УДК 621.391.26

МЕТОД ФОРМИРОВАНИЯ БЕНТ-ПОСЛЕДОВАТЕЛЬНОСТЕЙ

В.Д. ДВОРНИКОВ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 26 сентября 2003

В статье рассматривается метод формирования бент-последовательностей, использующий свойство инвариантности преобразования Уолша-Адамара и двумерный алгоритм вычисления спектра Уолша-Адамара. Количество различных последовательностей, которые позволяет получить предложенный метод, почти в два раза больше количества, определяемого известной нижней границей. Описано устройство формирования бент-последовательностей, реализующее рассмотренный метод.

Ключевые слова: бент-последовательности, матрицы Уолша-Адамара, спектр Уолша-Адамара, границы числа последовательностей.

Двоичные бент-последовательности (БП), задаваемые при помощи бент-функций (булевых максимально-нелинейных функций), являются смежными классами кодов Рида-Маллера высоких порядков по коду Рида-Маллера первого порядка. Бент-последовательности интенсивно исследуются в теории кодирования [1], связи [2, 3] и криптографии [4–6]. Одной из важнейших теоретических задач является перечисление всех существующих БП длин, превышающих 64. Для этих случаев известны приближенные нижние и верхние границы [5], а решение этой задачи прямым перебором осложняется чрезмерно большим требуемым объемом вычислений. Ниже описывается метод синтеза БП, число которых почти в два раза превышает известную нижнюю границу.

Для описания метода используется представление БП, основанное на свойстве равномерности ее спектра Уолша—Адамара. Пусть имеется последовательность $\{b_i\}=(b_0,b_1,...,b_{n-1}),\ n=2^{2m},\ a\ b_i=\pm 1,\ i=0,...,n-1,\ и$ представляется двоичным числом длины 2m. Тогда $\{b_i\}$ является БП, если

$$\left| b(j) \right| = \sum_{i=0}^{n-1} b_i (-1)^{i \cdot j} = 2^m, \tag{1}$$

где j=0,...,n-1 — двоичное число длины 2m , а скалярное произведение $i\cdot j$ вычисляется как сумма по модулю два вида $i_0j_0+i_1j_1+...+i_{2m-1}j_{2m-1}$.

В [4] для синтеза БП используется матрица преобразования Уолша–Адамара размерности $2^m \times 2^m$ — \mathbf{H}_{2^m} , задаваемая следующей формулой:

$$\boldsymbol{H}_{2^{m}} = [(-1)^{i \cdot j}], \tag{2}$$

где $i=0,...,2^{m-1}$, $j=0,...,2^m$ — соответственно номера столбца и строки, в которых находится элемент матрицы.

Последовательность $\{b_i\}$ получается конкатенацией в любом порядке взятых с любыми знаками всех строк матрицы \mathbf{H}_{2^m} . Нетрудно убедиться, что для любой полученной таким образом последовательности выполняется свойство (1), а общее их число равно $M=(2^m)!\ 2^{2^m}$. Данное число и является нижней границей количества различных БП длины 2^{2m} .

Получим из матрицы (2) БП, описываемую выражением

$$\{b_i^0\} = (-1)^{i_1 \cdot i_2},$$
 (3)

где $i=i_1+2^mi_2$, i_1 и i_2 — соответственно остаток и частное от деления i на 2^m : $i_1=(i) \mathrm{mod} 2^m$, $i_2=(i-i_1) 2^{-m}$.

Все возможные последовательности получаются преобразованиями выражения (3).

$$\{b_i^j\} = (b_0^0, b_1^0, ..., b_{n-1}^0)[\mathbf{I} \otimes \mathbf{P} \mathbf{C}],$$
 (4)

где j=0,...,M-1, I — единичная, P — перестановочная и C — диагональная матрицы размерностью $2^m \times 2^m$, \otimes — символ кронекеровского произведения, а $C=\mathrm{diag}(\pm 1,\pm 1,\pm 1,...,\pm 1)$.

