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Abstract—Semantic analysis of speech is more prospective
compared to analysis of text since speech contains more in-
formation that is important for understanding. The most im-
portant distinguishing feature of speech is intonation, which
is inaccessible in the text analysis. For successful semantic
analysis of speech it is necessary to transform the speech signal
into features with semantic interpretation. The mathematical
apparatus of convolutional neural networks (CNN) seems suitable
to implement this kind of transformation. However there is a
scalability problem that makes it hard to combine many CNN’s in
a single solution. To overcome this we propose to develop a CNN
model with semantically meaningful activations i.e. the model
that is capable of semantic interpretation of its internal states.
The ultimate goal of the transform is to extract all semantically
meaningful information, however the present work is confined to
voice activity detection (VAD) and intonation extraction. Unlike
other VADs based on artificial neural networks, the proposed
model does not require a lot of computing resources and has a
comparable or even better performance.

Keywords—semantic speech analysis, voice activity detection,
convolution neural network, VAD, CNN.

I. INTRODUCTION

Known speech analysis and processing solutions based
on neural networks can hardly be embedded into semantic
systems because their internal states cannot be interpreted in
semantic terms. In this paper we propose a CNN model that
extracts speech intonation and voice activity using semanti-
cally meaningful activations.

A voice activity detector per se is one of the most important
modules in many speech processing applications, such as audio
coding, speech recognition, speaker identification, etc. The
problem of voice detection in an audio signal has not yet
been solved, especially in the presence of noises, which often
present in the audio signal in the real world.

Significant development of machine learning in other speech
processing tasks led to attempts to apply machine learning
methods to VAD. In [1] the authors used a deep belief network
(DBN) as the main tool for building their own VAD system.
In [2, 3, 4] the authors used restricted Boltzmann machines
(RBM) and networks with fully connected layers. A support
vector machine (SVM) is used in [5, 6, 7] to classify features
of a speech signal as one of the most computationally simple
methods of classification. In [8, 9], the authors used the fact
that a sound signal is a time series, and they used recurrent
neural networks (RNN) for building VAD systems.

Another disadvantage of deep neural networks is computa-
tional complexity. Considering that the voice detector is often
only an auxiliary module of a speech processing system, it is
necessary to be sure that the VAD module consumes as little
computing resources as possible.

The model proposed in this work provides a high accuracy
of VAD comparable to existing solutions based on neural
networks but uses much fewer (by several orders) parameters.
A useful property of the obtained solution is the possibility of
estimating a basic pitch of a speech signal. This estimation is
generated by network activations.

II. PROPOSED METHOD

A. Features extraction

The choice of characteristic features of a sound signal is one
of the most important part of a VAD system building process.
We propose to use a fact that a speech signal has harmonic
components, which our model tries to detect. As basic features
of a speech signal, most works use mel-frequency cepstral
coefficients (MFCC) [1, 4, 5, 6, 7, 8, 10]. Instead, we propose
to use a spectrogram of an audio signal, and show that our
model is able to efficiently detect the harmonic components
of the signal, which are the main criterion for the presence
of a voice in an audio signal. As shown in Fig. 1, the
harmonic components of the sound signal are clearly visible
in those parts of the spectrogram where the voice is present.
In this case, the speech signal can be described using a
fundamental frequency (F'0), an amplitude, and number of
harmonic components.

The fundamental frequency of the harmonic signal is the
frequency corresponding to the first harmonic. The frequencies
of all the harmonics of the speech signal are multiples of
F0. To determine whether the signal is harmonic, we select
the amplitudes of only those frequency components from the
spectrogram that correspond to harmonics for a given F'0 and
feed them to the CNN model. In our experiments, we assume
that F'0 takes values from the range from FO0,,;, = 70Hz
and to F0,,,, = 350H z. Also we introduce the notation for
number of harmonics M and number of possible fundamental
frequencies N. These variables are hyperparameters and may
have different values.
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Figure 1. Spectrogram of sound signal.
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where f, is audio sample rate, Ny, is the format of the fast
Fourier transform (FFT).

