM
Rational Rose), CXL (IHMC CmapTools), ETXL (ET-
Editor).

o Analysis of XML document of conceptual model
with identification of the concepts and relations. A
computation-independent model (CIM) is formed on the
basis of the selected concepts, represented in the form of
ontology. The automatically generated ontology is edited
to clarify it.

o Formation of a platform-independent model (PIM) based
on ontology. This model depends on the formalism of
knowledge representation, but does not take into account
the features of languages and the tools for implementing
these formalisms.

o Formation of a platform-specific model (PSM), taking
into account the features of languages and means for
implementing formalisms.

o Generation of program codes or specifications of KBs
and intelligent systems based on generated models.

It is suggested to use model transformations to implement
the transitions between the steps and to consider in detail the

transformations of the first step, which are related to the M2M
type.

In the context of the MDA approach, it is recommended
to use the OMG standard for implementation of M2M trans-
formations, which is called QVT including Operational, Rela-
tional and Core model transformation languages.

However, programmers who use the QVT should:

o know the specific syntax of the model transformation
language;

o be able to describe transformation rules with the aid of
the model transformation language;

o know the additional languages, such as an Object Con-
straint Language (OCL) that can be used to construct the
transformation rules;

« be able to describe metamodels for the source and target
languages (to support the transformation process).

It should be noted that all model transformation languages
is supported by a specific software tools, that, in turn don’t
provide an opportunity to visualize the development process,
i.e. the transformation rules are defined in special text editors
focused on programmers. The combination of these factors
makes difficult to use these languages and tools in a practical
way by end-users (e.g., subject domain experts, knowledge
engineers, analysts, etc.), in particular, when developing KBs
and ESs on the basis of conceptual models. So, in practice
developers prefer "ad-hoc" solutions for particular tasks with
using declarative and procedural programming languages.

We propose a new domain-specific language — TMRL to
address these shortcomings.

IV. TRANSFORMATION MODEL REPRESENTATION
LANGUAGE

TMRL is focused on the representation and storage of
the so-called a transformation model, which is a scenario
(program) for transforming the source conceptual model to the
target KB. Thus, TMRL transformation model is the core of
the software component for transformation, providing analysis
(parsing) of conceptual models and synthesis (generation) of
the KB code [18].

The structure of the transformation model can be defined as
follows:

Mgy = (MM;n,MMoyr,T),)]

where M M;jy is a metamodel of the source (input) con-
ceptual model; M Moy is a metamodel of the target (output)
model of knowledge representation (KB); 7" is an operator for
model transformation (a set of rules).

The TMRL grammar belongs to the class of context-free
grammars (LL(1) CF-grammars) [19]. The TMRL constructs
allow one to describe the elements of the transformation model
in a declarative form, in particular, the rules for the corre-
spondence of metamodel elements, as well as the mechanism
of interaction with previously developed (external) software
components for the transformations. TMRL specifications
meet the requirements of accuracy, clarity and completeness

79

[20], i.e. the TMRL specifications contain all the necessary
information (for the considered transformations) to solve the
task, all objects of the model are well formalized, while
the specifications are compact enough and at the same time
understandable (readable).

The main difference between TMRL and existing model
transformation languages is its ease of use, achieved through
a limited set of elements. TMRL is not an extension of
other languages and does not use the constructions of other
languages, as other model transformation languages very often
do, in particular, ATL uses the OCL. In addition, TMRL
has human-readable syntax for the purpose of making the
necessary modifications to the model of the transformation
manually, if necessary. An additional feature of TMRL is
the ability to describe interaction with previously developed
software components of the transformation in support of the
import of different formats of conceptual models.

A. Transformation model structure in TMRL

The transformation model in TMRL consists of three main
blocks. Consider this structure in an example that describes
the transformation of a UML class diagram into an ontology
model (CIM). In this case, the language elements are high-
lighted in bold.