Всего существует (2^m)! различных матриц ${\bf P}$ и 2^{2^m} различных матриц ${\bf C}$. Произведение этих чисел и дает нижнюю границу ${\bf M}$ [5]. Для ${\bf m}=2$ ниже приведены матрицы ${\bf I}$, ${\bf P}$ и ${\bf C}$:

$$\boldsymbol{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{C} = \begin{bmatrix} \pm 1 & 0 & 0 & 0 \\ 0 & \pm 1 & 0 & 0 \\ 0 & 0 & \pm 1 & 0 \\ 0 & 0 & 0 & \pm 1 \end{bmatrix}.$$

Произведение матриц вычисляется последовательно:

$$I \otimes PC = I \otimes \begin{bmatrix} \pm 1 & 0 & 0 & 0 \\ 0 & 0 & \pm 1 & 0 \\ 0 & \pm 1 & 0 & 0 \\ 0 & 0 & 0 & \pm 1 \end{bmatrix} = \begin{bmatrix} \pm I & 0 & 0 & 0 \\ 0 & 0 & \pm I & 0 \\ 0 & \pm I & 0 & 0 \\ 0 & 0 & 0 & \pm I \end{bmatrix}.$$

Вычисления одномерного спектра (1) целесообразно выполнять при помощи двумерного преобразования и воспользоваться свойством инвариантности преобразования Уолша–Адамара. Результатом этих действий будет еще одно выражение для формирования БП:

$$\{b_i^j\} = (b_0^0, b_1^0, ..., b_{n-1}^0)[PC \otimes I].$$
 (5)

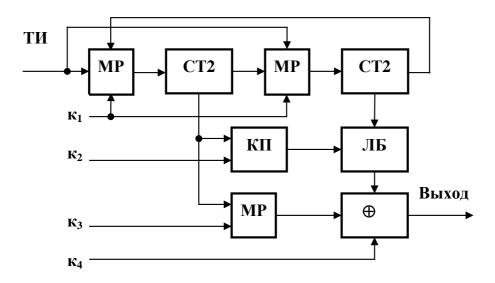
Нетрудно убедиться, что полученная последовательность является БП, так как обладает свойством (1). Кроме того, ее нельзя получить из выражения (4). Совокупное использование формул (4) и (5) позволяет увеличить количество БП, получаемых из \boldsymbol{H}_{2^m} . Однако следует учитывать, что этим методом не удается удвоить общее число формируемых последовательностей, поскольку некоторые из них повторяются. Число совпадающих БП легко определить из сравнительного анализа выражений (4) и (5). Оно равно

$$M_c = 2^{2m+1} \prod_{r=0}^{m-1} (2^m - 2^r).$$

Следовательно, общее число не повторяющихся последовательностей, которые можно получить, определяется выражением

$$M_i = 2M - M_c = (2^m)! 2^{2^m+1} - 2^{2m+1} \prod_{r=0}^{m-1} (2^m - 2^r).$$

На рисунке приведено устройство для формирования бент-последовательностей, общее число которых равно $(2^m)!2^{2^m+1}$.



Структурная схема устройства формирования бент-последовательностей

Устройство содержит два m -разрядных двоичных счетчика, объединенных при помощи мультиплексоров, кодопреобразователь (КП), логический блок (ЛБ), сумматор по модулю два и мультиплексор. Совокупность управляющих сигналов K_1 , K_2 , K_3 и K_4 обеспечивает получение (2^m)! 2^{2^m+1} различных БП. При этом K_1 позволяет формировать группу последовательностей, описываемых выражениями (4) или (5), а K_4 управляет их инверсией. Кодопреобразователь использует выходные сигналы счетчика и сигналы K_2 для реализации перестановочных матриц \boldsymbol{P} , а K_3 и мультиплексор — матриц \boldsymbol{C} .

Предложенный метод позволяет не только увеличить мощность ансамбля генерируемых БП, но и уточнить нижнюю границу их количества.

METHOD OF FORMING BENT-SEQUENCES

V.D. DVORNIKOV

Abstract

The paper considers a method of forming bent-sequences using the invariance feature of Walsh-Hadamard transform and two-dimensional algorithm of calculation of Walsh-Hadamard spectrums. The number of different sequences that allows us to obtain the proposed method is twice more the number defined by the known low bound. The device of bent-sequences forming realizing the method is described.

Литература

- 1. Rothaus O.S. On Bent Functions // J. Combinatorial Theory. Ser. A. 1979. Vol. 20, P. 300–305.
- 2. Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки. М., 1979.
- 3. Лосев В.В., Бродская Е.Б., Коржик В.И. Поиск и декодирование сложных дискретных сигналов. М., 1988.
- 4. Adams C.M., Tavares S.E. // IEEE Trans. Inform. Theory. 1990. Vol. IT–36, № 5. P. 1170–1173.
- 5. Prenel B., VanLeekwijck W., VanLinden L., Govaerts R., Vandewalle J. Propagation characteristics of Boolean functions // Advances in Cryptology. Proc. Eurocrypt '90. Lecture Notes in Computer Science. Vol. 473. Berlin, Heidelberg, New York: Springer–Verlag, 1991.
- 6. Olsen J.D., Scholtz R.A., Welch L.R. // IEEE Trans. Inform. Theory. 1982. Vol. IT-28, №6. P. 858-864.