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               The Schrödinger equation for N-particle system with homogeneous relative  

                                                                 space 

                                                          V. I. Murzov 

 

Abstract: The Schrödinger equation for a closed system of  N ≥ 2  particles, the relative space of  

which can be a homogeneous space of any of groups  isomorphic to  E 3N − 3( ),    SO 3N − 2( )  or

  SO 3N − 3,1( )  , is formulated. The formulation is given in termins of variables subordinated to 

special  transformational laws under Galilean transformations of physical space by use of  the 

group representations theory allowing to construct dynamics of particles directly at a quantum 

level.  

 

1. Introduction  

For the first time quantum dynamics of one particle in homogeneous spaces of groups 

isomorphic to   SO 4( )  and   SO 3,1( ) , treated respectively as 3-dimensional spaces of constant 

positive and negative curvature, has been considered in [1] and [2],  where  the Kepler-Coulomb 

problem has been formulated and solved. The isotropic oscillator in the same spaces factually 

has been studied in [3].  Further these problems have been  discussed from various points of 

view in [4-9].   

In this paper the possibility of use of homogeneous spaces of groups isomorphic to 

  SO 3N − 2( ) and   SO 3N − 3,1( )  for   N ≥ 2  in completely other physical context is discussed. 

Unlike the listed articles, where the physical space possesses a non-Euclidean structure, in our 

approach to formulation of dynamical equation for  N − particle system   N ≥ 2( )  the physical 

space is Euclidean, but above mentioned  groups are the transitivity groups of the relative space 

of this system and are entered for the description of the interpartial interaction.  For this purpose, 

from the very beginning, instead of the position vectors    
!xi 1≤ i ≤ N( )  of each particle of a 

system in the physical space, new variables    
!
R =
!
R !x1,...,

!xN( )  and    
!r = !r !x1,...,

!xN( )  are introduced,  

specfying respectively the position of a point in spaces   !3  and     !3N−3

 and subordinated to 

special  transformational laws under Galilean transformations of physical space (these variables 

as well as the relative space of a system will be defined below). In  terms of these variables it is 

possible in full consent with requirement of Galilean invariance to  formulate for considered 

system the dynamical equation, which admits freedom in a choice of the transitivity group of its 

relative space. Dynamics based on this equation enables one to describe the interaction between 
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particles of a system not only with help of different interaction potentials, but also by means of a 

choice of such a group. Its formulation may be most consecutively and simply given by use of  

the group representations theory allowing to construct dynamics of particles directly at a 

quantum level,  bypassing the construction and subsequent quantization of corresponding 

classical counterpart. With this purpose for all transitive groups viewed in this paper their unitary 

representations with an operator factor are used.  Such representations are defined in some linear 

space  L  of the functions  Ψ x( )  specified on the set  M  by the map  T g( )
 
of the following form 

[10]:    

                                              
  
T g( )Ψ x( ) = A x,g( )Ψ g−1x( ),                                                         (1)                                           

 where   A x,g( )− function of a point  x ∈M   and of an element  from the group of 

transformations  of the set  M  satisfying the functional equation 

                                          
  
A x,g1g2( ) = A x,g1( )A g1

−1x,g2( ).                                                       (2) 

 

2. Galilei group and relative space of a system 

It is well known that the nonrelativistic space of events (the Galilean space) is the set                                                            

   ! E
3 ×!  of points    

!x,t( )  with the Galilean group of motion  Γ,  where   
!x  is a position vector of a 

point of physical space    ! E
3

 (a space   !3

 with Euclidean metric)  and  t  is a point of the time axis 

 ! . The transformations 
   
τ , !a,

!
V , !c( )∈Γ  of this space are given by the formula  

                                     
   
τ , !a,
!

V , !c( ) !x,t( ) = ℜ !c( ) !x + !Vt + !a,t +τ( ),                                           (3)                                                                   

with the composition law [11] 

                   
τ1,
!a1,
!

V1,
!c1( ) τ 2 , !a2 ,

!
V2 , !c2( ) = τ1 +τ 2 , !a1 +ℜ

!c1( ) !a2 +τ 2

!
V1,
!

