
Matrix-represented Constraints Satisfaction
Methods: Practical Aspects of Their Implementation

Zuenko A.A., Oleinik Yu.A.
Institute of Informatics and Mathematical Modelling

KSC, the Russian Academy of Sciences
Apatity, Russia

zuenko@iimm.ru
yoleynik@iimm.ru

Abstract—The paper proposes an original approach to solving
the problem of ineffective processing of qualitative constraints of
a subject domain in the framework of constraint programming
technology. The approach is based on the use of specialized
matrix-like structures, providing a "compressed" representation
of constraints over finite domains, as well as using author’s infer-
ence algorithms on these structures. Compared to the prototypes
using the typical representation of multi-place relations in a form
of tables, the techniques make it possible to more efficiently
reduce the search space. The paper presents practical aspects
of implementation of user-developed types of constraints and
corresponding algorithms-propagators with the help of constraint
programming libraries. The algorithms performance has been
assessed to clearly demonstrate the advantages of representation
and processing of qualitative constraints of a subject domain by
means of the above matrix structures.

Keywords—constraint satisfaction problem, constraint pro-
gramming, constraint propogation, matrix-like representation of
constraints, qualitative constraints

I. INTRODUCTION

According to [6] the constraint satisfaction problem (CSP)
consists of three components: X , D, C.
X – a set of variables {X1, X2, . . . , Xn}.
D – a set of domains {D1, D2, . . . , Dn} where Di is the

domain of variable Xi.
C – a set of constraints {C1, C2, . . . , Cm} that specify

allowable combinations of the values of variables.
Each domain Di describes a set of the admissible val-

ues {v1, . . . , vk} for variable Xi. Each constraint is a pair
< scope, rel > where scope – is a set of variables which
participate in the constraint and rel – is the relation definining
admissible combinations of values, which the variables from
scope can take on.

Constraints can be presented either explicitly, i.e. by enu-
meration of all the admissible combinations of the values for
a set of variables specified, or implicitly, i.e. as an abstract
relation supporting two operations: checking if a tuple is an
element of the given relation, and enumeration of all the
elements of the relation. The second way, in fact, requires
specifying the characteristic function of the given relation.

Each state in a CSP is defined by an assignment of values
to some (partial assignment) or to all the variables (complete
assignment):{Xi = vi, Xj = vj , . . .}. The solution of a CSP
is complete assignment which satisfies all the constraints.

As an example, consider a CSP. Let X = {X1, X2}. We
assume that D1 = D2 = {a, b, c}. Let a set C consists of an
only constraint, that is, C = {C1}. Constraint C1 describes
that fact that the values X1 and X2 must have different values.

The given constraint can be expressed implicitly, that is:

C1 =<< X1, X2 >,X1 6= X2 > . (1)

The same constraint can be expressed explicitly, that is:

C1 =<< X1, X2 >, {< a, b >,< a, c >,

< b, a >,< b, c >,< c, a >,< c, b >} > . (2)

Note, that constraint (2) can be expressed in a more com-
pressed way:

C1 =<< X1, X2 >, {a} × {b, c}∪
∪ {b} × {a, c} ∪ {c} × {a, b} > . (3)

There is a Table in Fig. 1a, which vividly represents expres-
sion (2). Figure 1b shows a matrix corresponding to expression
(3). In fact, in case of a matrix representation (Fig. 1b), the sign

Figure 1. The tabular constraint representation (a); the constraint representa-
tion in the form of specialized matrix (b).

of operation × (Cartesian product) between the components
of one row is omitted, and the sign of operation ∪ between
rows (union of sets) is not written explicitly. In [4], the similar
representation is referred to as an "compressed" representation
of the relation.

179

Unlike the article mentioned above, this paper concerns two
types of matrix structures to represent constraints: C-systems
and D-systems. In [3], the set-theoretical operations with the
given structures are introduced. The similar structures are also
used in [8] to solve pattern recognition and knowledge base
compression problems.

Expression (3) can be represented in the form of the
C-system:

C1[X1X2] =

{a} {b, c}
{b} {a, c}
{c} {a, b}

 . (4)

D-systems allow calculating the complement of the
C-systems: a complement is taken for each component-set.

