
Approach to determining the structural similarity of
software projects

Gleb Guskov
Information system department

Ulyanovsk State Technical University
Ulyanovsk, Russia

guskovgleb@gmail.com

Alexey Namestnikov
Information system department

Ulyanovsk State Technical University
Ulyanovsk, Russia

am.namestnikov@gmail.com

Abstract—The paper proposes a method for comparing soft-
ware projects on the basis of their structural similarity. An
approach is proposed for obtaining an ontological representation
of the project structure based on the source code. The paper
considers several metrics for calculating the structural similarities
applicable for different types of projects.

Keywords—ontology, conceptual model, engineering design,
hierahical clusstering

I. INTRODUCTION

Human resources in modern software development are
basic. Often the same tasks are solved several times, this
leads to an ineffective waste of time. There are approaches
for reusing source code at various stages of development.
Basically, these approaches allow you to reuse only certain
functions and classes. But such approaches do not allow
finding the similarity of projects on the basis of their subject
area.

Knowledge gained from already implemented projects in
one subject area will allow borrowing and reusing much larger
parts of projects and avoiding conceptually incorrect solutions.
Quite often when updating the composition of developers, the
implemented software solutions are forgotten and not used.

A tool capable of determining the similarities between
projects can be very useful in software development. This tool
can not be replaced by a version control system, because it
only provides storage of all versions of the project with com-
ments. Version control system provides comparison beetween
file versions. Such an instrument will be able to work not only
with projects from single organization, but also with projects
from open repositories.

Search on open repositories is carried out on the basis of
keywords. The results of such a search can be several thousand
projects, which can not be handled by hand. The choice of
projects based on their architectural solutions is a promising
approach. To implement filtering on projects based on their
architecture, you need to be able to analyze it. The architecture
of the software project is built at the stage of its design,
prior to the development. Elements of the UML language
were developed to describe the architecture of the project

The authors acknowledge that this paper was supported by the project
no. 16-47-730742 and 16-47-732033 of the Russian Foundation for Basic
Research.

with the required level of detail. Basing on the results of our
previous research [1], we can conclude that the developers
have different types of structural elements. Ontology as a
knowledge storage system could well act as a reference for
the project analysis tool. Attempts to integrate ontologies into
software development were carried out at different levels:
technical documents [2]–[7], maintenance and testing of the
source code [8], the UML diagrams [9]–[13].

The minimal structural elements of UML, such as classes,
interfaces, objects themselves, weakly convey the semantics
and architectural solutions of the project. The combination
of such elements is much better describes the architecture of
the project. Stable combination of structural elements, known
as design patterns. The design patterns appeared relatively
long time in information technology and are still relevant.
Design patterns are actively used by the developer community,
thus representing a reliable benchmark in the analysis of the
project. In addition, it makes sense to create local design
patterns that solve this or that task in a given subject area.
A template based on a specific subject area loses its main
property - universality, but its semantic weight is a more
important metric for solving the problem of constructing a
tool for finding similarities between projects. There are many
works devoted to the integration of software development with
ontologies. There is a whole approach to development, based
on a domain known as development based on the subject area
[14]–[16].

II. FORMULATION OF THE PROBLEM

The results presented in this paper are a continuation of the
work described in research[1]. The system described in re-
search made it possible to extract information from conceptual
models and save it as an ontology of a certain format. But the
life cycle and manufacturing practices of IT companies show
that conceptual models are created at best at each stage of the
project, and in the worst once at the beginning of the project.

The state of the project is best described by the source code
of the project. Developers try to maintain the source code
in good condition, create documentation, provide comments
and opportunely refactor. Another advantage of the source
code is the widespread introduction of version control systems.
Tracking all versions of software products allows effectively

269

manage the development of software and generates a large
amount of information available for processing.

Information for comparison obtained from conceptual mod-
els of a new project at the design stage and information ob-
tained from the source code of projects that have already been
implemented will allow to determine the structural similarity
of projects.

To get the projects structural similarity, it is necessary to
translate information about projects from different sources to
a single format. It is most convenient to present the extracted
information in the form of ontology in the language of OWL.
OWL ontology will allow preserving the semantics of complex
architectural solutions, allowing to make changes to already
existing data and to perform logical operations on statements.