Decision is frame-based (one frame one decision). The log
amplitude spectrum of signal frame s is calculated as:

index; = round (

S = log1o|FFT(s)]
which is transformed into features vector X:
X(4,7) = S(index;)

Thus for each signal frame we form a matrix of features X
with shape N x M, consisting of /N points for M components.
The basic idea is shown in Fig. 2.

We can consider each point of the frequency grid G as a
pitch candidate. The task of the neural network model is to
determine whether among the selected candidates there is one,
which clearly represents the harmonic structure of the signal.
If the model can detect a candidate that describes a harmonic
signal, then the current input example corresponds to a speech
signal, otherwise this example is classified as noise.

B. CNN architecture

In this paper we propose to use a simple model of a convolu-
tional neural network consisting of only two 2D convolutional
layers, followed by a global max-pooling layer. Fig. 3 shows
the architecture of the proposed model.

The input of the model is a matrix of features X with shape
N x M. The first convolutional layer has K filters of size 1 x M
with a ReLu activation function. The second convolutional
layer has only 1 filter with size 1 x 1. It aggregates the
features selected by the convolution filters on the previous
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Figure 2. The basic idea of features selection.
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Figure 3. Architecture of CNN for VAD.

layer for each of the N candidates separately. This layer does
not have an activation function. After than, the global max-
pool layer selects the candidate with the maximum activation,
thereby assuming that the candidate contains the harmonic
component of the input signal. Further, the candidate selected
passes through a sigmoidal activation function, as a result of
which the output of the network will represent the probability
that the input signal is a voice.

C. Pitch extraction

The second Conv2D layer forms an estimate of the pitch
frequency. A high value of any activation of the second
Conv2D layer gives a high degree of confidence that an input
sample is a periodic signal.

III. EXPERIMENTS
A. Training

The network was trained using SGD with learning rate n
and momentum 0.9. We used a binary cross-entropy (1) as a
loss function.

N,—1
1 x

Lee = — —y; % log(t;) — (1 — ;) xlog(1 — t; 1
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where Nx is number of training samples, y; is network output
for ¢-th training sample, ¢; is target value of the class label for
the ¢-th training sample.

B. Dataset preparation

To train the model, we used our own dataset, consisting of
50101 examples. This dataset was divided into training and
testing subsets in a ratio of 3 to 1. Additive and multiplicative
components from white noise were added to the dataset.

C. Hyperparameters tuning

To determine optimal values for hyperparameters, we di-
vided the dataset into training and testing subsets in a ratio of 3
to 1 and trained several model configurations with the different
hyperparameter values. We experimented with different values
of N, M and K. The hyperparameters tuning results are

The input vector consists of 13 * 3 = 351 nodes. Here, 13 is
the number of MFCC coefficients, and 3 is the total number
of different features.

The network was trained using SGD with learning rate 0.01,
momentum 0.9, and loss function (1).

The training results of the proposed and basic models are
presented in Table III. Both models were tested using the
cross-validation technique.

Table IIT
RESULTS OF EXPERIMENTS

Criterion Proposed model | Baseline model
Number of parameters 90 969,218
Training Lce 0.33469 0.69316
Training accuracy, % 86.27 50.486
Testing Lce 0.45104 0.69159
Testing accuracy, % 78.99 57.668

presented in Table I.