V1 +ℜ
!c1( ) !V2 , !c1,

!c2( ),           (4)                              

where   ℜ
!c( )  is the rotation of space    ! E

3  by the angle    ϕ = 2arctg !c  about the vector   
!c (  
!c  is a 

vector-parameter of the rotation group  SO 3( ) ), and the symbol    
!c1,
!c2  denotes the composition 

law of vector-parameters [12]): 

                                              
   
ℜ !c( ) !x =

1− !c 2( ) !x + 2!c !c!x( ) + 2!c × !x

1+ !c 2 ,  

                                                        
   

!c1,
!c2 =

!c1 +
!c2 +
!c1 ×
!c2

1− !c1
!c2

.  

Here   
!c!x  is the scalar product of vectors,    

!c 2 = !c!c  and   
!c × !x  is the vector product of vectors. 

The unity element and the inverse element in such parameterization are 
  
0,
!
0,
!
0,
!
0( )  and

 

 g

 G
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−τ ,ℜ −!c( ) τ !V − !a( ), −ℜ −!c( ) !V ,−!c( ) accordingly, where it is accepted into account, that 

   ℜ
−1 !c( ) = ℜ −!c( ) . 

Let's put in correspondence to set of  N  simultaneous events    
!x1,t( ),..., !xN ,t( )  a point 

   
!
R, !r ,t( )  

of the space    !
3 ×!3N−3 ×!,  

where the symbol   
!r  denotes a   3N − 3( )− component 

position vector in the space    !3N−3  with coordinates    rν
!x1,...,

!xN( ) ,   ν = s+ 3 j −1( ),  where  j  is 

a number of  3− component vector 
   
!
rj =
!
rj

!
x1,...,

!
xN( ) , and  s  is a number of its the Cartesian 

projection in space   !3  (i.e.   1≤ j ≤ N −1,   s = 1, 2, 3 and   1≤ν ≤ 3N − 3) ), and the vectors

   
!
R =
!
R !x1,...,

!xN( )  and  
   
!rj =
!rj

!x1,...,
!xN( )  satisfy the next functional equations:  

         

!
R ℜ !c( ) !x1 +

!
b t( ),...,ℜ !c( ) !xN +

!
b t( )( ) = ℜ !c( ) !R !x1,...,

!xN( ) + !b t( ),
!rj ℜ !c( ) !x1 +

!
b t( ),...,ℜ !c( ) !xN +

!
b t( )( ) = ℜ !c( ) !rj

!x1,...,
!xN( ).

⎫
⎬
⎪

⎭
⎪

                        (5)                      

Then   at    
!
b t( ) = !Vt + !a  from (5) follows, that transformations of Galilean space (3) specify the 

transformations 
   
τ , !a,
!

V , !c{ }  of the space    !
3 ×!3N−3 ×!,  set by the formula   

                            
   
τ , !a,
!

V , !c{ } !R, !r ,t( ) = ℜ !c( ) !R +
!

Vt + !a, "ℜ !c( ) !r , t +τ( ),                                        (6) 

where the vector   
!′r = "ℜ !c( ) !r  has, according to the above definition, coordinates  ′rν  

corresponding to the set of vectors  
   
!′rj = ℜ !c( ) !rj ,     1≤ j ≤ N −1 .  

 If we attach to the space    !3N−3  the group of  rotations   SO 3N − 3( )  that leaves invariant 

the quadratic form  

                                                            
  
r 2 = rν

2

ν=1

3N−3

∑ ,                                                                       (7) 

the symbol   
!ℜ "c( )  will represent an element of its subgroup, isomorphic to   SO 3( ) , and it is clear 

that transformations 
   
τ , !a,
!

V , !c{ }  form the group  G , isomorphic to the Galilei group Γ .  

Now the explicit form of a solution of equations (6) is inessential.  Only the law of 

transformation (6) dictated by these equations is important. From (6) follows that under these 

transformations a position vector   
!
R  will be transformed as well as a position vector    

!
x ∈" E

3  . 

Consequently, from the group viewpoint, the space   !3  described by a position vector   
!
R  is a 

homogeneous space of the group    E 3( )⊂G  of Euclidean transformations 
   

0, !a,
!
0, !c{ } and at 

introduction in it of the Euclidean metric can be identified with the space    ! E
3 .  
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On the contrary, the transitivity group of the space    !3N−3  described by a position vector 

   
!r ,  is not predetermined by transformations (3). Really, from (6) follows, that transformations (3) 

induce in this space only 3-parameter rotations    
!ℜ "c( )∈SO 3N − 3( ) , leaving it motionless at the 

translations 
   

0, !a,
!
0,
!
0{ }  and at the pure Galilean transformations 

   
0,
!
0,
!

