2004 ОКТЯБРЬ-ДЕКАБРЬ № 4

УДК 621.35.6

СИНТЕЗ ПРОФИЛЕЙ РЕЗОНАТОРОВ С ИСПОЛЬЗОВАНИЕМ АППАРАТА Т-ФУНКЦИЙ

А.А. КУРАЕВ, И.В. ЛУЩИЦКАЯ, Т.Л. ПОПКОВА, С.И. ЯРОМЕНОК

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 12 мая 2004

На основе аппарата T-функций и предложенной ранее методики точного многомодового расчета нерегулярных волноводов проведен синтез профилей резонаторов гиротронов на модах H_{0i} , реализующих оптимальное распределение поля двух типов: унимодальное и многоэкстремальное (каскадный резонатор). Установлено точное соответствие расчетных и опубликованных экспериментальных данных.

Ключевые слова: Т-функции, распределение поля, профиль резонатора, многокаскадный резонатор.

Введение

Синтез профилей резонаторов гиротронов, обеспечивающих продольное распределение поперечной компоненты электрической напряженности близкое к азимутальному, является важнейшей задачей при создании таких приборов. Действительно, как показано в работе [1], оптимизация распределения поля в резонаторах гиротронов и гироклистронов позволяет повысить их КПД более чем в два раза, что весьма существенно для таких мощных приборов, какими являются гиротроны и гироклистроны. Однако для синтеза профиля резонатора, в котором реализуется близкое к оптимальному распределение поля, необходимо строгое решение двухточечной краевой задачи для отрезка нерегулярного волновода, образующего открытый резонатор гиротрона. Математический аппарат для реализации такого решения на базе Т-функций развит в [2]. В той же статье [2] приведена и математическая модель для указанного резонатора в многомодовом режиме для волн H_{0i} . Именно такие волны и используются в традиционных гиротронах и гироклистронах средней и большой мощности. В данной работе с использованием методов и моделей из статьи [2] осуществлен синтез профилей резонаторов гиротронов с двумя типами распределения полей, близких к оптимальным, а также выполнено сопоставление полученных результатов с экспериментальными данными, приведенными в статье [3].

Резонатор с унимодальным распределением поля

Оптимальные унимодальные распределения поля в гиротронах и гироклистронах с взаимодействием на первой гармонике циклотронной частоты (рабочая мода H_{01}) и на второй гармонике (рабочая мода H_{02}) получены в работе [1]. В работе [3] осуществлен (аналитически и экспериментально) синтез профиля резонаторов, в которых реализуются близкие к найденным в [1] распределения поля. Анализ этих распределений в резонаторах с найденными в [3] профилями был осуществлен на базе математических методов, развитых в [2].

Профиль резонатора в [3] задавался следующим образом:

$$g(T) = b(T)/b_{\partial \tilde{n}_1} = V + A \cdot \exp(-t^2_m/C),$$

здесь b(T) — функциональная зависимость радиуса трубы резонатора от продольной нормированной координаты $T=\frac{2\pi}{\lambda}z$; λ — резонансная длина волны; $b_{\hat{e}\hat{o}1}=\lambda\mu_{01}/2\pi$ — критический радиус для волны H_{0I} , μ_{01} — первый корень производной функции Бесселя первого рода нулевого порядка $J_0(x)(J_0(\mu_{01})=0)$, V — входной радиус резонатора, A — положительная величина, определяющая центральный радиус резонатора, C — положительная величина, определяющая крутизну экспоненты.

Вариант 1. Резонатор на моде H_{01} . На рис. 1,a изображен профиль резонатора g(T) из [3]. На рис. $1,\delta$ — относительное распределение азимутальной составляющей электрической напряженности поля резонатора $A_{1}(T)=E_{\sigma}^{01}(T)/E_{\sigma}^{01}$, рассчитанное по методике [2]. Это распределение точно совпало с приведенным в [3] измеренным распределением поля в экспериментальном резонаторе с приведенным на рис. 1,a профилем. Оно также отвечает и аналитически рассчитанному в одномодовом приближении в [3] распределению. Анализ общего решения показал, что вклад высших мод в формирование поля резонатора пренебрежимо мал.

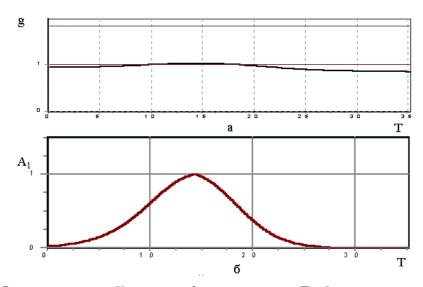


Рис. 1. Резонатор на моде H_{0l} : a — профиль резонатора g(T), δ — относительное распределение азимутальной составляющей электрической напряженности поля резонатора

Вариант 2. Резонатор на моде H_{02} . На рис. 2,a изображен профиль g(T) резонатора из [3], реализующий оптимальное распределение поля для гиротронов на второй гармонике циклотронной частоты, найденное в [1]. На рис. 2, δ приведено распределение поля $A_2(T) = E_{\phi}^{02}(T)/E_{\phi \max}^{02}$, найденное для приведенного профиля по методике [2]. На рис. 2, ϵ приведен в укрупненном масштабе модовый состав колебания в рассматриваемом резонаторе: $A_1 = E_{\phi}^{01}/E_{\phi \max}^{02}$, $A_1 = E_{\phi}^{02}/E_{\phi \max}^{02}$, $A_3 = E_{\phi}^{03}/E_{\phi \max}^{02}$. Этот рисунок поясняет тот факт, что одномодовое приближение (учет только H_{02} волны), использованное в [3], дает практически точный результат: A_1 , A_3 в резонаторе пренебрежимо малы.