Table 1

HYPERPARAMETERS TUNING RESULTS

Model K| M N Training Lee | Testing Lee
M-3-7-100 3 7 100 0.61215 0.44838
M-3-7-50 3 7 50 0.59604 0.52501
M-3-7-200 3 7 200 0.63900 0.48520
M-3-14-100 3 14 100 0.63713 0.70615
M-3-14-50 3 14 50 0.59120 0.52208
M-3-14-200 3 14 | 200 0.56230 0.59663
M-3-20-100 3 20 100 0.69536 0.80170
M-3-20-50 3 20 50 0.57937 0.46226
M-3-20-200 3 20 | 200 0.61532 0.87776
M-10-7-100 10 7 100 0.57937 0.37481
M-10-7-50 10 7 50 0.60293 0.40301
M-10-7-200 10 7 200 0.89240 0.45877
M-10-14-100 | 10 14 100 0.59618 0.49430
M-10-14-50 10 14 50 0.65694 0.44893
M-10-14-200 10 14 | 200 0.92659 0.65541
M-10-20-100 10 | 20 100 0.62169 0.44377
M-10-20-50 10 | 20 50 0.61024 0.44842
M-10-20-200 | 10 | 20 | 200 0.88882 0.80149

As shown in Table I, the best results on the testing dataset
has a model named "M-10-7-100". The optimal values of the
all hyperparameters are presented in Table II. We used the
hyperparameters of this model in the remaining experiments.

Table II
OPTIMAL HYPERPARAMETERS VALUES
Hyperparameter Value
Number of candidates, N 100
Number of harmonics, M 7
Number of filters in the first Conv2D layer, K 10
Frame size, FFT size, Ny g4 4096
Frame step 224
Signal sample rate, fs 44100Hz
Learning rate, n 0.01

D. Comparison with other models

As a baseline model for comparison, we took the VAD
model similar to that proposed in [11]. This model is a 4-
layer neural network, consisting only of dense layers and uses
MFCC, delta-MFCC, and delta-delta-MFCC as basic features.

As show in Table III, our model has extremely less trainable
parameters and it takes a lot less time to perform a forward
pass.

E. Pitch extraction

As shown in Fig 4 our model can estimate the pitch
frequency. The pitch frequency corresponds to the activation
number of the second Conv2D layer. The model generates a
hight output value if it can detect the pitch frequency of input
sample.
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Figure 4. The pitch frequency estimation.
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IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method for voice activity
detection in a sound signal based on a simple convolutional
neural network. A key feature of the method is the selection of
characteristic features of a speech signal. Using the fact that a
voiced speech has a harmonic structure as characteristic fea-
tures we proposed to use sound signal spectrogram coefficients
which are multiples of the specified fundamental frequency.
Due to the fact that each voice has its own pitch frequency -
we use 100 variants of values for the fundamental frequency.
These values are uniformly located in the range from 70H z
to 350H z. The obtained features thus feed to the input of a 2-
layer convolutional neural network, which classifies the input
example into two classes - a voice or a noise.

Performance of the proposed model is comparable to state-
of-the-art models based on neural networks, but our model
contains significantly fewer trainable parameters. Therefore
much less data is needed to train the model, and much less
time is taken to perform a forward pass, and it increases the
performance of the entire system.

Further improvement of the method will be aimed at
1) extending internal states of CNN to represent additional
semantically important information; 2) increasing a model’s
inference quality using examples containing a harmonic signal
which is not a voice (for example, musical instruments).
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CBEPTOYHAS HEMPOHHAS CETH C
CEMAHTUYECKU-3HAYVMbIMI
AKTUBAIIMAMU JIJIA AHAJIU3A PEYU
I". Bamkesut, 1. Azapos
Brymp
Munck, Benapycs