V ,
!
0{ } . Then, supplementing  

the rotation group   SO 3N − 3( )  of this space with translations of various types, we can transform 

this space or its some domain into a homogeneous space of the   3N − 2( ) 3N − 3( ) 2− parameter 

group G isomorphic to any of the groups   E 3N − 3( ),    SO 3N − 2( )  or   SO 3N − 3,1( ) . Further, 

using  such a space for construction of dynamics of   N − particle system, we'll term it as relative 

space of a system and designate by symbol    ! rel
3N−3 .  

One of the simplest realization of the map 
   
!x1,...,

!xN( )→ !
R, !r1,...,

!rN−1( )  satisfying the 

required conditions is the linear transformation 

                             

!
R = α i

!xi
i=1

N

∑ ,     

   

!rj = α j+1 α i
i=1

N

∏⎛⎝⎜
⎞
⎠⎟

− 1
N−1

Α jΑ j+1
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
2

Α j
−1 α i

!xi −
!x j+1

i=1

j

∑⎛
⎝⎜

⎞
⎠⎟

,              (8) 

where   
!xi  is the radius-vector of i-th particle in the physical space    ! E

3 ,   α i > 0  for all i, 

  
Α j = α i

i=1

j

∑ , 1≤ j ≤ N ,  and 
  
ΑN = α i = 1.

i=1

N

∑
 
The module of the Jacobian of the transformation 

(8) is equal to unity.  

It is easy to see that any simultaneous cyclic permutation of the coefficients   α1,...,α N( )  

and radius-vectors    
!x1,...,

!xN( )  does not change the vector  
!
R , but lead to a new set of vectors  

   
!r1,...,
!rN−1( ).  

 
However, for our purposes it is important that the quadratic form (7), having in 

variables    
!x1,...,

!xN( ) the form 

                              
   
r 2 = α i

i=1

N

∏⎛⎝⎜
⎞
⎠⎟

−1

α kα j
1≤k< j≤N
∑ !xk −

!x j( )2
,                                                  (9)  

doesn't depend from such permutations. Clearly, that in the space    !3N−3  these permutations will 

represent by rotations forming finite subgroup of   SO 3N − 3( )  isomorphic to cyclical group of  

the permutations of  N objects1.  

Further we'll use the space    ! E
3 ×! rel

3N−3 ×!  as a  «material»  for construction of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1In [13], where 3-particle system are discussed, such transformations are termed the kinematic rotations.
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unitary representations of the Galilei group  G  and the transitivity group G of the space    ! rel
3N−3.  

  
 

   
3. Unitary representation of the Galilei group  G  

From (6) obviously follows, that group   G  contains subgroup 
    
Gτ ,!a  of Abelian 

translations 
   
τ , !a,
!
0,
!
0{ } , subgroup    G!c  of rotations 

   
0,
!
0,
!
0, !c{ }  isomorphic to   SO 3( )  and subgroup 

   G !
V  of the pure Galilei transformations 

   
0,
!
0,
!

V ,
!
0{ } .  

Since the composition law for elements 
    
τ , !a,
!

V , !c{ }∈G  coincides with (4), each 

transformation of G can be represented in the following form:
                           

 

                                        
   
τ , !a,
!

V , !c{ } = τ , !a,
!
0,
!
0{ } 0,

!
0,
!

V ,
!
0{ } 0,

!
0,
!
0, !c{ } .                                      (10) 

Let's introduce now the operator 
     
T g( ), g= τ , !a,

!
V , !c{ }∈G,  acting in the linear space  L  

of the complex-valued functions 
   
Ψ = Ψ

!
R, !r ,t( )  and forming on specified above subgroups    G!c ,

    
Gτ ,!a and    G !

V  their representations of a following kinds:   

                                    

     

T 0,
!
0,
!
0, !c{ }( )Ψ

!
R, !r ,t( )= Ψ ℜ −!c( )

!
R, "ℜ −!c( )!r ,t( ),

T τ , !a,
!
0,
!
0{ }( )Ψ

!
R, !r ,t( )= Ψ

!
R− !a, !r ,t−τ( ),

T 0,
!
0,
!

V ,
!
0{ }( )Ψ

!
R, !r ,t( )= A

!
R,t,
!

V( )Ψ
!
R−
!

Vt, !r ,t( ),

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

                             (11)          

where the factor 
   
A
!
R,t,
!

