
Ontological modeling using the system «Binary
Model of Knowledge»

Gerald S. Plesniewicz
National Research University MPEI

Moscow, Russia
salve777@mail.ru

Dmitry E. Masherov
National Research University MPEI

Moscow, Russia
masherovdy@mail.ru

Abstract—In the paper, a brief description of the ontological
modeling system «Binary Model of Knowledge» (BMK) is given.
Using the system, experts have an opportunity to create heavy-
weight ontologies for complex systems. A case study of applying
BMK to development problems of computer systems for railway
safety is presented.

Keywords—ontological modeling; knowledge bases; highweight
ontologies; railway safety systems

I. INTRODUCTION

An ontology aims at representing knowledge (at conceptual
level) of the problem domain and the functionality of a given
modelled system.

«Binary Model of Knowledge» (BMK) is an ontological
modeling system which is under development at National
Research University MPEI (Moscow) and at Institute of Infor-
mation and Computing Technologies of MES RK (Almaty).

BMK is supported by concept-type languages which provide
a friendly interface for experts who are busy in developing
ontologies.

In Section 1 we describe briefly the main languages of
the system «Binary Model of Knowledge». In Section 2 we
present the case study of ontological modeling related to the
problem of developing a computer railway safety system.

II. BRIEF DESCRIPTION OF THE ONTOLOGICAL MODELING
SYSTEM «BINARY MODEL OF KNOWLEDGE»

Ontological modeling is an activity in creating ontologies
for subject domain and functionalities of applications. For
ontological modeling, the methods and methodology of on-
tological engineering are used [2, 3, 5].

BMK is the ontological modeling system supported by
conceptual-type languages which are well readable and
friendly to experts-ontologists.

Semantics of BMK languages is based on the formal
model of concept [3]. Formal concepts are constructed from
names. A formal concept with the name C has the following
components: (1) set UC – the universe of the concept; (2)
set Γ of so-called points-of-reference; (3) set ECγ for each
γ ∈ Γ – the set of instances of the concept at point-of-
reference γ; (4) reflexive, symmetric and transitive relation
˜Cγ ⊆ ECγ×ECγ for each γ ∈ Γ – coreferentiality relation;
(5) pair (ECγ, ˜Cγ) = ExtCγ for each γ ∈ Γ – the

extension of the concept at point-of-reference γ; (6) set family
{(ECγ, ˜Cγ) | γ ∈ Γ} – the full extension of the concept.

T. Gruber define an ontology as «explicit specification of
conceptualization» [2]. A conceptualiz/ation includes a choice
of suitable concepts and relations between them. (Let us note
that the relations can be considered also as concepts.) We
define a formal conceptualization as a (finite) set of formal
concepts with the same set Γ of points-of-reference.

For formal specification of formal concepts suitable formal
languages are used. There are different types of sentences
in such languages, depended on what components of formal
concept they specify. Structural sentences specify concept
universes; logical sentences specify concept extensions; tran-
sitional sentences specify modifications of concept extensions.

BMK includes the language LS for specifying ontologies
and its sublanguages LS-S, LS-L, LS-T and LS-DT which
consist in structural, logical, transitional sentences, and data
type specifications (correspondingly). In LS, two kinds of
concepts are used: classes and binary links (relations).

A. Structural sentences

Elementary LS-S sentences are expressions of the forms:

C[E], C[A : E], C[A : T], (C L D), (C L D)[E],

(C L D)[A : E], (C L D)[A : T]. (1)

Here C, D, E are names of classes, L is a name of a binary
link, A is an attribute name, and T is a data type specification.
C and (C L D) in elementary structural sentences (1) are

their heads, and [E], [A:E], C[A:T] are their tails. Several
elementary statements with identical heads can be merged into
one statement joining their tails. For example, the elemen-
tary statements C[E], C[A:D(*)], C[B:(String,Integer)] are
merged into one statement C[E,A:D(*), B:(String,Integer)].

A structural scheme is a (finite) set of structural sentences.
Example 1.

SCHEME EducationInfo
1. Student[Name:String,

Belongs_to:StudGroup].
2. StudGroup[Title:String,Tutor:Student].
3. (Student PassedExam Course).
4. PassedExam[ExamList].

