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Abstract—The project focuses on using computer vision tech-
niques to provide visual support and highlighting when perform-
ing endoscopic screening. The system is meant to provide visual
clues to the physician performing the screening, highlighting
regions of interest and polyps in real time, in order to increase
the evaluation accuracy of esophageal, gastric and colon cancers.
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I. INTRODUCTION

Endoscopy is a widespread approach in medical diagnostics
that involves a series of procedures for getting visual informa-
tion from inside the human body in order to examine internal
organs. The defining triat of all endoscopic research is the
acquisition of colored realistic representative image, image
sequence or video as part of the procedure, which greatly helps
in early detection, diagnosis and treatment of a wide array of
diseases. Most of the modern videoendoscopic system presume
the acquisition of high-definition high-framerate video in real-
time from the endoscopic camera inside the human body,
equipped with additional light source, and allow to control
the examination in order to acquire more information about
specific areas that might require the physician’s attention.

The effectiveness of endoscopic examination is determined
by a multitude of factors - patient’s preparation for the
procedure, equipment quality, physician’s skills in working
the equipment, ability to spot areas that require further at-
tention and ability to make educated decisions based on the
data acquired, sometimes during the procedure in order to
control its further flow. Additional equipment features like
retroflexion, second view, water/air inflation, etc. also affect
the effectiveness of the procedure. However, modern research
indicates that physician’s own skills play a great role, which
led to several medical care institutions of the USA, including
U.S. Multisociety Task Force on Colorectal Cancer, American
College of Gastroenterology, American Society for Gastroin-
testinal Endoscopy Task Force on Quality, to propose in 2002
a number of research quality indicators to evaluate physician’s
effectiveness during the research. In following years, most
of these indicators were adopted in other countries, and are
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nowadays considered a worldwide standard by various health
care institutions throught the world.

One of the most important quality indicators of endoscopy
screening quality is so-called personal adenoma detection rate,
or ADR. A physician’s ADR is the proportion of individuals
50 or more years of age undergoing a complete screening
colonoscopy who have one or more adenomas, or polyps,
detected. A typical value for good ADR is at least 15% for
women and 25% for men. It should be noted that while not
all detected adenomas may be potentially dangerous, it’s still
important to spot them during the screening in order to obtain
enough information to make sure it poses no threat to the
patient. [1]

The paper focuses on development of automated object
detection system to aid with screening process. The main
constraint on the system is the ability to work in real time
— object detection must be performed during the procedure
in order to give the physician necessary time to decide if the
detected object should be examined further and to minimize
overall examination time.

II. REALTIME OBJECT DETECTION TECHNIQUES

The problem of detecting and localizing objects on the
image is a well-known one in the field of computer vision. The
basic definition of the problem can be postulated as follows:
given an image that can potentially contain an object of
interest, detect said object by making sure that it conforms to
specific kinds of visual, spatial, pattern and brightness criteria;
produce, if possible, a bounding area (usually bounding rect-
angle) containing that object; and, finally, produce, if possible,
a collection of pixels that belong to the detected object. [2],
(3]

The simplest form of object detection may be defined as a
binary classifier with image dimensions as bounding rectangle.
Algorithm implementation based on this definition provides
no information about the actual location of detected object on
the image, since the bounding rectangle covers every point
that belongs to the image itself. The resulting classes of this
binary classification can be treated as "object present on the
image" and "object absent on the image" for positive and
negative classification, respectively. Most of the times, binary
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classification output is smoothed, and classification result x is
represented as a continious value over the range of = € [0;1].
With this definition, classification result can be treated as a
confidence score of an object being present on the image.

Binary classifiers can be used as a base for creating multi-
class classifiers — given n independent binary classifiers that
produce z; € [0; 1] confidence score of an object of i-th type
being present on the image, it’s possible to construct a multi-
class n-dimensional vector ¥ = (z1,x2,...,Z,) With confi-
dence scores for each of the n classes. Choosing a "winning"
class or classes can be then implemented as choosing classes
with maximum confidence scores, or choosing classes based
on a certain confidence score threshold. [2], [4], [5]

One step further is the implementation of actual localiza-
tion of detected objects on the image. Usually localization
presumes finding a rectangular region on the image that
encompasses the target object of the classification. It’s possible
to implement basic localization using a given binary image
classifier with a simple brute force approach by iterating over
a fixed number of blocks and their adjacency combinations
and running classifier with each block to find the region that
produces the highest confidence value.