V( ) satisfies to the functional equation  

                                      
   
A
!
R,t,
!

V1 +
!

V2( ) = A
!
R,t,
!

V1( )A
!
R −
!

V1t,t,
!

V2( ) .                                          (12) 

The equation (12) is a special case of the equation (2) in which it is taken into account 

that for elements of subgroup    G !
V  the product 

   
0,
!
0,
!

V1,
!
0{ } 0,

!
0,
!

V2 ,
!
0{ } = 0,

!
0,
!

V1 +
!

V2 ,
!
0{ }  and the 

inverse element  
   

0,
!
0,
!

V1,
!
0{ }−1

= 0,
!
0,−
!

V1,
!
0{ } .  

           As according to (11) and (12) 
    
T 0,

!
0,
!
0,
!
0{ }( )=E (E is the unit operator in  L ) we can  

present the function 
      
T τ,

!
a,
!

V ,
!
c{ }( )  in the multiplicative form corresponding to product (10):         

                              
      
T τ,

!
a,
!

V ,
!
c{ }( )= T τ,

!
a,
!
0,
!
0{ }( )T 0,

!
0,
!

V ,
!
0{ }( )T 0,

!
0,
!
0,
!
c{ }( ) . 

 Then according to (11)  

   
    
T τ , !a,

!
V , !c{ }( )Ψ !

R, !r ,t( ) = A
!
R − !a,t −τ ,

!
V( )Ψ ℜ −!c( ) !R −

!
V t −τ( )− !a( ), "ℜ −!c( ) !r ,t −τ( ).     (13) 

From (11) and (12) follows, that this map (13) forms on subgroup of the pure Galilean 

transformations  the representation belonging to the class of representations (1), and gives on the 
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subgroups of time and space translations, and also on the rotation subgroup their quasiregular 

representations.  Further we'll suppose the unitarity of representation (13) with respect to the 

conventional scalar product 

                                     
   
Ψ1,Ψ2( ) = Ψ1

∗
!
R, !r ,t( )

" E
3 ×" rel

3N−3
∫ Ψ2

!
R, !r ,t( )d 3R d 3N−3r,                               (14)                                    

where   d 3R  and 
  
d 3N−3r = drν

ν=1

3N−3

∏ = d 3rj
j=1

N−1

∏  are the Euclidean measures in spaces    ! E
3  and    ! rel

3  

respectively.     

For   t = 0  the equation (12) takes the form 
   
A
!
R,0,
!

V1 +
!

V2( ) = A
!
R,0,
!

V1( )A
!
R,0,
!

V2( )  and 

hence one can assume 
   
A
!
R,0,
!

V( ) = exp λ
!
R
!

V( ) , where λ – some scalar parameter. Transferring to 

the case   t ≠ 0,  we note that a solution of equation (2) may be given in the general form as 

follows1: 

                                        
  
A x,g( ) = f x( ) f g−1x( ) ,                                                        (15)                                                                                                             

where  f x( )– some function not vanishing on the set Μ .  

Bearing this in mind, we represent the factor 
   
A
!
R,t,
!

V( )  as 

   
A
!
R,t,
!

V( ) = f
!
R,t( ) f

!
R −
!

Vt,t( )  under condition that 
   

f
!
R,t( ) f

!
R −
!

Vt,t( )( )
t→0

= exp λ
!
R
!

V( ) .  

This condition is easily satisfied assuming 
   
f
!
R,t( ) = exp λ

!
R2 2t( )( ) . That leads to the following 

solution of equation (10): 

                                            
   
A
!
R,t,
!

V( ) = exp λ
!
R
!

V −
!

V 2t 2( )( ) .                                                  (16)                                                            

Then, using the law of composition (4), formula (13) and expression (16), one can easily 

show that for any 
    
g1 = τ1,

!a1,
!

V1,
!c1{ } and 

    
g2 = τ 2 , !a2 ,

!
V2 , !c2{ }  

the equality  

                              
    
T g1g2( ) = exp −λ ℜ !c1( ) !a2

!
V1 +
!

V1
2τ 2 2( )( )T g1( )T g2( )                                 (17) 

is fulfilled. Thus the operators 
 
T g( )  with a purely imaginary parameter λ  form the well-known 

physically significant projective representation of the Galilei group [14].  

From expression (17) we can derive the inverse operator of representation (13)  

             
T-1 g( ) = exp λ !a

!
V −
!