Block 1. Description of the elements and relationships of
the source metamodel:

Source Meta-Model UML-diagram-class {
Elements [
Model,

Class attributes (xmi.id, name),

]
Relationships [
Model is associated with Namespace.
ownedElement,
Namespace.ownedElement is associated
with Class,

DataType (xmi.id) is Attribute (type),

This block contains a description of the UML class dia-
gram: "UML-diagram-class", including elements of the model
("Elements"). In this example, these are the "Model" and
"Class" elements, the "Class" element has "xmi.id" and "name"
properties. In addition to describing the elements, the source
metamodel contains a description of the relationships between
the elements of the metamodel ("Relationships"), including
by identifiers, for example, linking an attribute to a data type
("DataType(xmi.id) is Attribute(type)").

Block 2. Description of elements and relationships of the
target metamodel:

Target Meta-Model Ontology {
Elements [
Ontology attributes (about),
Class attributes (id, label),

Relationships [
Ontology is associated with Class,

The block contains a description of the ontology model:
"Ontology". The structure of the block is similar to the
structure of the block of the source metamodel.

Block 3. Description of rules for transforming models:
Transformation UML-diagram-class to Ontology {

Rule Model to Ontology priority 1 [
Ontology (about) is Model or ModelElement

.name

]

Rule (Class, ModelElement.name) to Class
priority 2 [
Class (label) is Class (name) or

ModelElement .name
Class (id) is Class (name)

This block describes the rules for converting the elements
of the source ("UML-diagram-class") metamodel to the target
("Ontology") metamodel.

The Knowledge Base Development System (KBDS) is used
to support TMRL [21]. KBDS provides interactive visual
construction of transformation models and their automatic
generation on TMRL.

V. CONCLUSION

The paper describes the application of model transforma-
tions in the process of intelligent systems engineering and, in
particular, KBs. The various conceptual models presented in
XML-like formats are used as initial data. Particular attention
is paid to the stage of formation of CIM. The detailed
description of the new domain-specific language (TMRL) is
provided. The KBDS is used as tool for supporting TMRL.

REFERENCES

[1] L. G. Cretu and D. Florin, Model-Driven Engineering of Information
Systems: Principles, Techniques, and Practice. Apple Academic Press,
2014.

A. R. Da Silva, Model-driven engineering: A survey supported by the
unified conceptual model. Computer Languages, Systems & Structures.
2015. Vol. 43. P. 139-155.

A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model-Driven
Architecture: Practice and Promise, 1rd ed. New York: Addison-Wesley
Professional, 2003.

J. Sprinkle, B. Rumpe, H. Vangheluwe and G. Karsai, 3 Metamodelling.
State of the Art and Research Challenges. Model-Based Engineering of
Embedded Real-Time Systems. 2010. P. 57-76.

T. Mens and P. V. Gorp, A Taxonomy of Model Transformations. Elec-
tronic Notes in Theoretical Computer Science. 2006. Vol. 152. P. 125-142.
D. Varro and A. Balogh, The model transformation language of the
VIATRA? framework. Science of Computer Programming. 2007. Vol. 63,
No. 3. P. 214-234.

D. Balasubramanian, A. Narayanan, C. Buskirk and G. Karsai, The graph
rewriting and transformation language: GReAT. Electronic Communica-
tions of the EASST. 2006. Vol. 1. P. 1-8.

(2]

(31

[4

=

(3]
(6]

[7

—

80

[8] T. Arendt, E. Biermann, S. Jurack, C. Krause and G. Taentzer, Henshin:

advanced concepts and tools for in-place EMF model transformations.

Processing of the 4th International Conference on Model-Driven Engi-

neering and Software Development (MODELSWARD 2010) / Lecture

Notes in Computer Science, Springer Berlin Heidelberg. 2010. Vol. 6394.

P. 121-135.

Query/View/Transformation (QVT). 2016.

http://www.omg.org/spec/QVT/ (accessed 07.12.2017).

[10] F. Jouault, F. Allilaire, J. Bézivin and I. Kurtev, ATL: A model transfor-
mation tool. Science of Computer Programming. 2008. Vol. 72, No. 1. P.
31-39.