71

5. Teacher[Name:String,
Position:{prof,assist},
Works_at:Department].

6. (Course Conducted_by Teacher).
7. Course[Name:String].
8. Department[Name:String,Staff:

(Teacher OR Ingineer)(*)]
9. ExamList[Name-of-course:String,

Name-of-student:Dtring,
Date-of-exam:Date].

END

The statements from (1) define (correspondingly) the fol-
lowing universes of C and L:

UC = Surr U Iname U {[E:x] | x ∈ Surr},
UC = Surr U Iname U {[A:x] | x ∈ Surr},
UC = Surr U Iname U {[A:x] | x ∈ T},
UL = Surr U Iname U{[C:x, D:y] | x, y ∈
Surr},
UL = Surr U Iname U {[C:x,D:y,E:z] | x, y,
z ∈ Surr},
UL = Surr U Iname U {[C:x,D:y,A:z] | x, y,
z ∈ Surr},
UL = Surr U Iname U {[C:x,D:y,A:z] | x, y
∈ Surr, z ∈ T}.

Here Surr is the set {#1,#2,#3, . . .} of so-called sur-
rogates (object identifiers) and Iname is the set of object
names.

For example, the following tuple belongs to UTeacher,
where #27 is the surrogate of some department:
e = [Name:V.Falk’,Position:prof,
Work_at:#27].

In a structural scheme, every concept from a structural
sentence with a tail defines derived concepts. For example,
for the concept Teacher we have the derived concepts

Teacher(Name = ’V.Falk’),
Teacher(Name = ’V.Falk; Positon =

prof),
Teacher(Name=prof;Work_at = #27),
Teacher(Work_at.Name = AppliedMath)

and so on. The first term denotes the teacher V. Falk. The
second term denotes the teacher V. Falk which is a professor.
The third term denoes set of professors working an the
department with the surrogate #27. The third term denotes
the set of all teachers working at the Applied Mathematics
department.

B. Representation of facts

A fact is a statement about belonging a given object e to
instances of a given concept C at a given point-of-reference
γ, i.e. e ∈ ECγ or e ∈ UC \ ECγ . The first fact is positive and
the second fact is negative. In the language LS, the facts are
written as follows:

• +(e IN C / POR γ) and –(e IN C / POR γ) when C
is a class. Here POR is the abbreviation for «point-of-
reference»;

• +(e1 L e2 C / POR γ) and –(e1 L e2 C / POR γ) when
L.

Here POR is the abbreviation for «point-of-reference», and
the signs «+» and «–» denote that fact are positive and
negative.

In the BMK, a tabular representation of facts data repre-
senting first sort facts is used.

Example 2. Consider the sentences 3 from Example 1 for
the binary relation PassedExam. Table I is an example of a
tabular representation of a set of facts for this relation.

Table I
TABULAR REPRESENTATION OF THE BINARY RELATION «PASSEDEXAM»

PassedExam
Surr Sign Coref Student Course
.....
#33
#34
.....

....
+
-
....

.......
[exam4]
[]
.......

.......
#10
#10
.......

.......
#24
#27
.......

The rows from Tables I represent the facts: «The student
with the surrogate #10 passed the exam on the course with the
surrogate #24, and does not pass the exam with the surrogate
#27». Also here we have the coreferentialities:
#33 ~exam4 ~[Student:#10, Course:#24],
The language LS includes conjunctive queries.
Example 3.
Query 2. What students from the student’s group A13-09

passed examination in algebra at 15-01-2017 and received the
assessment 75?

?X.Name --(X Passed_exam:Y Course);
X.Belongs_to.Title = A13-09;
Y.ExamList.Name-of-course = algebra;
Y.ExamList.Data = 15-01-2017;
Y.ExamInfo.Assesment = 4.

C. Logical sentences

Logical sentences of the language LS-L are constructed
of three type terms: C-terms, L-terms and P-terms. C-terms
denote subsets of the set Surr, L-terms denote subsets of
the set Surr × Surr, and P-terms denote unary predicates
defined on Surr.

Consider several examples of C-terms, L-terms, P-terms and
LS-L sentences.

Examples 4.
1) Student, Student(Name = ‘A. Kotov),

Student(Belongs_to.Title = A13-11),
Belong_to.Name = A13-11) OT
PassedExam SOME Course,

2) PassedExam SOME Course THAT
Conducted_by Teacher(Name=‘V.Falk’),

3) Course(Name=CraphTheory)Conducted_by.

