Доклады БГУИР июль–сентябрь

№ 3 (15)

УДК 621.39

ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ОПТИЧЕСКИХ МОДУЛЯТОРОВ ДЛЯ ПЕРЕДАЧИ ГРУППОВЫХ АНАЛОГОВЫХ СИГНАЛОВ ПО ВОЛОКОННО-ОПТИЧЕСКИМ ЛИНИЯМ СВЯЗИ

В.И. КИРИЛЛОВ¹, А.А. ПИЛЮШКО²

¹Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

²Военная академия Республики Беларусь 220057, Минск, Беларусь

Поступила в редакцию 4 июля 2006

Приведены результаты анализа защищенности группового аналогового сигнала (ГАС) от помех нелинейного происхождения в волоконно-оптических системах передачи (ВОСП), построенных на основе аналого-импульсных методов модуляции. Дана сравнительная характеристика различных видов аналого-импульсного преобразования ГАС: частотно-импульсной, широтно-импульсной и фазоимпульсной модуляции (ЧИМ, ШИМ и ФИМ соответственно). Обоснован выбор оптимальных параметров аналого-импульсных и оптических модуляторов для ВОСП небольшой протяженности, встраиваемых в существующую аналоговую сеть связи.

Ключевые слова: аналого-импульсное преобразование, групповой аналоговый сигнал, воло-конно-оптическая система передачи.

Введение

Анализ существующего состояния и перспектив развития систем связи в мире, и в нашей стране в частности, показывает, что развитие проводного телекоммуникационного сектора неразрывно связано с повсеместным внедрением высокоскоростных цифровых волоконнооптических систем передачи (ВОСП). Однако полная цифровизация сетей связи представляет собой достаточно длительный процесс, в течение которого аналоговые системы передачи (АСП) будут использоваться еще довольно долго, поскольку всеобщий единовременный переход от АСП к цифровым ВОСП требует больших капитальных вложений.

При поэтапной реконструкции аналоговых сетей связи (особенно ведомственного назначения) на практике часто приходится строить комбинированные линейные тракты в которых отдельные участки (как правило, сравнительно небольшой протяженности — до 15–25 км) строят на волоконно-оптическом кабеле, а остальные — на металлическом [1]. Для постро-ения участков первого типа (так называемых волоконно-оптических вставок) необходимо использовать специализированные модемы, которые преобразуют ГАС, уплотненный по частоте, в импульсную форму, удобную для передачи по ВОЛС, и обратно. Необходимость преобразования ГАС в импульсную форму определяется существенной природной нелинейностью оптических излучателей (ОИ).

Придать ГАС импульсную форму можно двумя способами: с использованием аналогоимпульсного или цифрового преобразования. Оценке возможностей второго способа посвящена работа авторов [2]. В данной работе анализируются возможности первого способа. Отметим, что в современной научно-технической литературе аналого-импульсные методы преобразования для ВОСП исследовались только для узкополосных [3, 4] или широко-полосных, но одно-канальных (телевизионных) сигналов [5]. Применительно к ГАС задача не была решена.

Известно, что в АСП предъявляются весьма жесткие требования к обеспечению заданной защищенности как от собственных шумов, так и от помех нелинейного происхождения. Цель данной работы — аналитически оценить влияние нелинейности ватт-амперных характеристик (ВтАХ) ОИ, применяемых при построении ВОСП, и определить оптимальные параметры электрооптического преобразования.

Расчет параметров оптических модуляторов при ЧИМ

Сформировать оптический импульсный сигнал, модулированный по частоте, можно двумя способами. Первый — поставить на входе ОИ линейный ЧМ-модулятор и подобрать амплитуду ГАС и рабочую точку ОИ так, чтобы "загнать" ОИ в сугубо нелинейный режим работы. В этом случае оптический сигнал получает импульсную форму за счет нелинейности ВтАХ самого ОИ. Во втором случае достаточно поставить на входе ОИ аналого-импульсный модулятор (в данном случае ЧИМ), тогда выбор рабочей точки некритичен. Первый вариант соответствует работе ОИ с синусоидальным током накачки, второй — с импульсным.

Расчет параметров оптических модуляторов при синусоидальной форме тока накачки ОИ. Для анализа продуктов нелинейности ВтАХ ОИ обычно аппроксимируют степенным полиномом порядка *M* не менее 7 (при этом обеспечивается точность аппроксимации не хуже 3 % [6]). Поскольку ВтАХ ОИ обычно измеряется с помощью фотодиода, фототок *i* которого прямо пропорционален мощности оптического излучателя, можно записать:

$$i = kP = \sum_{i=0}^{M} k a_n I^n = \sum_{i=0}^{M} b_n I^n, \qquad (1)$$

где P — излучаемая световая мощность; a_n — коэффициенты, подбираемые по методу "наименьших квадратов"; I — ток накачки оптического излучателя; k и b_n — постоянные коэффициенты.