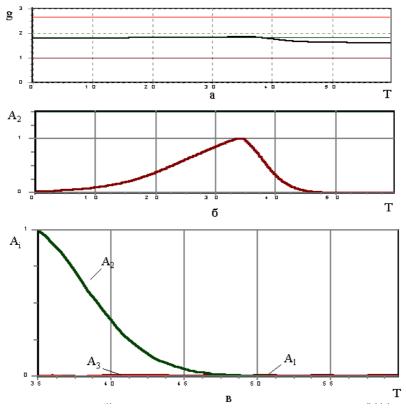


Рис. 2. Резонатор H_{02} : a — профиль резонатора g(T), δ — распределение поля $A_2(T)$, ϵ — модовый состав колебания

Многокаскадный резонатор

В [4] показано, что весьма эффективными в отношении возможности повышения КПД гиротронов являются многокаскадные резонаторы (или цепочка связанных резонаторов). Ниже приведены варианты синтеза профиля волновода на основной моде H_{01} , реализующие многокаскадный резонатор.

Профиль резонатора задавался следующей трехпараметрической функцией:

$$g(T) = 1 + d + h_1 \sin^2(a_1 T)$$
.

Вариант 1.
$$d = 0.3$$
; $h_1 = -0.4$; $a_1 = 3\pi$.

На рис. 3,a дано распределение поля $A_{\rm l}(T)$ в резонаторе, рассчитанное в одномодовом приближении (учитывается только одна $H_{\rm 01}$ волна). Вид распределения $A_{\rm l}(T)$ отвечает полю многокаскадного регулярного резонатора с малыми дифракционными связями через закритические для волны $H_{\rm 01}$ участки волновода. На рис. 3, δ дано распределение поля (для правой половины резонатора), рассчитанное точно, с учетом $H_{\rm 02}$, $H_{\rm 03}$ и $H_{\rm 04}$ волн (амплитуды $A_{\rm 2}$, $A_{\rm 3}$, $A_{\rm 4}$). Из рис. 3, 6 видно, что, несмотря на малость $A_{\rm 2}$, $A_{\rm 3}$, $A_{\rm 4}$, распределение поля заметно изменено: центральное и боковое колебания на $H_{\rm 01}$ имеют разную амплитуду. Это говорит о том, что учет высших закритических волн $H_{\rm 02}$, $H_{\rm 03}$ и $H_{\rm 04}$ необходим для обеспечения точности расчетов.

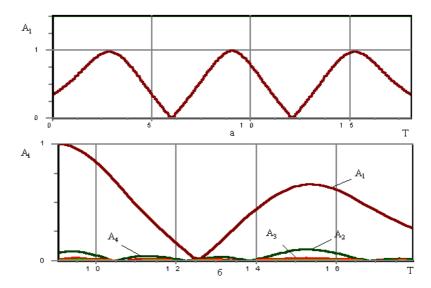


Рис. 3. Распределение поля $A_2(T)$: a — в одномодовом приближении, δ — с учетом H_{02}, H_{03}, H_{04} волн

Вариант 2.
$$d = 0.3$$
; $h_1 = -0.6$; $a_1 = 3\pi$.

Это резонатор с увеличенной по сравнению с предыдущим вариантом дифракционной связью между каскадами. Распределение поля в нем $A_{\rm l}(T)$ в одномодовом приближении приведено на рис. 4,a. Учет высших закритических волн $H_{\underline{02}}$, H_{03} , H_{04} , как и в предыдущем случае, вносит заметную коррекцию (рис. 4, δ): связь между каскадами заметно возрастает из-за преобразования волн.

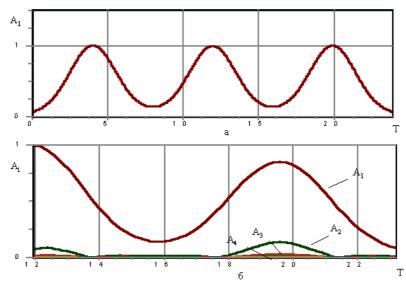


Рис. 4. Резонатор с увеличенной дифракционной связью между каскадами: a — распределение поля в одномодовом приближении, δ — с учетом высших закритических волн

Заключение

Приведенные материалы указывают на высокую эффективности развитого в [2] математического аппарата в задачах синтеза профиля резонаторов, реализующих заданное распределение электромагнитного поля. Адекватность расчетов по методике [2] подтверждается точным совпадением расчетных и экспериментальных данных из [3]. В то же время расчеты указывают на необходимость учета высших закритических волн для обеспечения точности решения в слу-

чае не очень малых отклонений профиля волновода от критического радиуса для рабочей волны.

SYNTHESIS OF STRUCTURES OF RESONATORS WITH USE THE DEVICE OF T-FUNCTIONS

A.A. KURAYEV, I.V. LUSHCHYTSKAYA, T.L. POPKOVA, S.I. YAROMENOK

Abstract

On the basis of the theory of T-functions and method offered before of exact multimode calculation of irregular waveguides synthesis of structures of gyrotron resonators operating in the H_{0i} modes is presented. Those structures are realizing optimum distribution of the field of two types: unimodal and multiextreme (the cascade resonator). Exact conformity between numerical and the published experimental data is obtained.

Литература

- 1. Kolosov S.V., Kurayev A.A. // Radioeng. Electron. Phys. 1974. Vol. 19. P. 65–73.
- 2. Кураев А.А., Лущицкая И.В., Попкова Т.Л., Яроменок С.И. // Докл. БГУИР. 2003. № 4. С. 58–61.
- 3. Barroso J. J., Montes A., Ludwig G.O. // Int. J. Electronics. 1986. Vol. 61. No. 6. P. 771–794.
- 4. Кураев А.А. Теория и оптимизация электронных приборов СВЧ. Мн., 1979.