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Ha ocnoBe ppeiid-nuddysnonHoii Monenn paspaboraHa mnporpamMma pacueTa IpPOLECCOB
NepeHoca U HelIMHeHHOW aAnHaMuky konebanuit B GaAs momynpoBogHukax ¢ 3¢ dexrom ["anHa.
[TokazaHo, YTO HENMMHEWHOE B3aMMO/ICHCTBHE XapaKTepPU3yeTCsl YMHOKEHNEM Meproia KojaeOaHui
Y BO3HUKHOBEHHEM CTPAHHBIX Xa0THYECKUX aTTPAKTOPOB.
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Introduction

Self-oscillating systems are encountered in most branches of science and engineering. Gunn
unstable semiconductor is one of the systems of this type, where dc voltage gives a rise to high-field
domain dynamics and the well-known Gunn oscillations. The Gunn-effect devices, widely know as
Gunn diodes, are capable of converting direct current power into microwave frequency power when
they are coupled to the appropriate resonator. Typical applications for Gunn diode oscillators include
local oscillators in the range from 10 GHz to above 120 GHz, voltage controlled oscillators, radar and
communication transmitters.

Having found a system with a natural oscillation due to travelling-wave motion, it is natural to
ask whether harmonic forcing would lead to chaos with spatial structure. During the last decade the
nonlinear dynamics of periodically forced Gunn devices has been investigated [1-8]. One of the
frequently observed phenomena is phase locking of the transit Gunn oscillation to the periodical
forcing. Among the observed phenomena also were period doubling, and chaotic response. In this
paper we describe the nonlinear dynamics obtained numerically for 3-um GaAs Gunn device.

Description of the Gunn device model

In this paper we consider the Gunn effect in a one-dimentional GaAs sample occupying
O<x<L with the cathode and the anode being x=0 and x=L. The processes of electron transport
in n"=n-n" GaAs structures can be described by the drift-diffusion model, consisting of the current
continuity and particle current relationships, and Poisson’s equation
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where e is the electron charge, ¢ is the static dielectric constant, n,(X) is the equilibrium electron
density, J(x,t) is the total current density, n(x,t) is the electron carrier density, E(x,t) is the local electric
field distribution, »(E) and D(E) are characteristics of the drift velocity and the diffusivity on electric
field. The accurate cubic spline approximation of these characteristics was used in our simulation.

The device terminal current I(t) is partitioned into a particle current and a displacement current
and is equal to

dv(t)

at (4)

I(t)=> jJ(xt)olx+cd,0de

where S is the cross-sectional area, L is the length of the transit region, Cgioe is the static diode
capacitance. V(1) is the voltage applied to a GaAs structure, consisting of the dc voltage Vg, and the
external microwave signal with amplitude V. and frequency fy :

V(t)=Vgc+Vqc Sin(2x fy-t). (5)

To complete the mathematical description, specifications of initial conditions at t=0, and
boundary conditions at both cathode (x=0) and anode (x=L) locations, are required. Initial conditions
(t=0) are:

n(x, 0)=ng (x),

E(x,0)=Vq /L.
The boundary conditions are:
&n (x, £)/0 x*=0 at x=L.

n(0, t)=ny (x), at x=0,
9c(0, )=V(1),

(L, 1)=0.

Poisson’s equation (3) and the continuity equation (1) comprise a system of coupled nonlinear
partial differential equations. They were integrated numerically using a Runge-Kutta scheme [9].

The application of an external voltage Vg4, exceeding a high-field threshold value Vy, causes
current transit oscillation with frequency f, in the external circuit. The external microwave signal

essentially changes and complicates the oscillation dynamics.