Представим ЧМ-сигнал, модулирующий излучение ОИ, в виде

$$I(t) = I_0 + I_m \cos[\varphi(t)] = I_0 + I_m \cos\left[\int_{-\infty}^t \omega(t)dt\right] = I_0 + I_m \cos[\omega_0 t + \beta \sin(\Omega t)],$$
(2)

где $I_0 = (I_{\max} + I_{nop})/2$ — ток смещения; $I_m = (I_{\max} - I_{nop})/2$ — амплитуда ЧМ-сигнала (рис. 1,*a*); $\omega(t) = \omega_0 + \beta \cos(\Omega t)$; $\beta = \Delta \Omega / \Omega$ — индекс ЧМ; $\Delta \Omega$ — девиация частоты.

Подставив (2) в (1), после ряда преобразований получим:

$$i(t) = N_0 + \sum_{n=1}^{M} N_n \cos[n(\omega_0 t + \beta \sin(\Omega t))] =$$

= $N_0 + N_1 \cos[\omega_0 t + \beta \sin(\Omega t)] + \sum_{n=2}^{M} N_n \sum_{p=-\infty}^{+\infty} J_p(n\beta) \cos[(n\omega_0 + p\Omega)t],$ (3)

где $J_p(n\beta)$ — функция Бесселя порядка p от аргумента $n\beta$; N_n — коэффициенты, зависящие от I_0 , I_m , a_n : $N_0 = Z_0 + Z_2/2 + 3Z_4/8 + 10Z_6/32$; $N_1 = Z_1 + 3Z_3/4 + 10Z_5/16 + 35Z_7/64$; $N_2 = Z_2/2 + 3Z_4/8 + 15Z_6/32$ и т.д., где $Z_k = I_m^k \sum_{j=k}^M C_{kj} a_j I_0^{j-k}$, при этом C_{kj} — биномиальные коэффициенты формулы Ньютона, определяемые из треугольника Паскаля: $C_{0j} = 1$ для

 $j \in [0; 7]; C_{1j} = j$ для $j \in [1; 7]; C_{2j} = 1, 3, 6, 10, 15, 21$ для $j \in [2; 7]; C_{3j} = 1, 4, 10, 20, 35$ для 25

j∈[3; 7]; *C*_{4*j*} =1, 5, 15, 35 для *j*∈[4; 7]; *C*_{5*j*} =1, 6, 21 для *j*∈[5; 7]; *C*_{6*j*} =1, 7 для *j*∈[6; 7]; *C*_{7*j*} =1 для *j*=7.

Рис. 1. Изменение мощности излучения от тока накачки: *a*) синусоидальным сигналом, *б*) импульсным сигналом трапецеидальной формы

Из (3) видно, что спектр сигнала i(t) после фотодетектора содержит постоянную составляющую N_0 , полезную переменную составляющую и продукты нелинейности с часто-тами $n\omega_0 \pm p\Omega$. При демодуляции такого сигнала с помощью ЧМ-приемника, содержащего полосовой фильтр (ПФ), усилитель-ограничитель и частотный детектор, в полосу пропускания ПФ $[\omega_0 - \Omega_{zp}; \omega_0 + \Omega_{zp}]$ попадут продукты нелинейности с частотами $n\omega_0 - p\Omega$, где $n \ge 1$ и $p \ge 1$, среди которых наиболее мощными будут комбинационные продукты вида $2\omega_0 - p\Omega$. После частотного детектирования в полосе частот выделенного полезного сигнала появятся комбинационные продукты нелинейности с частотами $\Delta \omega_p = |(2\omega_0 - p\Omega) - \omega_0| = |\omega_0 - p\Omega|$, где p должен удовлетворять условию $|\omega_0 - p\Omega| \le \Omega_{zp}$, и амплитудами $A_p = |\Delta \omega_p| N_2 J_p(n\beta)/N_1$ [7]. Тогда отношение мощности сигнала в отдельно взятом канале ТЧ из состава ГАС (амплитуда пропорциональна девиации частоты на канал $\Delta \Omega_{\kappa}$) к мощности комбинационных продуктов

$$H_{1} = 10 \lg \left[\Delta \Omega_{\kappa}^{2} / \sum_{p=x_{1}}^{x_{2}} A_{p}^{2} \right] = 20 \lg \left(N_{1} / N_{2} \right) + 20 \lg \left[2 g \beta J_{0}(\beta) / \sum_{p=x_{1}}^{x_{2}} J_{p}(2\beta)(m-p) \right], \tag{4}$$

где $m = \omega_0/\Omega$; p — целые числа в интервале $x_2 \ge p \ge x_1$, при этом $x_1 = (m - \Omega_{cp}/\Omega)$ и $x_2 = (m + \Omega_{cp}/\Omega)$, что соответствует условию, когда помеха нелинейного происхождения попадает в полосу частот полезного сигнала; множитель g – коэффициент пересчета от измеренного или рассчитанного действующего значения напряжения ГАС к действующему значению напряжения в отдельно взятом канале ТЧ из состава такого ГАС (можно показать, что, например, для стандартной вторичной группы $g \cong 0,1$).

