2003 AПРЕЛЬ-ИЮНЬ TOM 1, № 2

УДК 621.373

КОМПЕНСАЦИЯ НЕСЕЛЕКТИВНЫХ ПОМЕХ В ФОТОЭЛЕКТРИЧЕСКИХ ФОТОМЕТРАХ С ИСТОЧНИКОМ СПЛОШНОГО СПЕКТРА

К.П. КУРЕЙЧИК, А.З. ИБРАГИМ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 9 января 2003

Приведен анализ ошибок измерения оптической плотности в фотометрах с источником сплошного спектра, которые возникают из-за действия некомпенсированных неселективных помех на этапах калибровки и измерений. Разработан метод калибровки фотометра, который обеспечивает повышение точности измерений. Характерной особенностью разработанного метода является построение калибровочного графика не в координатах D=F(C), а в координатах J=F(C), где χ — значение неселективной помехи, C — концентрация.

Ключевые слова: фотометр, спектр, помехи.

Измерение концентрации C исследуемого объекта в фотоэлектрических фотометрах (типа КФК 2 — КФК 5, СФ), которые оборудованы осветительной системой с источником сплошного спектра, производится на основании сравнения интенсивностей светового потока, прошедшего через кювету с растворителем, и светового потока, прошедшего через кювету с эталонным раствором [1].

Методика

Полученные данные применяются для построения калибровочного графика, который в дальнейшем используется для определения коэффициента пропорциональности при нахождении С. Как правило, в этих измерениях используются отдельные кюветы для растворителя, стандартных и рабочих растворов. Во многих случаях пользователи применяют лишь одну кювету. Однако потери времени и химических веществ при этом велики, поскольку приходится постоянно очищать кювету от остатков предыдущего раствора, а также случайных загрязнений, вносимых пользователем. Поэтому использование одной кюветы следует считать неудовлетворительным.

Анализ погрешности построения калибровочного графика

Дадим анализ погрешности построения калибровочного графика при использовании нескольких кювет (данный анализ пригоден для случая использования одной кюветы, загрязненность которой меняется от измерения к измерению). Световой поток J_I , прошедший через кювету с растворителем, запишем в виде:

$$J_I = \int_0^t J_0 \ e^{-\chi \ dt} \ , \tag{1}$$

где J_0 — интенсивность падающего на кювету светового потока; $e^{-\chi}$ — член, описывающий неселективное поглощение; t — время измерения.

Аналогично для светового потока, прошедшего через кювету со стандартным раствором, будем иметь:

$$J_2 = \int_{t}^{t+\Delta t} J_0 e^{-\chi_2} e^{-\mu c} dt,$$
 (2)

где Δt — время измерения; $e^{-\chi_2}$ — член, описывающий неселективного поглощение; $e^{-\mu C}$ — член, описывающий селективного поглощение; при этом μ — коэффициент пропорциональности.

Затем определяется оптическая плотность, причем $t=\Delta t$:

$$D = \lg\left(\frac{J_1}{J_2}\right) = \mu C \,, \tag{3}$$

которая используется для построения калибровочного графика в координатах D=F(C), при этом полагают, что значения неселективного поглощения в обоих случаях равны.

Однако условие $\chi \approx \chi_2$ не всегда достигается с приемлемой для практики точностью, поскольку кюветы сделать идентичными технологически сложно, кроме того, часто невозможно оценить уровень загрязнений, который может сказаться при работе в ультрафиолетовой области спектра. Относительная ошибка построения калибровочного графика при числе точек калибровки N может быть записана в виде

$$\Delta \chi_1 = \chi - \chi_1, \ \Delta \chi_2 = \chi - \chi_2, \ \dots \dots \Delta \chi_N = \chi - \chi_N, \tag{4}$$

$$\delta = \sqrt{\sum_{i=1}^{N} \left(\frac{\Delta \chi_i}{\mu C}\right)^2} \ . \tag{5}$$

Следовательно, коэффициент пропорциональности μ определяется с ошибкой, синхронно изменяющейся с измерением очередного стандарта. Соответственно при измерении рабочих растворов также возникает ошибка определения оптической плотности. Таким образом, на этапе калибровки для i-й точки

$$D_i = \Delta \chi_i + \mu C_i, \tag{6}$$

а на этапе измерений:

$$D_{P} = \Delta \chi_{P} + \mu C_{X} \,, \tag{7}$$

индекс p — рабочие измерения, $p \in 0 \div N$.