CeMaHTHYECKHI aHAJIN3 PEYN sIBJIsleTCsl H60Jiee epCIeK-
TUBHBIM TI0 CPABHEHUIO C AHAJIM30M TEKCTA, MOCKOIBKY
pedb comep:KuT 6GoJibllle WHMOPMAIUU, KOTOpasd BaykKHa
JJId IIOHUMAHUA. Cal\loﬁ BasKHOI OTJIMYUTEIbHBIM Ipu-
3HAKOM PEYHU, HEJOCTYIHLIM TEKCTOBOM AHAJN3E, STBJISET-
cst maTOHAIMA. JIJIST yCIenHoro CeMaHTHIECKOTO aHAII3a,
pevn HeoOXOAMMO U3 PEYEBOTrO CUTHAJIA BBLIJIECIUTDH Xapak-
TEPUCTUYICCKUE IIPpU3HAKU C CeMaHTUYeCKO UHTEepIIpeTa-
nmeit. MaTemarudeckuit anmapar CBEPTOIHBIX HEHPOHHBIX
cereii (CNN) npeicTaBisieTcst OIXOSIIAM JIJIsT DeaIn3a-
MM TAaKOro poma mnpeobpazosanunit. OJHAKO CYIECTBYET
pobJIeMa MacITabupyeMOCTH, KOTOpasi 3aTPYIHSIET 00b-
enunenne HeckoabkuX CNN B omsom perrerun. UToObI
[IPEOJIOJIETh 3TO, MBI MPEJjIaraeM pa3padoTaTb MOJIE/Ib
CNN ¢ ceMaHTHYeCKU 3HAYAMBIMUA AKTHBAIUSIME, TO €CTh
MOJIEJIb, BHYTPEHUUE COCTOSIHUSI KOTOPOH MOXKHO WHTEpP-
IIPETUPOBATH C CEMaHTHYECKON TOYKHU 3peHUAg. KOHeLIHaH
[eab IpeobpasoBaHusl COCTOUT B TOM, YTOOBI M3BJIEYb U3
peUn BCIO CEMAHTUIECKU 3HAIUMYIO HH(MOPMAIIAIO, OTHA~
KO HACTOSAMIAsA paboTa OrPAHMYMBAETCSI T€TEKTHPOBAHIEM
TOJIOCOBOII aKTUBHOCTU N BbIJICJICHUEM WHTOHAIIUN.

Baarogars mpemjioxkeHHoMy B paboTe METO/Y BBIJEe-
HUA XapaKTEePUCTUICCKUX ITPU3HAKOB 3BYKOBOI'O CHUT'HaJIa
U BBIOpAHHON apXUTEKType HEHPOHHOW CEeTH CTaJI0 BO3-
MO2KHBIM OHEHUTH YaCTOTY OCHOBHOI'O TOHA TIapMOHHYE-
ckoro curnasia. CumbHass aKTUBAIMS KaKOTO-TH00 BBIXOIa
BTOPOI'0O CJIOf HEHPOHHON CeTH IIO3BOJIAET CYIUTH O rap-
MOHUYECKOI TPUPOJE BXOJHOTO CUTHAIA. Kcam mpu 3ToM
COIIOCTaBUTH ,ZLaHHbeI BbIXO/I CO IIKAJION JaCTOT, TO MOXKHO
OyIeT MOMYyYUTh TUCJACHHOE 3HAYEHUE YaCTOTBI OCHOBOTO
TOHA TAPMOHUYECKOTI'O CUTHAJIA.

IIpenozkeHHast MOIEb IO IPOU3BOIUTEILHOCTH COIO-
CTaBUMAa C JPYTMMH COBPEMEHHBIMU MOJIEJISMHU Ha OCHOBE
HEUPOHHBIX CeTell, OMHAKO COMEPXKNT 3HAYATEIbHO MEHb-
me oby9aeMbIX mapaMeTpoB. 3 aroro ciemyer, 4To st
ee o0ydeHnsT HEOOXOIMMO TOPA3/I0 MEHBINEe JAHHBIX. [Ipu
9TOM MPOCTOTA aAPXUTEKTYPhl HEHPOHHOM CETH TO3BOJISIET
HCIIOJIB30BATh €€ B MOOMIbHBIX TLTAT(GOPMAX WM BCTPAH-
BAEMBIX CHCTEMAaX.

JlanbHeiiliee COBEPIIEHCTBOBAaHWE MeToja OyjlerT Ha-
MpaBJEHO Ha TOBBIIMEHNE KadecTBa PabOThl MOJENN Ha
IIpuMepax, COAepKalldX rapMOHUYECKUN CUI'HAJI, HO LIPU
9TOM He OTHOCSIIMACA K T'0J0Cy (HAIpUMep 3BYK My3bl-
KaJIbHBIX WHCTPYMEHTOB).
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