Из (4) видно, что защищенность полезного сигнала от комбинационных продуктов нелинейности (ЗКПН) определяется двумя слагаемыми. Первое ($201g(N_1/N_2)$) зависит от энергетических параметров (рабочей точки I_0 на статической ВтАХ ОИ и амплитуды тока накачки I_m), а второе — от информационных параметров (частоты модуляции Ω , индекса модуляции β и несущей частоты ω_0). Выбирать все перечисленные параметры из возможного диапазона их значений для обеспечения заданной величины H_1 можно произвольно, но при этом следует иметь в виду, что необходимо обеспечить требуемую защищенность полезного сигнала и от собственных шумов.

В рамках данной работы по (4) был проведен расчет защищенности от комбинационных продуктов ГАС в спектре 12–252 кГц (соответствует линейному сигналу на выходе типовой 60-канальной АСП при работе по симметричным кабелям связи [8-9]). В расчете использовались коэффициенты a_n (см. (1) и (3)), полученные на основании анализа статических ВтАХ серийно выпускаемых оптических генераторов (опубликованных в печатных и электронных каталогах выпускаемой продукции ряда зарубежных фирм-производителей элементной базы для ВОСП). Расчеты, выполненные для разных типов ОИ, показали, что нормированная статическая ВтАХ аппроксимируется полиномом (1) при M = 7 с примерно одинаковыми коэффициентами для различных типов ОИ. Это говорит о том, что результаты расчета величин N_n могут быть распространены на большинство серийно выпускаемых типов ОИ.

На рис. 2,*а* показаны графики изменения величин N_1/N_0 (характеризует защищенность от собственных шумов) и $20lg(N_1/N_2)$ (характеризует защищенность от комбинационных продуктов) в зависимости от величины I_{nop}/I_{max} при условии $I_{nop}+2I_m=I_0+I_m=I_{max}=$ const (см. рис. 1,*a*). Величина I_{max} соответствует такому значению тока накачки, при котором ОИ входит в режим насыщения. При работе в таком режиме резко сокращается срок службы ОИ, следовательно, отмеченное условие соответствует максимально возможному при данном I_{nop} отношению сигнал/собственный шум (ОСШ) на приеме. На рис. 2,*a* показывает, что добиться максимума ОСШ на приеме можно при работе в области малых токов смещения и больших глубинах модуляции, однако при этом резко уменьшается ЗКПН. Компромиссные значения соотношения I_{nop}/I_{max} лежат в пределах 0,55–0,75.

Рис. 2. Результаты расчета ЗКПН при синусоидальной форме тока накачки ОИ: *a*) зависимость величин N_1/N_0 и 20 lg (N_1/N_2) от режима работы ОИ; *б*) зависимость H_1 от β и ω_0

Для улучшения энергетических характеристик ОИ и ВОСП в целом целесообразно увеличивать амплитуду тока накачки I_m и уменьшать ток в рабочей точке I_0 . Тогда ОИ работает с отсечкой тока, когда в течение некоторой доли периода электрических колебаний оптическое излучение отсутствует. В этом случае ВтАХ ОИ удобнее аппроксимировать не степенным полиномом, а кусочно-параболической функцией. Расчеты, выполненные в [6], показывают, что оптимальное соотношение I_0 / I_{max} также выбирается в компромиссной области в зависимости от степени аппроксимирующей функции в пределах 0,45–0,6.

На рис. 2,6 показана зависимость H_1 от информационных параметров модулирующего сигнала (ГАС в спектре 12–252 кГц). Расчет выполнялся с использованием (4) и рис. 2,*a*. Режим работы ОИ выбран $I_{nop}/I_{max} = 0,7$. Рис. 2,6 показано, что при выборе достаточно высокой не-

сущей частоты помехами нелинейного происхождения можно пренебречь, так как даже наиболее мощные из них не попадут в полосу частот полезного сигнала. Следует лишь помнить, что выбор возможных значений ω_0 ограничен АЧХ ВОЛС. Кроме того, увеличение ω_0 приводит к расширению полосы частот, занимаемой ВОСП, снижению чувствительности приемника и уменьшению ОСШ на выходе системы. Поэтому при выборе ω_0 целесообразно из ряда возможных значений отдавать предпочтение наименьшему из них. Поскольку для волоконнооптической вставки длиной 20 км требуемое значение ЗКПН составляет с учетом запаса около 80 дБ, добиться таких величин при выборе сравнительно низкой несущей частоты можно при работе в области малых индексов модуляции ($\beta < 1$) и $f_0 = \omega_0/2\pi \ge 1,8$ МГц.

Расчет параметров оптических модуляторов при импульсной форме тока накачки ОИ. При импульсной форме тока накачки ОИ, когда используется отдельный ЧИМмодулятор, возможны две разновидности ЧИМ-сигнала: первая — с постоянной скважностью импульсов Q=const; а вторая — с постоянной длительностью их τ =const.