The search for structural similarity of projects is part of
the project comparison method. In addition to comparing the
structure of projects, it is planned to compare still subject
areas of projects. If a comparison is made between projects of
the same enterprise in one subject area, then the comparison
should be performed at the level of the processes and the
components of the subject area. If the comparison of the
project is carried out among the projects placed on the open
repository, the structural similarity of the projects is more
important metric then general subject area.

III. UML META-MODEL BASED ONTOLOGY

As a structure for storing UML class diagrams was chosen
an OWL ontology, because this format is the most expressive
for representation of knowledge from complex subject areas.
The class diagram elements should be translated into ontology
as concepts with considering to their semantics. Semantics
of the whole diagram is being formed from the semantics
of diagram elements and the semantics of their interaction.
That is why the ontology was built on the basis of the UML
meta-scheme, not a formal set of translated elements.

To solve the problem of intellectual analysis of project dia-
grams, included in the project documentation, it is necessary
to have knowledge in the area of construction of formalized
diagrams.

Ontology contains concepts that describe the most basic
elements of the class diagram, but it can be expanded if
necessary. When translating the meta-scheme of UML, the
following notations were applied.

Formally, the ontology of project diagrams is represented
as a set:

Oprj = 〈Cprj , Rprj , F prj〉, (1)

where : Cprj = {cprj1 ,cprji } – is a set of concepts that
define main UML diagram elements such as : "Class",
"Object", "Interface", "Relationship" and others;
Rprj – the set of connections between ontology concepts.
These relationships allow us to correctly describe the rules of
UML notation.
F prj – is the set of interpretation functions defined on the
relationships Rprj

IV. DESIGN PATTERNS AS STRUCTURAL PARTS OF
SOFTWARE PROJECTS

Design patterns are insert into ontology as a set of indi-
viduals based only on the ontology classes described above.
Semantic constraints and properties of design patterns are
specified with by the ObjectProperties and DatatypeProperties
of OWL ontology. Since many design patterns are stored in
the ontology at the same time, it is necessary to enter rules of
naming for their elements to avoid duplicate names. The name
of the design pattern element begins with the design pattern
name, and then if the element is the class, its name is written.
If the element is a relationship, then the names of the elements
that it connects are written through the underscore. One of the
most commonly used design patterns is the Builder [17].

Builder is a creational pattern. The Builder pattern separates
the algorithm for the step-by-step construction of a complex
object from its external representation so that it is possible to
obtain different representations of this object using the same
algorithm.

In order to preserve this design pattern in the developed
ontology, the following individuals were required.
• SimpleClass: Builder_Client, Builder_Director, Builder_

ConcreteBuilder, Builder_Product.
• AbstractClass: Builder_AbstractBuilder.
• Association: Builder_Client_AbstractBuilder,

Builder_Client_Director, Builder_Client_IProduct,
Builder_ConcreteBuilder_Product.

• Generalization: Builder_ConcreteBuilder_AbstractBuilder.
• Realization: Builder_Product_IProduct.
Ontological representation of the design pattern:

Oprjtmpi = {inst(C
prj
1), ...inst(rprj1),, rsameAs}, (2)

In fact, the ontological representation of a single design pattern
is a set of instances of concepts and relations from the ontology
of project diagrams.

To calculate the structural similarity of projects based on
ontology, the following expressions were proposed. The first
metric gives priority to the maximum single expressed design
pattern in both diagrams:

µdcγ ,dcδ = ∨
tmp∈(dcγ∩dcδ)

µdcγ∩dcδ(tmp), (3)

where dcγ and dcδ is project class diagrams presented as UML
metamodel ontology Abox expressions,
µdcγ ,dcδ(tmp) - measure of similarity design pattern in project
diagram.
The second metric considers the coincidence of all design
patterns in equal proportions and does not considers design
patterns with a measure of expression less than 0.3:

µdcγ ,dcδ = (
∑

tmp∈(dcγ∩dcδ)≥0.3
µdcγ∩dcδ)/N, (4)

where N - count of design patterns with a measure of
expression greater than 0.3 for each of both projects.

270

Figure 1. "Builder" design pattern ontology presentation in Protege editor.