Let’s assume that we have a constraint C1[X1X2] meaning
that X1 6= X2. It is necessary to express the constraint
X1 = X2. Then it is possible to represent D-system as fol-
lows:

C1[X1X2] =

{b, c} {a}
{a, c} {b}
{a, b} {c}

 . (5)

The D-system representation is equivalent to the expression:

C1 =<< X1, X2 >, {[(D1\{a})×D2 ∪D1×
× (D2\{b, c})] ∩ [(D1\{b})×D2 ∪D1 × (D2\{a, c})]∩

∩ [(D1\{c})×D2 ∪D1 × (D2\{a, b})] > . (6)

or

C1 =<< X1, X2 >, {[{b, c} ×D2 ∪D1 × {a}]∩
∩ [{a, c} ×D2 ∪D1 × {b})]∩

∩ [{a, b} ×D2 ∪D1 × {c}] > . (7)

The D-system represented can also be expressed as an inter-
section of three C-systems of the same scheme < X1, X2 >
namely C1 = K1[X1X2] ∩K2[X1X2] ∩K3[X1X2]:

[
{b, c} ∗
∗ {a}

]
∩
[
{a, c} ∗
∗ {b}

]
∩
[
{a, b} ∗
∗ {c}

]
. (8)

In specifying C-systems, a designation "∗" (a complete
component) may be used, which is equivalent to the indication
of domain of the corresponding variable.

There is one more type of dummy components – a empty
component (designated as "∅"), that is a component containing
no value.

Now we shall try to answer the question: "When is the repre-
sentation and handling of a CSP in a kind of C- and D-systems
capable to ensure the highest computing performance". In
other words: "In what cases should CSPs be represented and
processed as the C- and D-systems?"

Most constraint programming environments are mainly
oriented on processing of numerical constraints, which are
specified by means of the base set of arithmetical operations,
binary relations equal/unequal, more/less, built-in functions,
etc. for which specialized procedures-propagators are devel-
oped. This lack of balance between tools used in quantitative

and qualitative constraints processing can be seen even at
a level of languages used to define constraints, which are
used by different programming libraries. Thus, for instance,
in the Choco library [2], it is impossible to directly specify
the constraint x = ”a”, without having substituted a symbol
”a” for a number.

The authors’ studies showed that processing of qualitative
constraints represented in the form of logical expressions and
rules, is not sufficiently effective in the systems like those men-
tioned above, and cannot be implemented for comprehensible
time even at a rather small dimension of problem.

The paper presents practical aspects of implementation
of user-developed types of constraints and corresponding
algorithms-propagators with the help of specialized constraint
programming libraries (the Choco library taken as an exam-
ple). The algorithms performance has been assessed to clearly
demonstrate the advantages of representation and processing
of qualitative constraints of a subject domain by means of the
above matrix structures.

II. DEFINING CSPS AND ALGORITHMS OF THEIR
SOLUTION BY MEANS OF MODERN TOOLS OF CONSTRAINT

PROGRAMMING (THE CHOCO LIBRARY TAKEN AS AN
EXAMPLE)

The main techniques used in the solution of CSPs can be
classified into three classes [7]. Class 1 includes different
variants of backtracking search algorithms, which construct a
solution by means of extension of partial instantiation step by
step, using various heuristics and applying intelligent strategies
to recover from the dead ends of a search tree. Class 2 includes
algorithms of constraints propagation which eliminate some
non-solution elements from the search space, decreasing the
dimension of problem. The algorithms themselves do not form
the solution because they eliminate not all the non-solution
elements. They are used either to pre-process the problem
before another type of algorithm is applied, or interwoven with
steps of another kind of algorithms to boost its performance.
Finally, the structure-driven algorithms exploit the structure of
the primal or dual graph of the problem. There are very differ-
ent algorithms in this class, including ones which decompose
the initial CSP into loosely-coupled subproblems, which can
be solved by methods from the previous two classes. Hence,
structure-based methods can be also coupled with some other
types of algorithms.

Constraints programming environments allow usage of
built-in types of constraints and the algorithms of their sat-
isfaction and make it possible to develop original types of
constraints, methods of their propagation, as well as construct
original search strategies.

The following libraries are most widely used in constraints
programming: Choco and JaCoP for Java, as well as GeCode
and Z3 for C++.

To implement the original algorithms of inference on con-
straints that are presented as specialized matrix structures,
choice was made of the Choco library. Choco library is the

180

open source software created to define and solve constraint
satisfaction problems [5].

To describe CSPs by means of the Choco library, the
following basic abstractions are used:

• Model;
• Variable;
• Constraint;
• Propagator;
• Search Strategy;
• Solver;
• Solution.