Numerical simulation

In all simulations to be discussed, we have fixed the following parameters of the n-GaAs
sample: L=3 um, $=10" cm?, Cgiose=0,036 pF, threshold voltage V,=0,77 V, homogeneous doping
density profile with ny(x)=5-10" cm~ and with doping notch 0,25 pm length and 3,5-10"° cm™ doping
density, located 0,3 um from cathode. For dc bias below the threshold we find steady state, non-
oscillatory behaviour. Above threshold, self-sustained periodic oscillations occur. The typical shape of
the natural oscillation with frequency f=27,43 GHz is shown in figure 1 (A=Vu/(Vac—Vin)=0).
The space-time electric field and electron concentration characteristics for this case are given in [6].
Figures 2 and 3 show the attractor and the Poincare section of this oscillation. To our surprising we
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can see that they have non-trivial strange geometrical structure. Taking into consideration that the
calculated correlation dimension is approximately v=1,08 and the computed first Lyapunov exponent
value is nearly 0.5 one can conclude that we deal with the oscillation which formally can be defined as
chaotic [9-12]. Here chaotic refers to exponential divergence of nearby trajectories and strange means
that the dimension of the attractor is not an integer. We can also see that, on the whole, the oscillation
shape does not change. It can be supposed that a strong convergence during fairly short time intervals
is outweighed by the divergence of nearby trajectories that occurs within other time intervals. This
example shows that the evolutionary stability and chaotic dynamics are perfectly compatible.

Now, we turn to the study of the responses of this self-oscillatory system to periodically
varying applied voltage. This problem is related to the operation of Gunn diodes inserted in a
microwave resonant circuit [7]. In figure 4 one can see that the influence of the external forcing leads
to the specific modulation of the natural Gunn oscillation. The resultant shape is a sequence of
complicated asymmetrical oscillations, which seem almost periodic and similar to polar-modulated
ones [6, 12]. Figure 5 shows that the increase of amplitude leads to the successive multiplication of
natural oscillation period N times, where N=1, 2, 3...35. Denoting the period of the resultant
oscillations T, we have that T=N-Tg4, where Tq=1/4,. The shape of the curve is similar to a staircase
which length of steps (stable regions) is gradually decreases with growth of microwave amplitude A.
The transition between next stable regions gives rise to narrow windows of non-periodic responses
like shown in figure 5 and more complicated oscillations. The correlation dimension values of the
resultant oscillations are less than two.

As we can see the competition between the natural oscillations due to the space-charge
domain dynamics and the periodic forcing can result in low-dimensional fractal oscillations.
It is important that the current forms and bifurcation processes obtained numerically agree closely with
experimental data determined earlier using a millimetre-wave Gunn oscillator [7]. It gives the hope
that the model used reflects the real mechanism of nonlinear interaction in Gunn devices. Figures 6, 7
show the attractor and the Poincaré sections of the current oscillation at A=0.605 (see figure 4).
The calculations showed that the first Lyapunov exponent was positive and the correlation dimension
was about 1.95. It means that we also deal with the chaotic behaviour. Finally in figure 8 we present
the return maps of this oscillation. To our surprise one can see that after fairly long period of
comparative stability the oscillation becomes more irregular. The comparison of figures 8,b and 8,c
shows that the part of the return map in figure 8,b marked R is practically the full return map shown in
figure 8,c. So we can see that the used model demonstrates the some transience from one to another
random state. Nevertheless, even by the end of the calculation time the oscillation has a high
predictability.

Conclusion

It was shown that the drift-diffusion transport model of the Gunn-effect structure could
reproduce strange chaotic behaviour. Nevertheless, the time-dependence of the current keeps a very
high level of predictability. It fails to detect the chaotic nature of the system. The examples given show
that the evolutionary stability and chaotic dynamics are fairly well compatible. This phenomenon
connected not only with the applying of the external sinusoidal signal, that leads to the suppression or
maintenance of the travelling charge layers. It turned out that the transit Gunn oscillation also
reproduces the low-dimensional strange chaotic behaviour. It is not an ordinary phenomenon and we
connect it with the complex form of the drift velocity and diffusivity characteristics on electric field.
However, we want to emphasize that the obtained results are only preliminary and do not give detailed
information about reasons of such behaviour.
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PERIOD MULTIPLICATION AND CHAOTIC DYNAMICS
IN A SEMICONDUCTOR WITH THE GUNN INSTABILITY

V. SHALATONIN, V. MISHCHENKO

Abstract

A drift-diffusion Gunn effect model is used to analyse complex behaviour of the natural and
driven Gunn oscillations. The results of the numerical simulation are presented. It was shown that
Gunn devices might exhibit quite complicated nonlinear dynamics, such as period multiplication and
strange chaotic attractors.
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