Для определения спектра последовательности прямоугольных импульсов, модулированной по частоте с постоянной скважностью, применим метод "деформации" [7] к прямоугольным импульсам длительностью τ и амплитудой *A*, следующим с постоянной частотой $\omega_0 = 2\pi/T_0 = 2\pi f_0$. Последовательность таких импульсов описывается выражением:

$$i(t) = I_m \left[\frac{\tau}{T_0} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(n\pi \frac{\tau}{T_0}\right) \cos(n\omega_0 t) \right].$$
(5)

Заменим $T_0 \to T(t)$, $\tau \to \tau(t)$, $\omega_0 \to \omega(t) = \omega_0 + \Delta \Omega \cos(\Omega t)$, $\omega_0 t \to \varphi(t) = \omega_0 t + \beta \sin(\Omega t)$ и учтем, что $\tau(t)/T(t) = 1/Q = \text{const.}$ Тогда, условливаясь, что при прямоугольной форме импульсов тока накачки импульсы оптического излучения и фототока i(t) будут также прямоугольными независимо от вида ВтАХ ОИ (считаем ОИ и фотодетектор безынерцион-ными), придем к выражению вида (3), где $N_0 = I_{\text{nop}} + I_m / Q$; $N_n = (2I_m / n\pi) \sin(n\pi/Q)$. Так как для тока i(t), описываемого выражением (3), ЗКПН характеризуется выражением (4), то в данном случае на основании (5) имеем:

$$\frac{N_1}{N_0} = 2I_m \sin\left(\frac{\pi/Q}{\pi (I_{nop} + I_m/Q)}\right); \ 20\lg(N_1/N_2) = -20\lg[\cos(\pi/Q)].$$
(6)

Из (6) видно, что в отличие от варианта, когда модуляция оптического излучения производилась синусоидальным ЧМ-сигналом, ЗКПН при импульсной форме тока накачки ОИ зависит не от выбора рабочего участка на статической ВтАХ ОИ, а только от скважности: с ростом Q она уменьшается, а при Q=2 принимает максимальное значение.

Форма реального импульсного сигнала накачки ОИ, как правило, отличается от прямоугольной, но с определенной степенью точности может быть представлена в виде трапецеидальной (рис. 1, δ). Полагая, что ВтАХ ОИ (или рабочий участок на ней) линейна, т.е. i(t)=kI(t), где k=const, и что скважность ЧИМ-сигнала накачки не меняется, т.е. $Q=T/(\tau_2 + \tau_1)=$ const, можно представить ток I(t) в виде ряда Фурье. Выражения (3) и (4) в этом случае подвергнутся трансформации параметров, в которых

$$N_{0} = I_{nop} + I_{m} / Q, \ N_{n} = \frac{2I_{m}}{Q} \frac{\sin(n\pi/Q)}{n\pi/Q} \frac{\sin(n\pi x)}{n\pi x};$$
(7)

$$x = (\tau_2 - \tau_1)/T$$
, $n = 1, 2, 3..., 20 \lg(N_1/N_2) = -20 \lg[\cos(\pi x)\cos(\pi/Q)]$.

На самом деле ОИ — нелинейное устройство и его ВтАХ описывается степенным полиномом (1). В этом случае фронты импульсов фототока i(t) деформируются, изменятся и ко-

.

эффициенты разложения N_0 и N_n . Подробный анализ [5] показывает, что ЗКПН зависит не только от q=1/Q и x (скважности и крутизны фронтов), но и от выбора рабочего участка на ВтАХ (значений $I_{\text{пор}}$ и I_m). С использованием полученных в [6] выражений для определения коэффициентов разложения N_0 и N_n в рамках данной работы для различных ОИ были прове-дены уточняющие расчеты зависимости параметров $201g(N_1/N_2)$ и N_1/N_0 от соотношения $I_{\text{пор}}/I_{\text{max}}$ при условии $I_{\text{пор}} + I_m = I_{\text{max}} = \text{const}$ для ряда значений q и x (x=0 соответствует прямоугольной форме тока i(t)). Результаты расчетов представлены на рис. 3.

На рис. 3,*а* показано, что нелинейность ВтАХ ОИ и выбор рабочего участка на ней сильно влияют на величину N_1/N_2 только при $Q\approx 2$ и $x \in [0; 0, 15]$. При $Q\geq 3$ значение $20 \lg(N_1/N_2)$ слабо зависит от нелинейности ВтАХ ОИ и выбора рабочего участка на ней, а значит, может с достаточной точностью определяться из (7), т.е. без учета нелинейности ВтАХ. Длительность фронта сигнала накачки ОИ (величина *x*) при $Q\geq 3$ слабо влияет на ЗКПН.