A. Model.

Abstraction "Model" is presented by a special class of the
Choco library, on the basis of which all the further defining
of the CSP is formed.

B. Variable.

In the library Choco, variables are represented by special-
ized classes, depending on their type. There are determined
four different types of variables in the library:

• Boolean variable is a variable with two possible values:
true/false (0/1).

• Integer variable is a variable taking values from a set
of integers. The domain of an integer variable can be
specified as an interval [a, b] (bounded domain). Such a
representation consumes a small amount of memory, but
does not allow processing the gaps in domains. In other
words, it is impossible to eliminate an inadmissible value
being inside the interval. Another way to specify domains
of integer variables is to explicitly enumerate all possible
values of a variable (enumerated domain). In so doing,
the values should be linearly ordered.

• Set variable is a variable whose values are sets of
integers. The variable of this type is specified by two
sets, i.e. by the upper and lower boundary. It can take
the values which are the subsets of the upper boundary
and necessarily includes the lower boundary.

• Real variable is a variable taking values from the spec-
ified interval with the specified precision. At present this
type of variables is supported rather poorly in the library.

The variables are added into the defining of a CSP either
by means of the methods of class "Model", which associates
the variables with the corresponding model, or by means of
classes implementing the interfaces of creating the variables
of corresponding types. The interfaces associate the variables
with the model specified in the class constructor. Thus, vari-
ables cannot exist by themselves and should be necessarily
associated with the model.

C. Constraint.

A certain logical formula which specifies admissible com-
binations of values of variables, is referred as a constraint. In
the Choco library, a constraint is defined by a set of variables
and by propagators (filtering algorithms) which delete the
values from the specified variables domains, which do not

correspond to the legal assignments. The library contains a set
of built-in constraints, for example, global ones, Alldifferent
in particular, i.e. a constraint meaning that the values of
variables in a solution, should differ. Also presented in it
are various arithmetical constraints; constraints presented as
logical formulae; as rules, etc. There are standard methods-
propagators for each built-in type of constraints.

An example of an arithmetical constraint:
model.arithm(var,"=",5).
This constraint means that variable var should take the value

equal to 5.
The methods of class "Model" allow constructing more

complicated constraints.
For example:
model.or(new Constraint[]{model.arithm(var,"=",5),

model.arithm(var,"=",6)}).
This constraint means that the variable var takes values 5

or 6, and so it takes, as a parameter, an array of constraints
between which an OR-operation is set.

The library also allows constructing original constraints and
propagators. To create original program class of constraint, it
is necessary to specify propagator (one or several) and set of
variables, over which the constraint is set.

An example of user-developed constraint creation:
Constraint c=new Constraint("My",new Dpropogator(vars));

"My" – string-name of the constraint;
new Dpropogator(vars) – a propagator for a constraint over
variables vars (there is a possibility to specify several of
these).

For the constraint to be taken into account in solution, it
is necessary to call a method "post()" after the constraint has
been created, otherwise, it will not be taken into account in
solution.

Figure 2. Example of constraint creation by means of Choco library.

There are three constraints created on Fig. 2 but the method
"post()" has been called in no one yet. If C1.post() is to be
called, there will be only value "5" for variable var in the
solutions. Thus, if it is necessary to add constrain "var = 5 or
var = 6" into the solution, the method post() should be called
only for constraint C3.

D. Propagator.

Abstraction "Propagator" is specified in the Choco library
as class. Constructing class of propagator, it is necessary
to define two main methods: a method propagate and a
method isEntailed. The method propagate implements the
logic of the constraint propagation. During the propagation,
the method will be called repeatedly till it causes changes
in variable domains. The method isEntailed is called at the
end of propagation. The method isEntailed can return three
parameters:

181

• ESat.TRUE – the constraint is completely satisfied;
• ESat.UNDEFINED – the constraint status failed to be

determined (the propogation ends but the constraint has
not been satisfied);

• ESat.FALSE – the constraint cannot be satisfied, back-
track is necessary.

Also, in the course of propagation there may appear contra-
diction exception. In this case, the propagation is considered
to be completed ahead of the schedule, and the propagation
result is considered to be equivalent to ESat.FALSE.

E. Search strategies.

If the final solution has not been reached with the help of
propagators, the search space is further studied in accordance
with a certain search strategy. In fact, the search strategy
defines the way the CSP solution should be constructed.

The Choco Version 4.0.0 constructs a binary search tree
(for example, if assignment "x = 5" cannot be extended to
a solution, then "x 6= 5" is considered). The search strategy
like this, which implements backtracking search, is typical for
CSPs. However, other search strategies shouldn’t be neglected.