The third metric works the same as the second one, but
the contribution to the evaluation by design patterns depends
on the number of elements in the design pattern (the design
pattern with 20 elements means more than a design pattern
with 5 elements):

µdcγ ,dcδ = (
∑

tmp∈(dcγ∩dcδ)≥0.3

∼
µdcγ∩dcδ)/N, (5)

where
∼
µdcγ∩dcδ - weighted measure of expression.

V. THE RESULTS OF SEARCHING STRUCTURALLY SIMILAR
SOFTWARE PROJECTS

A. Searching design patterns in projects

To determine the measure of similarity between the two
projects, it is necessary to calculate the degree of expression
of the each design pattern in each of the project. The measure
of the expression of the design pattern in the project can
be calculated by mapping a project ontology Abox on a

design pattern ontology Abox. The Table I contains degree of
expression of the each design pattern in each of the project.

B. Results of searching structurally similar software projects
by different metrics

The results of calculating the similarity between projects by
three metrics are presented in the Table II.

Estimates based on the results of comparison projects are
quite high. The estimates are normalized from 0 to 1. The
estimates for the first metric are always equal to 1. This is
easy to explain, because it chooses the most expressed design
pattern in both projects. Among the design patterns partici-
pating in the test there are templates with a small number
of elements, for example: Absatrast superclass, interface and
delegator. The results for the second and third metrics are also
quite high. Design patterns with a degree of expression less
than 0.3 are excluded from consideration. All projects that
participated in the comparison are downloaded from the open
repository Github and somehow interact with the public API
of the well-known social network vkontate.

271

Table I
EXPRESSION OF DESIGN PATTERNS IN PROJECTS

Project name / Design pattern name Delegator (3) Adapter (8) Builder (12) Abstract superclass (3) Interface (5)
Android-MVP 1.0 0.875 0.83 1.0 1.0

cordova-social-vk 1.0 0.875 0.83 1.0 0.8
cvk 1.0 0.875 0.83 1.0 0.8

DroidFM 1.0 0.875 0.92 1.0 1.0
VK-Small-API 1 0.625 0.42 0.33 0.6
VKontakteAPI 1.0 0.875 0.83 1.0 0.8

VK_TEST 1 0.75 0.58 0.66 0.6

Table II
SIMILARITY BETWEEN PROJECTS

First project / Second project Android-MVP cordova-social-vk cvk DroidFM VK-Small-API VKontakteAPI VK_TEST
Android-MVP – 1 | 0.96 | 0.96 1 | 0.96 | 0.96 1 | 0.98 | 0.96 1 | 0.78 | 0.64 1 | 0.96 | 0.96 1 | 0.78 | 0.77

cordova-social-vk 1 | 0.96 | 0.96 – 1 | 1 | 0.99 1 | 0.94 | 0.93 1 | 0.85 | 0.67 1 | 1 | 0.99 1 | 0.83 | 0.80
cvk 1 | 0.96 | 0.97 1 | 1 | 0.99 – 1 | 0.94 | 0.93 1 | 0.85 | 0.67 1 | 1 | 0.99 1 | 0.83 | 0.80

DroidFM 1 | 0.98 | 0.97 1 | 0.94 | 0.93 1 | 0.94 | 0.93 – 1 | 0.78 | 0.61 1 | 0.94 | 0.93 1 | 0.78 | 0.74
VK-Small-API 1 | 0.78 | 0.64 1 | 0.85 | 0.67 1 | 0.85 | 0.68 1 | 0.78 | 0.61 – 1 | 0.85 | 0.67 1 | 0.96 | 0.87
VKontakteAPI 1 | 0.96 | 0.97 1 | 1 | 0.99 1 | 1 | 0.99 1 | 0.94 | 0.93 1 | 0.85 | 0.67 – 1 | 0.83 | 0.80

VK_TEST 1 | 0.79 | 0.77 1 | 0.83 | 0.80 1 | 0.83 | 0.80 1 | 0.78 | 0.74 1 | 0.95 | 0.87 1 | 0.83 | 0.80 –

CONCLUSION

The work presented in this paper have great potential for
further research. Number of projects could be expanded. It
is possible to include new design patterns in consideration.
Ontologies obtained in the intermediate stages could be used
separately in Protege editor. Expanding the system by using
ontologies of subject areas can significantly increase the
relevance of the similar projects selection.

REFERENCES

[1] G.Guskov A. Namestnikov, Ontological mapping for conceptual models
of software system, OSTIS-2017 proceedings, 2017.