V 2τ 2( )( )T g-1( ).            (18)                                                        

Then, using (13), (16) and (18), we can show that homothetic transformations of the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  It is proved by the following chain of obvious equalities: 

A x,g1g2( ) = f x( ) f g1g2( )−1 x( ) = f x( ) f g1( )−1 x( )⎡
⎣

⎤
⎦ f g1( )−1 x( ) f g2

−1 g1
−1x( )( )⎡

⎣
⎤
⎦ = A x,g1( )A g1

−1x,g2( ).  
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infinitesimal operators (generators) of time and space translations  dt = −∂ ∂t  and    
!
D = −∂ ∂

!
R ,  

carried out by the operator   T g( ),  are given by the formulas 

                                           
    
T g( )dtT

-1 g( ) = dt +
!

V
!
D + λ

!
V 2 2( ) ,                                                (19)                                                                   

                                           
   
T g( ) !DT-1 g( ) = ℜ −!c( ) !D + λ

!
V( ) .                                                  (20)                                                            

Now obviously, that the operator    
!
D2  will be conversed as follows:  

                                          
    
T g( ) !D2T-1 g( ) = !

D2 + 2λ
!

V
!
D + λ 2

!
V 2( ) .                                           (21)                                                          

Consequently, in compliance with (19) and (21), the invariant operator of the Galilei group  G

one can represent in the following form    

                                                       K = dt −
!
D2 2λ − Krel ,                                                            (22)                                                   

where    Krel = F !r ,∇( ) is some   SO 3N − 3( ) -invariant operator dependent only on   
!r  and 

   ∇≡ ∂ ∂!r .  

As the Galilei group contains a subgroup of the time translatios, the unitarity of 

representation (13) with respect to the scalar product (14) may be provided only in the subspace 

 S⊂L  of the functions
   
Ψ = Ψ

!
R, !r ,t( ) , for which this scalar product is independent of time. It is 

easy to show, that under the condition λ∗ = −λ  and of anti-Hermiticity of the operator  Krel with 

respect to the scalar product  (14) this requirement is fulfilled for the functions, satisfying  the 

Galilean-invariant equation 

              
   
KΨ

!
R, !r ,t( ) = 0.                                                                      (23) 

                             

4. Generators of unitary representation of transitivity group of space    ! rel
3N−3   

 To specify the form of the operator   Krel ,  included in (22), we'll suppose that in the 

subspace  S⊂L   the unitary with respect to scalar product (14) representation   

                                          
   
Τ g( )Ψ !

R, !r ,t( ) = Α !r ,g( )Ψ !
R,g−1!r ,t( )                         (24)                                       

of some transitive group  G  of     ! rel
3N−3  is realized too. Here    Α

!r ,g( )  is an operator factor 

satisfying equation (2) under condition    Α
!r ,g( ) = 1,  if   g ∈SO 3N − 3( )⊂ G . The last condition 

conforms representation (24) with definition (11) according to which contraction of the 

representation 
    
T τ , !a,

!
V , !c{ }( )

 
on the rotation subgroup is quasiregular. These requirements can 

be satisfied, if to take, in accordance with (15), 
   
Α !r ,g( ) = f !r( ) f g−1!r( ) , where  f

!r( ) is some 



	   8	  

  SO 3N − 3( )− invariant function  (i.e    f
!r( ) = f r( ),

  
r = rν

2

ν=1

3N−3

∑ ) not vanishing in    ! rel
3N−3 . The 

explicit form of this function  will be set using the anti-Hermiticity requirement of the generators  

                               
   
τ JΨ

!
R, !r ,t( ) = ∂ Τ gJ χ( )( )Ψ !

R, !r ,t( )( ) ∂χ
χ=0

                                 (25)                                                      

of representation (24) with respect to the scalar product of (14). Here  gJ χ( ) is an element of 

one-parameter subgroup 
  
GJ ⊂ G 1≤ J ≤ 3N − 2( ) 3N − 3( ) 2( ) , χ  is the transformation 

parameter, and  gJ 0( )  is the unity element of the group  G .  

Taking into account that 
   
Α !r ,g( ) = f !r( ) f g−1!r( ) , substitution of (24) into (25) gives    

                                                                τ J = f !r( ) "τ J f −1 !r( ) ,                                                       (26)                                                                                          

where  

                                                       
   
!τ J = ∂ gJ −χ( ) "r( ) ∂χ( )∇

χ=0
                                           (27)                                                                               

is the corresponding generator of a quasiregular representation of the group  G . 