Рис. 3. Результаты расчета ЗКПН при импульсной форме тока накачки ОИ: а) зависимость гармоник мощности излучения от параметров сигнала и режима работы ОИ: 1 — при q=0,33 и x=0; 2 — при q=0,33 и x=0,1; 3 — при q=0,45 и x=0; 4 — при q=0,45 и x=0,1; 5 — при q=0,49 и x=0; 6 — при q=0,49 и x=0,1; 7 — при q=0,5 и x=0,1; 8 — при q=0,5 и x=0,05. б) влияние режима работы ОИ и формы тока накачки на относительный уровень первой гармоники излучения: 1 — идеально трапецеидальная; 2 — искаженная трапецеидальная; 3 — синусоидальная

На рис. 3,6 показано, что величина N_1/N_0 при импульсной форме тока накачки ОИ (кривые 1 и 2) в зависимости от выбора рабочего участка в диапазоне $I_{nop}/I_{max} \in [0; 0, 6]$ меняется не более чем на 1 дБ при любом значении Q и $x \le 0, 15$. При синусоидальном токе накачки (кривая 3) в этих же условиях величина N_1/N_0 меняется примерно на 5 дБ. Следовательно, при импульсной форме тока накачки не следует предъявлять столь жестких требований к стабилизации режима работы ОИ, как при синусоидальной.

Для определения спектра последовательности прямоугольных импульсов с постоянной длительностью импульсов также применим метод "деформации". В этом случае $\tau(t)$ =const, $Q(t) = T(t)/\tau(t) \neq \text{const}$. Если принять, что частота сигнала меняется по закону: $\omega(t) = \omega_0 + \Delta \omega(t) = \omega_0 + \Delta \Omega \sin(\Omega t)$, то ЧИМ-сигнал можно описать выражением (5), "деформировав" параметры τ , T_0 , ω_0 , φ_0 : $T_0 \to T(t) = 2\pi/\omega(t)$, $\tau = \text{const}$, $\varphi_0 = \omega_0 t \to \varphi(t) = \int_{-\infty}^t \omega(t) dt$. По-

сле подстановки "деформированных" параметров в (5) можно получить выражение для ЧИМсигнала на выходе модулятора. Поскольку при прямоугольных импульсах тока накачки ОИ спектр фототока не зависит от нелинейности ВтАХ ОИ и выбора рабочего участка на ней, для фототока справедливо записать:

$$i(t) = i_{nop} + i_m \Big[\tau / T_0 + (\tau \Delta \Omega / 2\pi) \sin(\Omega t) + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\tau\omega_0}{2} + \frac{n\tau\Delta\Omega}{2} \sin(\Omega t)\right) \cos\left(n\omega_0 t - \frac{n\Delta\Omega}{\Omega} \cos(\Omega t)\right) \Big],$$
(8)

где величины i_{nop} и i_m пояснены на рис. 1, б.

В случае накачки ОИ трапецеидальными импульсами с $Q \neq$ const этот вывод справедлив при Q>3. Режим с $Q\geq3$ является основным для ЧИМ с $\tau=$ const [7], поэтому при передаче трапецеидальных импульсов нелинейность ОИ можно также не учитывать. Спектр тока i(t) при длительности фронтов $x\leq0,15$ (для $Q\geq3$ это обычно выполняется) в этом случае практически не отличается от спектра последовательности прямоугольных импульсов.

Из (8) видно, что спектр ЧИМ-сигнала с τ =const содержит постоянную составляющую, НЧ составляющую, которая несет в себе полную неискаженную информацию о модулирующем сигнале, и модулированные одновременно по амплитуде и по частоте ВЧ составляющие с центральными частотами $n \omega_0$. Следовательно, здесь возможны два варианта демодуляции:

1) с помощью ФНЧ, выделяющего низкочастотный компонент;

2) с помощью ПФ, выделяющего из спектра (8) область вблизи какой-либо центральной частоты $n\omega_0$ (затем полученный ВЧ компонент пропускается через амплитудный ограничитель и подается на частотный детектор, на выходе которого выделяется полезный сигнал).

Параметры ЧИМ-сигнала, демодулированного первым способом, необходимо выбирать таким образом, чтобы уровни комбинационных продуктов, попадающих в полосу пропускания ФНЧ, которая ограничена частотой Ω_{cp} , не превышали допустимых. При этом учитываются наиболее мощные комбинационные продукты, удовлетворяющие условию $|\omega_0 - p\Omega| \leq \Omega_{cp}$. Помехозащищенность определяется из выражения:

$$H_{2} = 20 \lg \frac{g \pi \beta q / m}{\sum_{p=x_{1}}^{x_{2}} \left\{ J_{p} \left[\beta \sqrt{1 + (\pi q / m)^{2}} \right] \sin \left(\pi q + p \left[\frac{\pi}{2} + \operatorname{arctg}(m / \pi q) \right] \right) \right\}},$$
(9)

где величины *m*, *p*, *g* пояснены в (4).

Для второго способа демодуляции порядок комбинационных продуктов *p* находится из условия $|(n\omega_0 - p\Omega) - \omega_0| = |(n-1)\omega_0 - p\Omega| \le \Omega_{zp}$, где Ω_{zp} – граничная частота ФНЧ, включенного после демодулятора. Учитывая, что мощнее прочих будут комбинационные продукты с n=2, и выбирая из них для упрощения один, наиболее мощный, можно получить:

$$H_{3} = 20 \lg \frac{4 g\beta \sin(\pi q) J_{o}(\pi\beta q/m)}{\sum_{p=x_{1}}^{x_{2}} \left\{ \left(m-p\right) J_{p} \left[2\beta \sqrt{1 + \left(\pi q/m\right)^{2}} \right] \sin \left(2\pi q + p \left[\frac{\pi}{2} + arctg(m/\pi q) \right] \right) \right\},$$
(10)

где величины *m*, *p*, *g* пояснены в (4).