[11] A.F Berman, O. A. Nikolaychuk and A. Y. Yurin, Intelligent planner for
control of failures analysis of unique mechanical systems. Expert Systems
with Applications. 2010. Vol. 37, No. 10. P. 7101-7107.

[12] XSL Transformations (XSLT) Version 2.0. 2007. Available at:
http://www.w3.org/TR/xslt20/ (accessed 07.12.2017).

[13] T. Gardner, C. Griffin, C. Koehler and R. Hauser, A review of OMG MOF
2.0 Query/Views/Transformations Submissions and Recommendations to-
ward the final standard. Object Management Group, OMG Document
ad/03-08-02, 2003.

[14] S. Sendall and W. Kozaczynski, Model Transformation — The Heart and
Soul of Model-Driven Software Development. IEEE Software. 2003. Vol.
20, No. 5. P. 42-45.

[15] K. Czarnecki and S. Helsen, Feature-based survey of model transforma-
tion approaches. IBM Systems Journal. 2006. Vol. 45, No. 3. P. 621-645.

[16] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing. New York: Wiley, 2003.

[17] A.Y. Yurin, Notation for design of knowledge bases of rule-based expert
systems. Object systems. 2016. No. 12. P. 48-54. (In Russ.)

[18] 1. V. Bychkov, N. O. Dorodnykh and A. Y. Yurin, Approach to the
development of software components for generation of knowledge bases
based on conceptual models. Computational Technologies. 2016. Vol. 21,
No. 4. P. 16-36. (In Russ.)

[19] A. V. Aho, M. S. Lam and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed. Addison Wesley, 2006.

[20] V. N. Agafonov, Specification of programs: conceptual means and their
organization. Novosibirsk: Nauka, 1987. (In Russ.)

[21] N. O. Dorodnykh, Web-based software for automating development of
knowledge bases on the basis of transformation of conceptual models.
Open Semantic Technologies for Intelligent Systems. 2017. P. 145-150.

[IPUMEHEHUE MOJAEJILHBIX TPAHCO®OPMAIINIT
JJId CO3AAHNA NHTEJJIEKTYAJIbHBIX
CUCTEM
Hopomuwix H.O.* Kopmynos C.A.** TTasmos H.FO.*¥*,
Comm JI.FO.** IOpur A.1O.*

*MHCTUTYT IUHAMUKYA CHUCTEM U TEOPUM YIPABJICHUS
nmvenn B.M. Marpocosa Cubupckoro otaereHust
Poccuiickoit akagemun nayk (MIJCTY CO PAH)
**00O0 "llenTpaCut"

[9] Available

at:

B pabote paccMoTpeHO mpuMeHEHNE MOJECTBHBIX TPAHC-
dopmanumit B mporiecce CO3MaHNs NHTEIEKTYaIbHBIX CH-
CTeM Ha OCHOBE IIpeJjlaraeMoii peajii3allud MOJEIbHO-
VIIPaBJISIEMOrO TOJXOJIa. B KadecTBe MCXOIHBIX JTAHHBIX
[peJyIaraeTcs WUCIOJIb30BaTh KOHIIENTYyabHbIE MOJIEJIH,
npejcrasierdbie B XML-mogobubix opmarax. Ocoboe
BHUMAHUE yJIEJICHO TIEPBOMY 3TAILy B IIEIIOYKE MOJEJIbHBIX
Tpancdopmannii: srarmy HGOPMUPOBAHUST BBIMUCIATETHHO-
HE3aBUCHMOIT Mojiesid. B KadecTBe MHCTpyMEHTapus pe-
aIM3aIN MOJIEBHBIX TpaHCHOPMAINil MPETOKEHO UC-
[I0JIb30BATh HOBBII [TPEIMETHO-OPUEHTUPOBAHHBIX S3bIK —
Transformation Model Representation Language (TMRL)
¥ [IOJIJIeP?KUBAIOIIEe €ro MporpaMMHoe cpecTBo. 1Ipuse-
JIeHO omucaHue ocHOBHBIX KoHcTpykimit TMRL u mpumep
€ro TpPUMEHEHN .