72

The first P-term presents the predicate which is true for
every student that did not pass at least one exam. The third P-
term presents the predicate which is true for all teachers who
conducted the course «graph theory».

We use the following metavariables in the description of
syntax and semantics of terms and sentences of the language
LS-L: c for individual constant; C, D, E for classes; L, M ,
N for binary links; P , Q, R for predicates; S, S1, S2 for
sentences; V for parameters.

For any expression exp, we denote by ‖exp‖ its value under
a given interpretation. For concept and binary link names we
suppose ‖C‖ ⊆ Surr and ‖L‖ ⊆ (Surr, Surr).

Syntax of C-terms:

C, D::= NOT C | C : V | (C AND D) | (C OR D) |
C THAT P | C SOME L | C ONLY L | L.1 | L.2.

Here L.1 = D1 and L.2 = D2 where (D1 L D2) specifies
L.

Semantics of C-terms:

‖ NOT C‖ = Surr \ ‖C‖,
‖C : V ‖ = ‖C‖,
‖C1 AND C2‖ = ‖C1‖ ∩ ‖C2‖,
‖C1 OR C2‖ = ‖C1‖ ∪ ‖C2‖,
‖C THAT P‖ = {x ∈ ‖C‖ | ‖P‖(X) },
‖C SOME L‖ = {x ∈ SurrR | ∃y ∈ Surr.
Y ∈ ‖C‖ ∧ (x, y) ∈ ‖L‖ },
‖C ONLY L‖ = {x ∈ Surr | ∀y ∈ Surr.(x, y) ∈
‖L‖ → y ∈ ‖C‖ },
‖L.1‖ = ‖D1‖,
‖ L.2 ‖ = ‖ D2 ‖.

Syntax of L-terms:

L::= NOT L | (L1 AND L2) | (L1 OR L2) | INV
(L).

Semantics of L-terms:

‖ NOT L‖ = (Surr, Surr) \‖C‖,
‖L1 AND L2‖ = ‖L1‖ ∩ ‖L2‖,
‖L1 OR L2‖ = ‖L1‖ ∪ ‖L2‖,
‖ INV (L)‖ = {(y, x) | (x, y) ∈ ‖L‖ }.

Syntax of P-terms:

P ::= NOT P | (P1 AND P2) | (P1 OR P2) |
L SOME C | L EACH C | (L V) | (L c).

Semantics of P-terms:

‖ NOT P‖(x) ⇔ ¬‖P‖(x)),
‖P1 AND P 62‖(x) ⇔ ‖P1‖(x) ∧ ‖P2‖(x),
‖P1 OR P2‖(x) ⇔ ‖P1‖(x) ∨ ‖P2‖(x),
‖L SOME C‖(x) ⇔ ∃y ∈ ‖C‖.(x, y) ∈ ‖L‖,
‖L EACH C‖(x) ⇔ ∀y ∈ Surr.(x, y) ∈ ‖L‖ → y ∈
‖C‖,
‖(L V)‖(x) ⇔ (x, V) ∈ ‖L‖,
‖(L c)‖(x) ⇔ (x, ‖c‖) ∈ ‖L‖.

Syntax of sentences:

S ::= NOT S | S1 AND S2 | S1 OR S2 | S1 IMP S2 |
EACH C P | FOR-EACH C P | FOR-SOME C P |
C1 ISA C2 | C1 = C2 | L1 = L2 | EXIST C |
EXIST L | NULL C | NULL L. | PRECOND (? S ∗) |
POSTCOND (? S ∗).

Semantics of sentences:

‖ NOT S‖ ⇔ ¬‖S‖,
‖S1 AND S2‖ ⇔ ‖S1‖ ∧ ‖S2‖,
‖S1 OR S2‖ ⇔ ‖S1 ∨ ‖S2‖,
‖ EACH C P‖ ⇔ ‖ FOR-EACH C P‖ ⇔ ∀y ∈
‖C‖.‖P‖,
‖ SOME C P‖ ⇔ ‖ FOR-SOME C P‖ ⇔ ∃y ∈
‖C‖.‖P‖,
‖C1 ISA C2‖ ⇔ ‖C1‖ ⊆ ‖C2‖,
‖C1 = C2‖ ⇔ ‖C1‖ = ‖C2‖,
‖L1 = L2‖ ⇔ ‖L1‖ = ‖L2‖,
‖ EXIST C‖ ⇔ ‖C‖ 6= ∅,
‖ EXIST L‖ ⇔ ‖L‖ 6= ∅,
‖ NULL C‖ ⇔ ‖C‖ = ∅,
‖ NULL L‖ ⇔ ‖L‖ = ∅,
‖ PRECOND (? S ∗)‖ = ‖S‖,
‖ PRECOND (? S ∗)‖ = ‖S‖.