Кроме скважности и формы импульсов, как следует из (9) и (10), для обеспечения требуемой ЗКПН необходимо рационально подбирать и информационные параметры ЧИМсигнала. На рис. 4 показаны зависимости H_2 и H_3 от β для ряда значений ω_0 . В качестве примера, как и в случае, когда модуляция оптического излучения производилась синусоидальным ЧМ-сигналом, приведены результаты расчетов для случая передачи ГАС в спектре 12–252 кГц. Здесь, как и ранее, при выборе достаточно высокой несущей частоты помехами нелинейного происхождения можно пренебречь. Поскольку для волоконно-оптической вставки длиной 15–25 км требуемое значение ЗКПН составляет с учетом запаса около 80 дБ, добиться таких величин при выборе сравнительно низкой несущей частоты можно только при малых индексах модуляции (β <1). Из рис. 4 видно, что при β =const и f_0 =const, как правило $H_2 \ge H_3$. Для обоих вариантов требуемую ЗКПН можно обеспечить при $f_0 \ge 1,8$ МГц и $\beta \le 1$.

Рис. 4. Зависимость H_3 (*a*) и H_2 (б) от β и ω_0

Используя выражения (4), (7), (9), (10), для конкретного типа ОИ можно рационально выбрать информационные параметры модуляторов ГАС (индекс модуляции β и несущую частоту ω_0) и режим работы самого ОИ для обеспечения требуемой ЗКПН при различных методах формирования ЧИМ-сигнала. Окончательное уточнение параметров производится с учетом обеспечения требуемой линейности модуляционной характеристики ЧИМ-модулятора, а также с учетом АЧХ ВОЛС.

Выбор параметров оптических модуляторов при ШИМ и ФИМ

При ШИМ можно определить аналого-импульсный сигнал так же, как и при ЧИМ, воспользовавшись методом "деформации" параметров в выражении (5). Учтем, что при ШИМ изменяется только длительность импульсов $\tau \rightarrow \tau(t) = \tau_0 + \Delta \tau(t)$, при этом отклонение $\tau(t)$ от τ_0 не превышает значения $\Delta \tau_m = \max | \Delta \tau(t) |$. Тогда имеем:

$$i_{\text{IIIMM}}(t) = i_{\text{пор}} + i_{m} \left[q_{0} + \frac{\Delta \tau(t)}{T_{0}} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi [\tau_{0} + \Delta \tau(t)]}{T_{0}}\right) \cos(n\omega_{0}t) \right],$$
(11)

где $q_0 = 1/Q_0 = \tau_0/T_0$, а $\tau_0 \ge |\Delta \tau(t)| = |k|I(t)|$ из физических соображений. Здесь I(t) — временная зависимость ГАС на входе модулятора; k — постоянный коэффициент, характеризующий глубину модуляции.

Из (11) видно, что спектр ШИМ-сигнала содержит постоянную составляющую, НЧ составляющую, которая несет в себе полную неискаженную информацию о модулирующем сигнале, и модулированные по амплитуде ВЧ составляющие с центральными частотами $n \omega_0$. Демодуляция такого сигнала возможна двумя способами – с помощью ФНЧ, выделяющего НЧ компонент, или с помощью ПФ, выделяющего из спектра (11) область вблизи какой-либо центральной частоты $n \omega_0$. На практике используется в основном первый, поскольку проще реализуется и вносит минимальные частотные искажения.

Параметры ШИМ-сигнала, демодулированного с помощью ФНЧ, необходимо выбирать таким образом, чтобы уровни комбинационных продуктов, попадающих в полосу пропускания

ФНЧ, которая ограничена частотой Ω_{rp} , не превышали допустимых. При этом учитываются наиболее мощные комбинационные продукты, удовлетворяющие условию $|\omega_0 - p\Omega| \leq \Omega_{rp}$.

Помехозащищенность определяется из выражения:

$$H_{uuum} = 20 \lg \frac{g \,\Delta \tau_m / T_o}{\left(\frac{2}{\pi}\right) \sum_{p=x_1}^{x_2} J_p \left(\pi \frac{\Delta \tau_m}{T_0}\right) \sin \left(\pi \left[q_0 + \frac{p}{2}\right]\right)},\tag{12}$$

где величины p и g пояснены в (4), а $|\Delta \tau_m / T_0| \le q_0$ по физическому смыслу.