The strategy correctly selected for a certain problem al-
lows the solution to be generated much faster. The types
of strategies are related to the types of variables, i.e. each
type is supplied with a specific set of strategies. Like in case
with constraints, the Choco library provides built-in program
classes for popular strategies. However, if necessary, user-
developed search strategy may be constructed. To describe a
user-developed strategy, it is necessary to additionally define
two (three, optionally) classes: a strategy to select a particular
variable from a set of the CSP variables (Class 1), a strategy
to select a particular value of the specified variable from its
domain (Class 2), and, optionally, a class implementing the
strategy to select the branch of a search tree (Class3).

Let’s characterize Class 3 separately. It is necessary to define
two basic methods here. The first one, apply(IntVar, int),
is the method for processing a pair <a variable, its value>
obtained as a result of the variable selection strategy appli-
cation and the variable value selection strategy application.
The second, unapply(IntVar,int), is the method specifying
how modifications introduced by the method apply should
be droped. If the search-tree branch selection strategy is not
determined, the method apply assigns the selected value to the
specified variable, trying to extend the partial assignment to
a complete one. Having worked out this variant, the method
unapply eliminates the considered value from the domain of
the corresponding variable. The search proceeds in alternative
directions.

F. Solver.

"Solver" is an abstraction presented by the class, which
keeps the stages of solution process, search strategies and the
CSP solutions if those have been reached. The Solver type
object is the field of class "Model". After the necessary solver
parameters have been specified, its method solve() is called to
start searching.

G. Solution.

A "Solution" is an abstraction presented by the Choco
library class, which serves as a storage of a complete or partial
assignment.

III. THE ORIGINAL APPROACH TO IMPLEMENTATION OF
INFERENCE PROCEDURES

Based on the Choco library, the original classes have been
developed, extending the functional of the basic library in
order to represent and solve the CSPs in the form of a
D-systems set. Unlike the standard constraints of the Choco
library and their propagators working with assignments of
variables, the propagator for the D-systems works with the
system components containing several values. In the process
of inference, the D-system is reduced and the amount of the
information processed decreases with each iteration.

Due to the requirements concerning the length of the paper,
no detailed consideration is given to the methods of inference.
Given in [9], [10] are the particular techniques to be used
to solve the CSPs. These techniques are based on matrix
representation of constraints over finite domains.

To explain the approach based on the similar inference, we
shall consider that the CSP constraints may be represented in
the form of a D-systems set. In the practical problems, it is
a set of the C- and D-systems, numerical constraints, as well
as that of global constraints [1], [7].

So, let’s consider the affirmations which allow implemen-
tation of the equivalent CSP transformations for the case
under consideration (constraints propagation). The aim of
transformations is to reduce a CSP to a simpler form, with
the less number of D-systems, the less number of rows of
D-system, columns (attributes) of D-system, values in the
attributes domains, values in separate components, etc.

• Affirmation 1. If, at least, one tuple (row) of the
D-system is empty (all components of the tuple are
empty), the D-system is empty (the corresponding system
of constraints is inconsistent, the CSP has no solution).

• Affirmation 2. If all the components of an attribute are
empty, the attribute can be eliminated from the D-system
(all the components in the corresponding column are
removed) and the pair “the eliminated attribute - its
domain” is included into the partial solution.

• Affirmation 3. If in the D-system there is a tuple (row)
containing only one nonempty component, all the values
not included into this component, are deleted from the
corresponding domain.

• Affirmation 4. If a tuple of the D-system contains, at
least, one complete component, this tuple is removed (one
can remove the corresponding constraint from the system
of constraints).

• Affirmation 5. If the component of an attribute of
the D-system contains the value not belonging to the
corresponding domain, this value is deleted from the
component.

182

IV. COMPARISON BETWEEN THE ALGORITHMS OF CHOCO
LIBRARY AND THE PROCEDURES DEVELOPED

To determine the effectiveness of the classes and algorithms
developed we used the problem of placing n chess queens on
an n×n chessboard so that no two queens threaten each other
("N-Queens problem"), due to the simplicity of its scaling.