D. Specification of changes

In LS we can create schemas for determining dynamics of
fact bases. The dynamic aspects include:
• the operations that are possible;
• the relationships between their inputs and outputs;
• the changes of fact bases that happen.
Examples 5. An examination list can be considered as an

object changing its content during examination. We describe
it by means the following schemes.

SCHEME ExamList
1. Records SUBS (Name, {20 .. 100})(*).
2. assess: Name --> {20..100}.
3. FOR-EACH X IN RecordsedNames EXIST

Y IN {20..100} THAT assess(X) = Y.
END

Here SUBS is the abbreviation for «subset» and « –> »
informs that assess is a function, possibly partial. The
sentence 3 says that the names of students are recorded
together with assessments.

SCHEME AddRecord
1. ExamList.
2. name?:Name.
3. assessment?: {20..100}.
4. PRECOND(*name? NOT IN Records*).
5. Records : = Records ADD

(name?,assessment?)
END

73

The names with question marks are used as input variables,
So, when the specific values a and b are assigned to the
variables name? and assessment? then the pair (a,b) is
added to Records. The sentence 4 act as precondition for
executing 5.

SCHEME FindAssesment
1. name?: Name.
2. assessment!: {20..100}.
3. PRECOND (*name? IN Records*).
4. assesment! = assess(name?).
END

The exclamation mark informs that assessment! is an
output variable. Thus, the scheme FindAssesment acts as
a query.

III. RAILWAY SAFETY CONTROL SYSTEM

A distributed railway control system (RCS) is a critical
safety system. RCS consists of:
• switch boxes (SB), each one locally controlling a point,

i.e. the boundary between two segments of a single track
or a railway crossing,

• train control computers (TCC) residing in the train en-
gines and collecting the local state information from
switch boxes along the track in order to derive the deci-
sion whether the train may enter the next track segment
[4].

We introduce a formal approach for domain specification
and decision inference using BMK schemas with some con-
stucts of Z-notation [9,10]. The presented approach allows
agents to make decisions to signal trains and update the control
system.

Consider the system configuration depicted in Fig. 1. The
tasks of train control and interlocking are distributed on
computers residing in each train t1, t2 and switch boxes sb1,
sb2, each one controlling a single point, the boundary between
two segments of a single track or a railway crossing.

Figure 1. Example of a network with trains

The system TCC acts as follows:
• Each switch box stores the local safety-related informa-

tion. In particular, this information includes the state of
the traffic lights guarding the railway crossing (i.e., the
track segments that are currently connected by the local
point, or whether a train is approaching the switch box).

• In order to pass a railway crossing or to enter a new
track, a train’s TCC communicates with the relevant
switch boxes to make a request for blocking a crossing,
switching a point, or just reserving the relevant track
segments at the SB for the train to pass.

• Depending on their local state, the switch boxes may or
may not comply with the request received from a TCC.
In any case, each SB returns its local state information to
the requesting TCC. After having collected the response
from each relevant SB, the TCC evaluates the SB states
to decide whether it is safe to approach the crossing or
to enter the next track segment.

We implemented a model to describe RCS. Specification
schemas are used to define the domain concepts and operator
schemas to enforce the train system safety. The definitions are
split into the static and dynamic parts. The static part defines
classes which are not changed during the system operation and
the dynamic defines classes with changing states. The static
part corresponds to the TrainDefinitions schema and
the dynamic to the TrainSystem schema.