На рис. 5 представлены результаты расчета величины $H_{\text{пим}}$ от параметра $\Delta \tau_m / T_0$ при различных значениях ω_0 и Q_0 . В качестве примера, как и ранее, приведены результаты расчетов для ГАС в спектре 12–252 кГц. Рис. 5 показывает, что при выборе достаточно высокой несущей частоты помехами нелинейного происхождения можно пренебречь. Однако, как уже было отмечено выше, из ряда возможных значений ω_0 целесообразно отдавать предпочтение наименьшему из них. Добиться максимума ЗКПН при выборе сравнительно низкой ω_0 можно двумя способами: первый — увеличением скважности, что приводит к автоматическому уменьшению глубины модуляции; второй — использованием максимально возможной при выбранной скважности глубины модуляции (увеличение глубины модуляции от минимальных до максимальных значений дает выигрыш примерно на 20 дБ). Второй способ предпочтительнее, так как позволит одновременно повысить и ОСШ на приеме.

Рис. 5. Зависимость $H_{\mu\mu\mu}$ от $\Delta \tau_m / T_0$ при различных ω_0 (*a*) и Q_0 (б)

Анализ ЗКПН при ШИМ показывает, что достигнуть требуемых значений $H_{\text{шим}}$ (около 80 дБ) можно разными способами, варьируя параметрами ω_0 , Q_0 и $\Delta \tau_m$. В частности, при $Q_0 = 3$ и $\Delta \tau = \Delta \tau_m = T_0/3$ можно получить заданную ЗКПН при $f_0 = \omega_0/2\pi \ge 1,8$ МГц. Во всех случаях требуется учитывать необходимость обеспечения требуемой защищенности полезного сигнала и от собственных шумов. Окончательное уточнение значений ω_0 , Q_0 и $\Delta \tau_m$ производится с учетом АЧХ ВОЛС, нелинейности ШИМ-модулятора и ОИ.

При ФИМ для определения аналого-импульсного сигнала также применим метод "деформации" параметров в выражении (5). Учтем, что при ФИМ изменяются фаза, частота и период: $\omega_0 t \rightarrow \omega_0 t + kI(t); \omega_0 \rightarrow \omega(t) = \omega_0 + k dI(t)/dt; T_0 \rightarrow T(t) = 2\pi / \omega(t)$. Тогда имеем:

$$i_{\phi\mu\mu}(t) = i_{nop} + i_m \left[\frac{\tau_0}{T_0} + \frac{k\tau_0}{2\pi} \cdot \frac{dI(t)}{dt} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\tau_0}{2} \left[\omega_0 + k\frac{dI(t)}{dt}\right]\right) \cos\left(n\left[\omega_0 t + kI(t)\right]\right) \right].$$
(13)

Величины I(t) и k пояснены в (12).

Анализ (13) показывает, что демодуляция такого сигнала возможна разными способами. Наиболее распространен на практике благодаря своей простоте тот, при котором ФИМ-сигнал преобразуется в ШИМ-сигнал при помощи триггера с последующей фильтрацией через ФНЧ [7, 10]. Как показывает анализ литературы, трудности при преобразовании ФИМ-ШИМ возникают только при решении вопросов, связанных с обеспечением тактовой синхронизации [5]. Выбор параметров модулятора и информационных параметров самого ГАС, обеспечивающих требуемую ЗКПН, с достаточной точностью производится по выражению (12). Это справедливо, так как запуск триггера можно осуществлять передним фронтом импульса тактовой частоты, а сброс — самим ФИМ-сигналом. Поэтому при ФИМ так же, как и при ШИМ, справедливы выводы относительно выбора ω_0 . Что касается выбора скважности импульсной последовательности, то при ФИМ так же, как при ЧИМ с τ =const, для устранения частотных искажений полезного сигнала на выходе системы передачи практически принято использовать режим с $O \ge 3$.

Таким образом, достигнуть требуемых значений $H_{\phi \mu M}$ (примерно 80 дБ) можно разными способами, варьируя параметрами ω_0 , Q и $\Delta \phi_m = k I_m$. Например, при Q = 3 и $\Delta \phi_m = 2\pi/3$ ($|\Delta \phi_m| \le 2\pi/Q$ по физическому смыслу) можно получить заданную ЗКПН при $f_0 \ge 1,8$ МГц. Во всех случаях требуется учитывать необходимость обеспечения требуемой защищенности полезного сигнала и от собственных шумов. Окончательное уточнение ω_0 , Q и $\Delta \phi_m$ производится с учетом АЧХ ВОЛС, нелинейности ФИМ-модулятора и ОИ.

Заключение

1. Сравнение потенциальных возможностей рассмотренных методов формирования ЧИМ-сигнала по критерию достижения максимальных значений ЗКПН позволяет сделать следующие выводы:

при одних и тех же условиях (для одного и того же ГАС, для одного и того же ОИ и режима его работы, при одинаковых значениях индекса модуляции β и несущей частоты f_0) варианты с импульсной формой тока накачки ОИ всегда (при условии рационального выбора формы и скважности импульсов) позволяют получить результат лучше, чем вариант с синусоидальной формой тока накачки. Величина выигрыша зависит от конкретных значений β и f_0 . Кроме того, при импульсной форме тока накачки не предъявляются жесткие требования к стабилизации режима работы ОИ, а при синусоидальной форме тока накачки – всегда требуется жесткая стабилизация;