The aim of the given example was not to generate solutions
of the "N-Queens problem" (one or all possible) as fast as
possible. Moreover, the authors realized that, by means of
standard numerical constraints, it is possible to define the
given problem more implicitly. Taking into account of the
chessboard symmetry and constraints propagation techniques
based on the interval analysis, allow the solutions to be
generated faster than in the procedure described in the study
presented. The aim of the analysis made is to demonstrate
that qualitative dependencies processing by means of modern
constraint programming environments, by the Choco library
in particular, is less effective than that by the matrix represen-
tation in this paper.

That is why the "N-Queens problem" will be described in
the form of a set of qualitative constraints and a comparison
will be made between the propagation algorithms performance
for the two cases. In the first case, the problem is formulated
in the form of logical expressions in the Choco language and
standard classes-propagators are used. In the second case, the
constraints are formalized in the form of a set of the matrix-
like structures suggested. Original constraint propagation al-
gorithms are proposed, on the basis of which own classes-
propagators extending the base functional of the Choco library
are developed.

Thus, the algorithms compared differ in the qualitative
constraints representation and the propagators used. After the
propagation has stopped, the search tree branching strategy,
typical for Choco, is applied.

Example (“N-Queens” problem). Consider a simplified vari-
ant of “N-Queens” problem. In this example, the chessboard
size is n× n. It is necessary to find possible variants of four
queens placing.

Let’s associate the i-th horizontal with variable Xi. Then
each variable (attribute) will be defined in the domain as
{a, b, c, d}, where a, b, c, d are the labels of the verticals. As
an example, let’s formulate the constraint “two queens placed
on horizontals 1 and 2 are not threatened by each other” in
the form of the D-system:

1
2
3
4

X1 X2

{a, b, c, d} {a, b, c, d}
{b, c, d} {c, d}
{a, c, d} {d}
{a, b, d} {a}
{a, b, c} {a, b}

(9)

In particular, the first row of the given D-system shows
that if a queen is on the field a1(the intersection of the first
horizontal and the first vertical), then, in the second horizontal,

other queen can occupy fields c2 and d2 only. In the language
of logic, it is expressed as follows:

(x1 = a)→ ((x2 = c) ∨ (x2 = d))
or ¬(x1 = a) ∨ (x2 = c) ∨ (x2 = d)
or ¬(x1 = b, c, d) ∨ (x2 = c) ∨ (x2 = d).

(10)

Comparing different pairs of horizontals, it is possible to
write out all the constraints on the inter-relative positioning
of all the 4 queens. In our case, the number of constraints is
calculated by the formula: 4 C2

4 (for each pair of horizontals,
four constraints are formed, the total number of pairs is – C2

4),
that is 42·(4−1)

2 . For a board of n×n in dimension, the number
of constraints is calculated by the formula: n2·(n−1)

2 . So, the
CSP considered can be expressed by a D-systems set (like the
D-system shown above) describing to the admissible positions
of pairs of queens relative to each other.

In the Choco library, the D-system can be represented as a
set of built-in logical constraints of the library. For example,
the D-system

2
3
4

X1 X2

{b, c, d} {a, b, c, d}
{c, d} {d}
{b, d} {a}
{b, c} {a, b}

(11)

can be described, using the Choco library by encoding the
values of variables by integers (Fig. 3).

Figure 3. D-system described by the means of Choco library.

It is clear from Fig. 3 that in order to describe even
such a small D-system, a significant number of constraints
is required: one constraint per each value of the component
(cell) of the D-system, one constraint per each component,
constraints uniting components of a row, and one common
constraint uniting rows of a system. As the system increases
in size in such a representation, the number of constraint
also increases essentially, which will take much more time
to reach the solution. That is why an original representation
of the D-system has been developed to specify it by only one
constraint.

Presented below are comparative plots of time required for
solutions of "N-Queens problems" for both representations

183

specified. The units of measure for a vertical scale of plots
are milliseconds, i.e. the time to solve the problem. However,
the time assigned to the solution, has been limited to 2 minutes
(120000 msec). Plots in Fig. 4 show the time spent for reaching
the first solution of the "N-Queens problem". The plots are
broken when the testing computer memory is exhausted. The
plots in Fig. 5 show the time spent for reaching all the
solutions of the "N-Queens problem". These are broken in
the points in which the program was not able to reach all the
solutions at the time assigned.

Figure 4. Reaching the first solution of the "N-Queens problem" (ms/N).

Figure 5. Reaching all the solutions of the "N-Queens problem" (ms/N).