After the actual localization, sometimes it’s also necessary
to produce the actual uneven boundaries of detected object,
i.e. perform classification on a pixel-per-pixel basis in order
to find the exact pixels that comprise the classified object on
the image. [6], [7]

The most common approach to real-time object detection
presumes the usage of features. Features of the image are
usually defined as points of the image that represent its
characteristic visual triat in a form of some well-known visual
abstraction. There is no general criteria that makes any given
pixel or any given region of the image a feature — these are
usually defined depending on the specific problem and ap-
plication; however, most commonly feature points are chosen
based on sharp brightness difference, thus corresponding to
edges and corners of a given image.

The algorithms for computing a set of feature points (or key-
points) of the image are called feature or keypoint detectors.
These include most common edge detectors, corner detectors
and blob detectors. Some higher-order feature detectors aim
to produce keypoints that are scale- and transform-invariant,
i.e. don’t depend on a relative scale, rotation and skew of their
spatial surrounding area. [2], [4], [8]

An actual classifier based on features also requires some
notion of feature correspondence or feature comparison. The
main idea is that the sought object on an image posesses some
features that are similar — to a certain degree — to the set of
reference features of a model object that is being detected.
Comparison of features is usually performed in a feature
metric vector space, and projections from keypoint to feature
space are performed by algorithms called feature descriptors.

A feature descriptor f is a projection of any point pi[j of
any image I to an n-dimensional metric vector space F:

fpl;) =0, €eF (1)

Since vector space F' is also a metric space, an appropriate
metric is defined on it:

m:FxF —R 2)

Two arbitary points, p’* of image I; and p’> of image I, are
considered similar by a feature descriptor (1) if their feature
vectors 71 = f(p') and ¥, = f(p’2) are similar by measure
of metric (2), or m(¥h,72) < t. The threshold ¢ is selected
based on a specific descriptor implementation.

Histogram-based descriptors use histogram analysis meth-
ods to produce feature vectors — the subregions of the im-
mediate keypoint surroundings are aggregated to magnitude
and orientation values and sampled across a fixed-size grid
into histogram bins, and the descriptor itself is defined as
all values of those histograms. Feature vectors of histogram-
based methods usually have a very high number of dimensions
(e.g. 128 for SIFT), and the most common distance metric
(euclidean multidimensional vector distance) can be computa-
tionally complex to calculate.

Subfeature-based descriptors consist of multiple subfeature
detectors, each producing its single distinct output value based
on sampling pattern, which is then usually normalized. The
most typical sampling patterns produce pair-by-pair compar-
ison between specific points of surrounding region. More
complex subfeature detectors are also coupled with orientation
compensation pattern to reduce the effect of affine transform
on pair-by-pair comparison of sampling pattern. Each subfea-
ture value is then stored in the resulting feature vector. Since
each subfeature is distinct, they can only be compared by their
corresponding values, so the most common distance metric is
the sum of differences for the same features.

The most repetative and computationally expensive task
when working with feature descriptors is usually the actual
feature vector comparison, i.e. the calculation of a metric
m (2). Most of the time the algorithmic complexity of fea-
ture descriptors is high enough as it is; moreover, common
recognition tasks presume comparison of two sets of feature
points by performing comparison for every possible pair. In
this context, of particular interest are subfeature-based feature
extractors for which each of the subfeatures can be normalized
and then binarized with an appropriate threshold. That way,
each subfeature output becomes a binary value, and feature
vector space becomes an n-dimensional boolean B™. The most
common metric for these descriptors becomes the Hamming
distance — a count of non-matching subfeatures. Descriptors
that produce binary feature vectors are called binary descrip-
tors, and are most widely used in real-time processing tasks,
because calculating Hamming distance between to feature
vectors is extremely fast.