Let's take for definiteness the values   J = ν 1≤ν ≤ 3N − 3( )  for the generators of 

translations τν  and the remaining   3N − 3( ) 3N − 4( ) 2  values of  for the generators of 

rotations.  As representation (24) on the rotation subgroup is quasiregular, these generators are of 

the well-known form 
  
τ µν = !τ µν = − rµ∇ν − rν∇µ( ) , where    1≤ µ,ν ≤ 3N − 3,   

∇µ = ∂ ∂rµ , with the 

permutable relations 

                                            
 
τ µν ,τκλ
⎡⎣ ⎤⎦ = δ µλτκν +δνλτ µκ −δ µκτ λν −δνκτ µλ .   

Then the values   J = 3N − 2, 3N −1,..., 3N − 3( ) 3N − 4( ) 2  in (25) can, for example, renumber 

the operators τ µν with µ <ν .                                 

The commutators of  operators τ µν   with translation generators τκ should have the 
following  form  
                                                       

 
τκ ,τ µν
⎡⎣ ⎤⎦ = δκντ µ −δκµτν .                                                       (28)           

But since the explicit form of the one-parameter transformations of translations of the space 

   ! rel
3N−3   is not given,  the corresponding generators of representation  (24) may be constructed as 

follows.  

Taking into account that according to (27) all quasiregular representation generators of 

the group G  are homogeneous linear forms of the operators ∇κ , the most general form of the 



	   9	  

corresponding generators of translations, which commutators with generators of rotations 

 
τ µν = !τ µν   look like (28), may be  written as  

                                    
   
!τκ = − a r( )δκµ + b r( )rκ rµ( )∇µ ,                                                    (29)   

  where  a r( )  and  b r( )  are some real  functions of the radial variable  r . Here and further  the 

repeating index is used in accordance with the Einstein rule. 

Using (29) and (26), and also the rotational invariance of the function  f r( ) , one can 

easily show that the commutators of the generators of translations τν andτκ are given by the 

formula 

                                              
  
τν ,τκ⎡⎣ ⎤⎦ = ab− ′a r( ) a + r 2b( )( )τνκ .                                              (30)     

Here and further in this section of paper the stroke above a letter denotes a derivative with 

respect to the variable  r .  

As on construction τκ  
and τ µν  

are the representation generators of the Lie algebra of the 

transitivity group of    ! rel
3N−3 ,  the following equation must be fulfilled:  

                                                       
  
ab− ′a r( ) a + r 2b( ) = C,                                                      (31)                                                          

where, considering (27) and (29),  C  is a real dimensionality constant of the inverse square of 

length. Functions  a r( )  and  b r( )  satisfying  this equation lead to the Lie algebras of groups 

isomorphic to   E 3N − 3( ),    SO 3N − 2( )  or   SO 3N − 3,1( )  at   C = 0 ,   C > 0  , and   C < 0  

respectively. The connection of this constant with physical quantities having the dimensionality 

of  length we'll discuss later1. 

 Let's introduce now, supposing that everywhere in    ! rel
3N−3  the sum  a r( ) + r 2b r( )  does not 

vanish, a new variable  σ =σ r( )  with dimensionality of length, the derivative of which with 

respect to the variable  r  is 

                                                              
  ′σ = a + r 2b( )−1

.                                                            (32)                                                                    

Then (31) may be represented as an equation for the function 
  
y = a r C( ) :  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  The approach, applied here to realization of space    ! rel

3N−3  as the homogeneous space of group does not  demand 

interpretation of  constant  C  in  a spirit of non-Euclidean geometries as curvature of space or as metric constant of 

geometry [15].   
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dy
dσ

= − C 1+ y2( ).  