SCHEME TrainDefinitions
RouteSegments SUBS

(Segment,{’<--’,’-->’,’<->’})(*).
Arcs SUBS(RouteSegments,RoutSegments).
Network == SUBS (RoutSegments,Arcs).
Train[Network,SwitchBlok(*),Lock(*),
/ Direction: ,{’<--’,’-->’},

Reservation(*)].
Reservation: SwitchBlock -->

SwitchBlock(*)].
END

SCHEME TrainSystem
TrainParameters[
speed: Train --> Speed,
envelope: Train -->

(Points, Points)(*),
segment: Train --> Segment,
direction: Train --> {’-->’, ’<--’}].
TYPE TrainSignals == {ContinueGreenZone,
StopTrainRedZone,IncreaseSpeed,
ContinueCrossing, StopForCrossing} .
TYPE BlockStatus = {Free,Occupied,Clear,
RedZoneForEveryTrain}.
ControlRoom [
sectorStatus: BlockStatus,
crossingAreaStatus: BlockStatus,
///sectorOccupiedBy: Train(*),
segmentsOccupied: Segment(*),
segmentOccupiedBy: Train(*)s,
directionOfRedZone: Direction(*)s,
timeInSector:(Sectors,Train) <-> Time,
signal: Train <-> TrainSignals
].

END.

74

The class TrainParameters stores current state of
TrainSystem which includes
• speed (type Speed is defined as an alias of integers);
• train «envelopes». A train envelope is a neighborhood of

the train depending on the train speed;
• segments which are currently occupied by trains train

directions.
The class ControlRoom stores railway sector information:
• sectorStatus and crossingAreaStatus are sta-

tuses of a sector and a crossing which are inferred with
train system state;

• a set of trains occupying the sector
sectorOccupiedBy;

• a set of segments occupied by any train from
segmentsOccupied;

• helper variable for storing the train on a segment from
segmentOccupiedBy;

• helper variable for storing the direction of train on an
unsafe segment from directionOfRedZone;

• time of trains in sector timeInSector.
The following operator schemas are similar to Z-notation

schemas: the input of schemas is a set of variables which can
be used by the schemas to update the state and to output other
variables [10]. Operator schemas can use classes, attributes
and types from other schemas using schema importing. To
import a schema, its name and an import annotation must be
explicitly written at the start of the current schema definition.
An import annotation specifies whether the current schema
modifies the state of an imported schema. Import annotations
use symbols «=» and « <> » where « = SN » means that that
current schema does not modify the schema SN and « <> SN »
means that the schema SN is modified.

Like Z-notation schemas input variables in BKM schemas
use «?» suffix and output variables use «!». Variable names
can match any attribute name from the imported schemas. If
names match and «=» import annotation was used, then both
the variable and the attribute change when they are assigned
to a value. If « <> » import notation was used the attribute is
left unmodified.
LinearSafety and CrossingSafety schemas set the

train signals to enforce safety on linear segments and at
railway crossings.

SCHEME LinearSafety
=TrainSystem
<> ControlRoom,
train?: Train,
sector?: Sectors,
directionOfRedZone!: Directions,
sectorStatus!: BlockStatus
PRECOND
segmentSectors(segment(train?))
sector?
(*FOR-EACH
other:Trains EMPTY(envelope(other)
AND envelope(train?)sectorStatus’:=

Free
signal’(train?) := ContinueGreenZone

*)
(*EXIST other:Trains THAT

NOT_EMPTY(envelope(other) AND
envelope(train?))
timeInSector(sector?, train?) >
timeInSector(sector?, other?)
AND speed(train?) < speed(other)
sectorStatus’ := Occupied
segmentOccupiedBy := other
signal’(other) := StopTrainRedZone
signal’(train?) := IncreaseSpeed
directionOfRedZone! :=
direction(other)

*)
(*EXIST other:Trains THAT

NOT_EMPTY(envelope(other) AND
envelope(train?))
timeInSector(sector?,train?) <
timeInSector(sector?, other?)
AND speed(train?) -> speed(other)
sectorStatus’ := Occupied
segmentOccupiedBy’ := other
signal’(other) := IncreaseSpeed
signal’(train?) := StopTrainRedZone
directionOfRedZone!:=
/ direction(other)

*)
END

LinearSafety schema receives input variables train?
and sector?. The precondition checks that the train? is
in the sector?. If the precondition fails, then the schema
returns a corresponding message, otherwise the schema infers
train signals. If there are no other trains near the train?,
then it is reported that the sector is free. If there is other
train behind the train?, then the train? is signaled to
accelerate and the other is signaled to stop. If there is other
train in front of the train?, then the signals are produced
for the corresponding trains.