The classical approach to object detection was proposed
by P. Viola in 2001 paper "Rapid Object Detection using a
Boosted Cascade of Simple Features". It is a machine learning
approach that uses Haar-like feature extractors and appropriate
feature descriptors to match around 6000 features in a 24x24
pixel windows, combined in a cascade of classifiers. This
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approach is still widely used for face recognition problems
and is computationally effective enough to be used in real-
time. Various modifications of this approach were proposed
in the following years, making it more suitable for specific
pattern recognition tasks. [9]

Another, more recent approach to object detection uses
region-based active contour models for image segmentation.
The boundaries are computed and adjusted iteratively using
edge-based and region-based terms of particular feature ex-
tractor and descriptor combination, defined as an optimization
problem of a local cost function of boundary inconsistency
accros feature space.

A more modern approach to object detection and localiza-
tion is the usage of convolutional neural networks. Convo-
lutional neural networks differ from more traditional object
detection methods because the network itself is trained to
produce and accentuate features it requires for a particular
object classification. By examining the output of the deeper
layer neurons it’s also possible to evaluate the boundaries of a
given object. While training a convolutional neural network
usually takes a significant amount of time, fully trained
networks are actually performant enough to perform object
classification and detection in real-time.

III. REAL-TIME POLYP DETECTION

There are multiple specifics that must be taken into account
when working with videoendoscopic images and image se-
quences.

First, most of the videoendoscopes come equipped with a
wide-angle lens camera. The non-linear transformation caused
by a wide-angle lens produces the effect most commonly
known as fisheye distortion. Fisheye lenses capture the light
of not only immediate forward frame area, but also of objects
reflected from around its vicinity. Because of the nature of
such a distortion, objects closer to the edges of the image
appear much larger than they actually are, and objects closer
to the center appear smaller. Also, straight lines moving away
from the screen towards the center gain a curvature that may
be recalculated given known lens parameters. [§]

For most practical applications of digital image processing
distortion correction is a necessary pre-processing step. It
allows to eliminate the inconsistencies of scale and curvature
which are determinal when using keypoint-based feature ex-
tractors and object detection algorithms.

Of particular note is the narrow-band imaging (NBI) tech-
nique implemented in most of the modern videoendoscopic
systems. The main idea of NBI is applying a set of color
filters on wavelengths that correspond to typical color chroma
of blood, blood vessels, background tissue and other objects
most likely present on endoscopic image, and then normalizing
the remaining wavelength range non-linearly. The result is
usually much more visually contrast image that makes expert
evaluation of the region much easies.

All of the above produce a set of requirements that an
automated real-time polyp detection system must meet:

« Detection must be invariant against image rotation. This
requirement is based on the fact that a certain region may
be observed under different angles, and its detection and
classification must keep working in those cases.

o Detection must be distortion-invariant. A specific pattern
of polyp should be detected regardless of the way it’s
distorted, i.e. on distorted image detector must produce
accurate results on the edges and towards the center of
the image.

« Detection should work regardless of relative contrast and
absolute color values of the objects. Since regular image,
post-processed image and NBI image produce different
color representations of the same region, detector must
use spatial and differential features in order to classify
objects.

« Detection visualization should not interfere with the pro-
cedure. Detected object boundaries should not obstruct
important parts of the image, while at the same time
location of detected object should be clear and distinct
enough to be able to spot it easily.

o Detection, as mentioned several times in this paper,
should be performed in real time. This requirement means
that detection should work on a separate framerate than
the main camera in order to prevent input lag, and it
should be fast enough to have a detection performance
of 15-20 frames per second to be able to keep up with
the main screen.

o Detection should be precise. False-negative detections
(i.e. failing to detect an object) mean that a potentially
dangerous polyp can be overlooked, while false-positive
detections (i.e. detecting an object where there is none)
may unnecesarily divert physician’s attention, thus com-
plicating and prolonging the procedure.