Рассмотрим процедуру построения калибровочного графика в координатах $J=F(C,\chi)$, что дает возможность снизить вклад неселективных помех на этапе измерений.

Пусть требуется построить калибровочный график по 2 точкам. Интенсивность потока, прошедшего через кюветы с первым и вторым стандартными растворами можно записать в виле

$$J_{I} = \int_{0}^{t_{I}} J_{0} e^{-\chi_{I}} e^{-\mu C_{I}} dt,$$
 (8)

$$J_2 = \int_{t_1}^{t_1+\Delta t} J_0 e^{-\chi_2} e^{-\mu C_2} dt, \tag{9}$$

где C_1 и C_2 — концентрации используемых стандартов.

Проведем измерения рабочего раствора с неизвестной концентрацией C_x :

$$J_{3} = \int_{t_{I} + \Delta t}^{t_{I} + 2\Delta t} J_{0} e^{-\chi_{3}} e^{-\mu C_{X}} dt . \tag{10}$$

Если времена измерений стандартов и рабочего раствора равны, т.е. $t = \Delta t$, то

$$J_{I} = J_{0}e^{-\chi_{I}}e^{-\mu C_{I}}t, \tag{11}$$

$$J_2 = J_0 e^{-\chi_2} e^{-\mu C_2} t, \tag{12}$$

$$J_{3} = J_{0}e^{-\chi_{3}}e^{-\mu C_{X}}t. \tag{13}$$

Найдем теперь оптическую плотность, используя J_1 и J_3 :

$$D = \lg\left(\frac{J_I}{J_3}\right) = \left(\chi_3 - \chi_I\right) + \mu C_X - \mu C_I \tag{14}$$

Предположим, что $\chi_3 \approx \chi_1$. Тогда

$$C_X = \lg\left(\frac{J_I}{J_3}\right) / \mu + C_I. \tag{15}$$

Для определеня μ последнее выражение перепишем с учетом J_2 :

$$C_2 = \lg\left(\frac{J_I}{J_3}\right) / \mu + C_I. \tag{16}$$

Из этого выражения найдем

$$\mu = \lg \left(\frac{J_1}{J_2} \right) / (C_2 - C_1). \tag{17}$$

В рассмотренном нами методе в отличие от метода, описанного вначале, некомпенсированные неселективные помехи вносят свой вклад лишь на этапе рабочих измерений. Погрешность измерений при этом будет описана выражением (7). Это и дает возможность повысить точность анализа. Для проверки предложенного метода была написана на $Visual\ C++$ программа, которая через аналого-цифровой преобразователь (12 бит), подключенный к последовательному порту (СОМ 2), производила обработку в соответствии с вышеописанным методом. В качестве фотометра использовался прибор типа КФК 2, заводской номер 8713115. График строился по двум точкам. Получено, что точность определения раствора известной концентрации на 5–7% была лучше по сравнению с обычным методом.

Выводы

Разработан метод калибровки фотоэлектрических фотометров, использующих координаты $J=F(C,\mu)$. Этот метод дал возможность не только повысить точность измерений на 5–7 %, но и исключить дополнительные операции построения калибровочного графика, связанные с измерением оптической плотности кюветы и растворителя.

INDEMNIFICATION OF MULTIPLY NOISES HANDICAPS IN PHOTO-ELECTRIC PHOTOMETERS WITH A SOURCE OF A CONTINUOUS SPECTRUM

K.P. KUREJCHIK, A.Z. IBRAGIM

Abstract

The analysis of optical density measurement mistakes in photometers with a source of continuous spectrums that arise because of an action of non-compensated non-selective handicaps at stages of calibration and dimension is adduced. A new method of photometers calibration that ensures the increase of measurement accuracy is developed. The prominent feature of the developed method is a construction of the calibration schedule in co-ordinates $J=F(C,\chi)$ instead of D=F(C) co-ordinates, where χ is a value of non-selective noise, C—concentration.

Литература

1. Фотометр фотоэлектрический КФК 3. № 960083. Техническое описание и инструкция по эксплуатации. ТУ 3-3.2164-89. 1996.