V. CONCLUSION

The studies have demonstrated that the matrix constraint
representation proposed by the authors, as well as the original
methods of their propagation are quite suitable for practi-
cal application. Moreover, in case of qualitative constraint
modelling, the application of the approach proposed gives an
essential gain in time against the algorithms of qualitative
constraint propagation, which are built in the Choco library.
In particular, solving the "N-Queens problem", when it was
required to reach all the solutions under the time limit of
two minutes, the approach proposed permitted processing the
search space of 1212 in dimension. In doing so, the standard
tools of the Choco library did not give a possibility to study the
search space of greater than 99 in dimension. When the task
was to achieve even one solution for the same two minutes,
the time for the standard tools of the Choco library to reach
a solution was not enough even when the search space was
of 1919 in dimension. The methods proposed allowed the
authors to reach a solution even for the search space of 7676

in dimension.

The authors would like to thank the Russian Foundation for
Basic Research (grants No 16-07-00562-a, No 16-07-00377-a,
No 16-07-00313-a, No 16-07-00273-a, No 18-07-00615-a) for
help in partial of this research.

REFERENCES

[1] Bartak, R. Constraint Programming: In Pursuit of the Holy Grail. Pro-
ceedings of the Week of Doctoral Students (WDS99), Part IV, 1999, pp.
555–564.

[2] Jussien N., Rochart G., Lorca X. Choco: an Open Source Java Constraint
Programming Library. CPAIOR’08 Workshop on Open-Source Software
for Integer and Contraint Programming (OSSICP’08), 2008, pp. 1-10.

[3] Kulik B.A. A Logic Programming System Based on Cortege Algebra.
Journal of Computer and Systems Sciences International, 1995, vol. 33,
No. 2, pp. 159-170.

[4] More T. Axioms and theorems for a theory of arrays. IBM Journal of
Research and Development, 1973, No. 17(2), pp. 135–175.

[5] Prud’homme Ch., Fages J-G, Lorca X. Choco Solver Documentation
Release 4.0.0. Sep 13, 2016, 37 p.

[6] Russel S., Norvig P. Artificial Intelligence: A Modern Approach. 3rd
edition. Prentice Hall, 2010, 1132 p.

[7] Ruttkay Zs. Constraint satisfaction a survey. CWI Quarterly, 1998, vol.
11, pp. 163–214.

[8] Zakrevskij. A. Integrated Model of Inductive-Deductive Inference Based
on Finite Predicates and Implicative Regularities. Diagnostic Test Ap-
proaches to Machine Learning and Commonsense Reasoning Systems IGI
Global, pp. 1-12.

[9] Zuenko A.A. Vyvod na ogranicheniyakh s primeneniem matrichnogo
predstavleniya konechnykh predikatov [Constraint inference based on
the matrix representation of finite predicates]. Iskusstvennyi intellekt i
prinyatie reshenii [Artificial Intelligence and Decision Making], 2014,
No. 3, pp. 21-31.

[10] Zuenko A.A., Lomov P.A., Oleinik A.G. Primenenie metodov raspros-
traneniya ogranichenii dlya uskoreniya obrabotki zaprosov k ontologiyam
[Application of constraint propagation techniques to speed up processing
of queries to ontologies]. Trudy SPIIRAN [SPIIRAS Proceedings], 2017,
No. 1(50), pp. 112-136.

МЕТОДЫ УДОВЛЕТВОРЕНИЯ ОГРАНИЧЕНИЙ,
ПРЕДСТАВЛЕННЫХ В МАТРИЧНОЙ ФОРМЕ:
ПРАКТИЧЕСКИЕ АСПЕКТЫ ИХ РЕАЛИЗАЦИИ

Зуенко А.А., Олейник Ю.А.

В работе предлагается оригинальный подход к ре-
шению проблемы недостаточной эффективности обра-
ботки качественных ограничений предметной области в
рамках технологии программирования в ограничениях.
Подход основан на применении специализированных
матрицеподобных структур, обеспечивающих “сжатое”
представление ограничений над конечными домена-
ми, а также авторских алгоритмов вывода на данных
структурах. По сравнению с прототипами, использую-
щими стандартное представление многоместных отно-
шений в виде таблиц, разработанные методы позволя-
ют более эффективно сокращать пространство поиска.
В работе представлены практические аспекты создания
пользовательских типов ограничений и алгоритмов их
распространения с помощью библиотек программиро-
вания в ограничениях. Также было проведено сравне-
ние быстродействия различных алгоритмов, наглядно
демонстрирующее преимущества использования опи-
санных матрицеподобных структур для представления
и обработки качественных ограничений.

184