Image rotation invariance can be achieved by using scale-
invariant feature extractors. Most of the modern feature extrac-
tors already provide scale-invariance i.e. descriptors of features
remain similar when the image is subjected to simple affine
transformations. For the actual implementation of the system,
it was decided to use ORB (Oriented FAST and Rotated
BRIEF) feature detector and extractor. It provides numerous
significant advantages over more traditional Scale-Invariant
Feature Transform based approaches in a significant increase
of efficiency; moreover, descriptors produced by ORB are
binary, which means that keypoint matching is extremely fast.
(4]

Distortion invariance is implemented using a simple distor-
tion correction algorithm that uses standard fisheye distortion
model with adjusted parameters acquired using endoscopic
camera calibration. While the actual transformation of the
entire image can be computationally expensive, actual per-
pixel transformation can be postponed until its evaluation is
required. [8], [10] Moreover, keypoint detection for some of
the video frames can be skipped entirely and instead localized
to areas around keypoints detected on the previous frame, thus
the evaluation of spatial brightness and distortion correction
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transformation will only be required in these areas. The system
re-calculates a new set of keypoints on each 20th frame.

Color invariance is achieved by simplifying input frame
colorspace. There are 2 modes supported — using normalized
blue color component of RGB image representation and using
normalized brightness component of HSB image representa-
tion. Normalization makes sure that relative contrast doesn’t
affect the results as much.

Unobtrusiveness of detection result visualization is hard to
achieve. For initial implementation, it was decided to use a
rectangle selection to outline the bounding frame of detected
object with the ability to hide detection markers at will if they
happen to interfere with the observation.Example frame with
outlined detected object is presented on Figure 1.

Figure 1. Example of a figure caption.

Finally, in order to optimize the precision of detection it
is possible to adjust the sensitivity of the resulting detection.
In order to match the sought objects, a comprehensive feature
vector sets were built by using a mapped image sets built from
several colonoscopy screening videos containing known types
of polyps that should be detected by the system, evaluated by
an expert. While the precise sensitivity can only be determined
on a case-by-case basis, a reasonable default value is provided.
Also, the system optionally provides suggestions to enable or
disable certain endoscopy system built-in image enhancements
when output confidence score is not high enough to qualify
as exact match.

IV. CONCLUSION

Implemented software complex can be used as a decision
support system for endoscopic examination. The system is able
to detect suspicious objects in real-time during the screening,
make them visually clear to the physician performing the
procedure in order to optimize the procedure time, emphasise
the attention on certain automatically detected areas during the
screening procedure which, in turn, should serve to increase
the effective ADR of the physician.

Future system enhancements include the implementation
of multi-class detection in order to not only spot suspicious
objects on the image, but to also provide insights about the
exact type of the object. This can further be expanded to
propose suggestions about the optimal diagnosis and even
further treatment. Also, these tasks can be also performed

after the initial examination by analyzing the resulting video,
thus lifting the real-time processing constraint. Since object
detection relies heavily on calculating and evaluating keypoints
using feature detectors and descriptors, it’s also possible to
include different types of processing that makes use of feature
extraction. One of those is the problem of 3-dimensional
spatial reconstruction of the scenes present on the video. This
can prove benificial in a more detailed analysis of areas of
interest.
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B nannOl pabore paccMaTpUBAIOTCS METOIbI KOMITBIO-
TEPHOrO 3PEHust JJIsl MPEIOCTABIEHUS BU3YAJbLHON IIO-
JIEPY)KKHU U BbIJIEJIEHUST 00BEKTOB MPU IPOBEJIECHUH IPOIIE-
JIypbl 9HJIOCKOIIUYECKOI'O CKPUHUHIa. PaszpaboraHHas aB-
TOpaMu cucTeMa HIpeaoCTaBJ/ideT BU3YyaJibHbIE IIOJACKa3KHN
CHeHHaHHCTy, OCyHleCTB.HHIOHLeI\ly CKPUHUHI, U BbIJIC/IACT
obpa3oBaHusi W Apyrue O6JACTH HHTEPECa B pPeaJbHOM
BpeMeHu, C IeJIbIO IIOBBIIMEHUA TOYHOCTU JUATHOCTUKN
PA3JINYHBIX BUJIOB PaKa.
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