[2] A.Namestnikov , A. Filippov, V. Avvakumova, An ontology based
model of technical documentation fuzzy structuring., CEUR Workshop
Proceedings. SCAKD 2016. Moscow. Russian Federation. Volume 1687,
pp. 63-74 (2016).

[3] A.Goy, D. Magro, Towards an ontology-based software documentation
management - a case study., KMIS (Kecheng Liu and Joaquim Filipe,
eds.), SciTePress, pp. 125–131 (2012).

[4] A. Koukias, D.Kiritsis, Rule-based mechanism to optimize asset man-
agement using a technical documentation ontology, IFAC-PapersOnLine
48, no. 3, 1001 – 1006 (2015).

[5] U. Zagorulko, I. Ahmadeeva, A. Serii, V. Shestakov, Postroenie tematich-
eskih intellektualnih nauchnih internet-resursov sedstvami semantic web,
Trudi 15 nacionalnoi konferencii po iscusstvennomu intelektu KII-2016,
Smolensk, vol 2, 2016, pp. 47-55.

[6] A. Namestnikov, G. Guskov, Programnaya sistema preobrazovaniya
UML-diagram v ontologii na yazike OWL , Trudi 15 nacionalnoi
konferencii po iscusstvennomu intelektu KII-2016, Smolensk, vol 3,
2016, pp. 270-278.

[7] Filippov A.A., Moshkin V.S., Shalaev D. O., Yarushkina N.G. Edinaya
ontologicheskaya platforma intellectualnogo analiza dannih// Materi-
ali VI mejgunarodnoi nauchno-tehnicheskoikonferencii OSTIS-2016,
Minsk, Respublica Belarus, 2016.

[8] Hossein S., Sartipi K., Dynamic analysis of software systems using
execution pattern mining., ICPC, IEEE Computer Society, pp. 84–88
(2006).

[9] Ma, Z., Zhang, F., Yan, L., Cheng, J. Representing and reasoning on
fuzzy UML models: A description logic approach. Expert Systems with
Applications,38(3), 2536–2549 (2011).

[10] J. Zedlitz, J. Jorke,N. Luttenberger, From UML to OWL 2, In: Proceed-
ings of Knowledge Technology Week 2011. Springer (2012).

[11] Almeida Ferreira D., Silva A., UML to OWL Mapping Overview An
analysis of the translation process and supporting tools. Conference: 7th
Conference of Portuguese Association of Information Systems(2013).

[12] Bobillo F., Straccia U., Representing Fuzzy Ontologies in OWL 2, WCCI
IEEE World Congress on Computational Intellegence, Barcelona, Spain,
July 18-23, pp.2696- 2700. (2009)

[13] N.Dorodnich i A. Urin, Ispolzovanie diagram klassov UML dlya
formirovaniya produccionnih baz znanii, Programnaya ingeneriya vol.
4, 2015.

[14] Wongthongtham P., Pakdeetrakulwong U.,Marzooq S., Ontology annota-
tion for software engineering project management in multisite distributed
software development environments, pp. 315–343, Springer International
Publishing, Cham, 2017.

[15] Emdad A., Use of ontologies in software engineering., SEDE (Hisham
Al-Mubaid and Rym Zalila-Wenkstern, eds.), ISCA, pp. 145–150 (2008).

[16] Dillon T., Chang E., Wongthongtham P., Ontology-based software
engineering- software engineering 2.0., Australian Software Engineering
Conference, IEEE Computer Society, pp. 13–23 (2008).

[17] Mark Grand, Java enterprise design patterns: Patterns in java (patterns
in java), John Wiley and Sons, 2002

ПОДХОД К ПОИСКУ ПРОГРАММНЫХ
ПРОДУКТОВ СО СХОЖЕЙ СТРУКТУРОЙ

Глеб Гуськов, Алексей Наместников
Кафедра «Информационные системы»

Ульяновский государственный технический
университет, Россия, Ульяновск

В статье описан метод сравнения программных про-
дуктов на основе их структурного сходства. Подход
основан на использовании онтологических представ-
лений структуры программных продуктов. Структура
программных продуктов извлекается из исходного кода
или концептуальных моделей. В статье рассматривает-
ся несколько различных метрик для расчёта структур-
ного сходства, которые могут быть использованы для
проектов различных типов.

272