SCHEME CrossingSafety
=TrainSystem,
<> ControlRoom
crossing?: Crossing(*)
train?: Trains
crossingAreaStatus!:BlockStatus
PRECOND
segment(train?) IN

crossingSegments(crossing?)
(*EXIST other:Trains THAT

NOT_EMPTY(envelope(other) AND
envelope(train?)) AND EXIST
envelopeSegment:
pointSegments(envelope(train?))
envelopeSegment==crossingSegments

75

(crossing?)
crossingAreaStatus! :=

RedZoneForEveryTrain
signal’(train?) := StopForCrossing

*)
(*

EXIST other:Trains THAT
EMPTY(envelope(other) AND
envelope(train?)) AND
FOR-ALL envelopeSegment:
pointSegments(envelope(train?))
envelopeSegment ==
crossingSegments(crossing?)
crossingAreaStatus! := Clear
signal’(train?) := ContinueCrossing

*)

No train near the crossing
END

CrossingSafety schema receives input variables
train? and the state of the crossing?. The precondition
checks that the train? is near the crossing?. If the
precondition fails, then the schema returns a corresponding
message, otherwise the schema infers train signals. If there is
other train near the train and crossing, then the train? is
signaled to continue, otherwise it is signaled to stop. Besides
signaling the train system is updated.

IV. CONCLUSION

We gave a brief description of the ontological modeling
system «Binary Model of Knowledge» inteded for designing
and interpreting heavyweight ontologies. Such ontologies are
needed when describing problem domains for advanced ap-
plications. We present a case study of modeling the railway
safety control system. We can analyze the resulting ontology
using the reasoning block of the system «Binary Model of
Knowledge». The case study demonstrates adequacy of the
system «Binary Model of Knowledge» for designing and
interpreting heavyweight ontologies for complex systems.

ACKNOWLEDGMENT

This work was supported by Russian Foundation for Basic
Research (project 14-07-0387) and Ministry of Education and
Science of Kazakhstan (project 0115 RK 00532).

REFERENCES

[1] T. R. Gruber. “Toward principles for the design of ontologies used for
knowledge sharing.”. International Journal of Human-Computer Studies,
Vol. 43, Issues 4-5, pp. 907-928, November 1995.

[2] V. Devedzic. “Undestanding ontological engineering.” Communications
of the ACM, Vo.l. 45, Issue 4, pp. 136-149, 2002.

[3] T. Halpin. “Ontological modeling: Part 1”. Available in:
http://www.orm.net/pdf/OntologicalModeling1.pdf

[4] A.E. Haxthausen, J. Peleska. "Formal developing and verification of
a distributed railway control system.” IEEE Transaction on Software
Engineering, 26 (8) , pp. 687-701.

[5] R. Mizoguchi. “Tutorial to ontological engineering”. Available
in: https://ru.scribd.com/document/56477570/Mizoguchi-2004-Tutorial-
on-Ontological-Engineering

[6] G.S. Plesniewicz. “Formal ontologies”. Open semantic technolologies
for intelligent systems (OSTIS 2012). – Minsk, 2012, pp. 163-168. (In
Russian.)

[7] G.S. Plesniewicz., D.E. Masherov, Nguen Thi Min Vu, A.B. Karabekov.
“Binary Knowledge Model: specifying, instantiating and interpreting
advanced ontologies.” Proceedings of the 9th International Conference
on Application of Information and Communication Technologies. –
Rostov-on-Don, Russia, 2015, pp.314-319. (In Russian.)

[8] Plesniewicz., D.E. Masherov, Nguen Thi Min, A.B. Karabekov. Methods
and Languages for Ontological Modeling. – Almaty: IICT publ., 2015,
p. 179. (In Russian.)

[9] J.M. Spivey. The Z notation: a reference manual. – Oxford (UK):
Prentice Hall Int., 1989, p. 158.

[10] J. Woodcock, J/ Davis. “Uzing Z.” Available in:
http://www.cs.cmu.edu/ 15819/zedbook.pdf

ОНТОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ С
СИСТЕМОЙ «БИНАРНАЯ МОДЕЛЬ ЗНАНИЙ»

Г.С. Плесневич, Д.Е.Машеров

В статье дано краткое описание системы онтоло-
гического моделироваия «Бинарная Модель Знаний»
(БМЗ). Используя эту систему, эксперты могут созда-
вать «весомые» (heavyweight) онтологии для сложных
приложений. Рассмотрен пример применения БМЗ к
задачам разработки компьютерных систем безопасно-
сти железнодорожного движения.

76