среди различных вариантов с импульсной формой тока накачки ОИ абсолютно лучший результат дает вариант с Q=2=const. Однако он требует весьма жесткой стабилизации как параметров ОИ ($I_{nop}/I_{max} \in [0,85; 0,9]=$ const), так и параметров ЧИМ-сигнала ($x \in [0; 0,15]$ и $Q \in [2; 2,05]$), причем даже незначительное отклонение этих параметров за указанные пределы приводит к снижению ЗКПН на 20–30 дБ. При $Q \ge 3$ (режим с $Q \ge 3$ является основным для ЧИМ с $\tau = const$) жестких требований к стабилизации режима работы ОИ и параметрам ЧИМ-сигнала не предъявляется. При ЧИМ с $\tau = const$ вариант с низкочастотной фильтрацией полезного сигнала на приеме всегда лучше, чем с полосовой;

2. ЗКПН существенно зависит от информационных параметров ЧИМ-сигнала (β и f_0). Так при реализации волоконно-оптической вставки длиной 20 км и обеспечении заданной ЗКПН (с учетом запаса около 80 дБ) при всех рассмотренных вариантах формирования ЧИМ-сигнала требуется $f_0 \ge 1,8$ МГц и $\beta \le 1$. При Q = const = 2 можно выбрать более низкую f_0

по правилу $f_{\theta} < f_0 < 2f_{\theta}$ (например, для ГАС в спектре 12–252 кГц несущую частоту можно выбрать в диапазоне 252–504 кГц).

3. Сравнивая потенциальные возможности ЧИМ и ШИМ (ФИМ) по критерию достижения максимальных значений ЗКПН, можно сделать вывод: при одинаковых значениях f_0 и скважности импульсов ($Q \ge 3$) ШИМ (ФИМ) является жестким конкурентом ЧИМ с $\tau = const$. Однако анализ ЗКПН при ЧИМ выполнялся с учетом нелинейности ОИ и допускал искажение формы импульсов, а при ШИМ (ФИМ) — без учета нелинейности ОИ и для строго прямоугольных импульсов. Очевидно, что с учетом указанных факторов ШИМ (ФИМ) будет несколько уступать ЧИМ. Кроме того, ФИМ требует наличия системы синхронизации, что значительно усложняет построение ВОСП в целом.

Комплексным критерием сравнения ЧИМ, ШИМ и ФИМ для преобразования ГАС в импульсную форму может служить обеспечение заданной ЗКПН при наименьшем значении частоты передачи f_0 , поскольку увеличение f_0 приводит к расширению полосы частот, занимаемой ВОСП, снижает чувствительность приемника и уменьшает ОСШ на выходе системы. Сравнительная оценка по данному критерию рассмотренных методов преобразования показывает, что вариант ЧИМ с Q=2=const является абсолютно лучшим.

Авторы благодарят кандидата технических наук, доцента Н.В. Тарченко за полезные замечания при обсуждении материалов данной статьи.

THE PARAMETERS OPTIMIZATION OF OPTICAL MODULATORS FOR TRANSFER OF GROUP ANALOG SIGNALS ON FIBER-OPTICAL LINKS

V.I. KIRILLOV, A.A. PILYUSHKO

Abstract

The interference immunity of group analog signal for fiber-optical transfer systems with analogpulse modulation is resulted. The comparative characteristic of various aspects of analog-pulse transformation of group analog signal is given: pulse-frecuency, pulse-width and pulse-phase modulation. The parameters optimization of analog-pulse and optical modulators for fiber-optical transfer systems by small length, which are built in an existing analog communication network, are provided.

Литература

1. Пилюшко А.А., Кириллов В.И. Изв. БИА. 1997. № 1(3)/1. С. 152–154.

2. Кириллов В.И., Пилюшко А.А. Вестн. ВА РБ. 2006. № 2(11).

3. Козанне А., Флере Ж., Мэтр Т., Руссо М. Оптика и связь: Оптическая передача и обработка информации. / Пер. с фр. М., 1984.

4. Мурадян А.Г., Гинзбург С.А. Системы передачи информации по оптическому кабелю. М., 1980.

5. Кириллов В.И. Высокоэффективные системы информационного обмена для простран-ственно разнесенных телевизионных комплексов. Мн., 1989.

6. *Кириллов В.И., Мальцева Н.В.* Расчет защищенности от комбинационных продуктов в оптических модуляторах ТВ систем с частотной и частотно-импульсной модуляцией. Мн., 1983. 23 с. Деп. в БелНИИНТИ 03.08.83, № 823 Бе-Д83.

7. Сифоров В.И., Дробов С.А., Ширман Я.Д. Теория импульсной радиосвязи. М., 1951.

8. Кириллов В.И., Пилюшко А.А. Военные системы многоканальной проводной связи с ЧРК. Мн., 2003.

9. Кириллов В.И. Многоканальные системы передачи: Учеб. для вузов. М., 2003.

10. Куликов С.В. Синтез и анализ импульсных измерительных преобразователей информационноизмерительных систем. М., 1982.