As according to (32) variable σ  is specified to within an additive constant the result of 

integration of this equation without generality loss may be written in the form of 

  
σ = 1 C( )cot−1 y ,

 
and then 

                                                                                                          
 

                                                         a r( ) = Cr cot Cσ r( ).                                                       (33)                                                         

 The substitution of (29) into (26) after simple transformations gives   

    
  
τκ = − a,∇κ⎡⎣ ⎤⎦+ + brκ rµ ,∇µ

⎡⎣ ⎤⎦+( ) 2+ ′f rf( ) a + r 2b( ) + a′ 2r + rb′ 2+ 3N − 2( )b 2( )rκ ,    (34)                                                                      

where 
 

,⎡⎣ ⎤⎦+ is a sign of the anticommutator.  But as representation (24) is supposed to be unitary 

with respect to the scalar product (14), the operators τκ  specified by expression (34) must be 

anti-Hermitian with respect to this product. Then assumption, that the function  f r( )  is real, 

leads to the equation 

                                     
  ′f rf( ) a + r 2b( ) + a′ 2r + rb′ 2+ 3N − 2( )b 2 = 0,                              (35) 

 and generators of translations become  

                                              
  
τκ = − a,∇κ⎡⎣ ⎤⎦+ + brκ rµ ,∇µ

⎡⎣ ⎤⎦+( ) 2.                                              (36)                  

Using now (32) and (33), and considering that according to (11) function  f r( )  is defined 

to within a multiplicative constant, one can easily show that a solution of equation (35) is the 

function 

                                          
  
f r( ) = sin Cσ r( ) Cr( )

3N−4
2 ′σ r( ).                                           (37)                                             

As the function  f r( )  is real, the choice of some monotonically increasing function  σ r( )
with dimensionality of length enables us to find with help of (33) and (32) the explicit form of  

generators (36),  giving together with generators of rotations 
 
τ µν = − rµ∇ν − rν∇µ( )  

specific 

realization of the Lie algebra of the unitary representation of the transitivity group  G  of  the 

relative space of a system in Cartesian coordinates1.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	   If to endow the space    ! rel

3N−3

 with  G − invariant metric, one can treat the function 
  
σ !r( )  

as a length of radius-

vector    
!r ∈" rel

3N−3   in the  sense corresponding to this metric [16].  But physically such a treatment is absolutely  

useless because for introduction in the space    ! rel
3N−3

 of  G − invariant metric there are no reasonable basis.  
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The simplest realization is defined by choosing  σ r( ) = r  for any value of   sgnC  , and 

this, according to definition (32),  leads to the equality   

                        a r( ) + r 2b r( ) = 1.                                               (38)                                    

Function   σ
!r( ) = r  is unique function with required properties, which contains no constant C and 

in fundamental case   N = 2  has for any C  the value equal to Euclidean distance between 

particles. Therefor further we'll use namely this realization to formulate quantum dynamics of a 

system (though it is possible to develop the description in which arbitrariness in a choice of 

function  σ r( )  is persisted till the very end [17]). 

 

5.  Schrödinger  equation and dynamic variables   

 Let's note that at any conceptual level (classical or quantum) the dynamic variables 

describing nonrelativistic motion of a particle are operationally determined by the measuring 

procedures carried out with the help of the macroscopic devices, to which it is possible to apply 

transformations (3)1. Therefore the correlations between average values of the data obtained by 

means  of measuring devices bound by such transformations should be of the same form both for 

classical dynamic variables and for their quantum counterparts. It is this circumstance that must 

be put in the basis of the definition of dynamic variables in quantum mechanics. 

As it is known, the invariant operator of group  G  is  

                                           
KG = τντν +Cτ µντ µν 2.                                                                                                                        

With the help of  (33), (36) and (38) operator  KG  can be presented in the form   

           
KG = ∇2 − C sin2 Cr −1 r 2( ) q q +1( )−τ µντ µν 2( ) +C q +1( )2

,                          (40) 

where     q = 3N − 6( ) 2.      

Let's  define now  operator  Krel  in the expression (22) as  

                          
   
Krel = KG −C q +1( )2( ) 2η + iΦ !r( ) ,                                                    (41)           

 where η  is some purely imaginary parameter, and η  has the same dimensionality as λ  in 

(22), i.e. 
  
η⎡⎣ ⎤⎦ = λ⎡⎣ ⎤⎦ = TL−2 , and   Φ

!r( )  is some real function invariant at least with respect to 3-

parameter rotations    
!ℜ "c( )∈SO 3N − 3( ) . Now, as Planck's constant has the dimensionality 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  I.e. the turns and shifts of measuring devices in space, a giving to them of translational motion with a constant 

velocity and shift of zero of time  at the installation of a clock.  
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   !⎡⎣ ⎤⎦ = ML2T −1 , we assume   λ = i m !  and   η = iµ ! , where  m  and µ  are real parameters with 

the dimensionalities of mass. Then we can represent Galilean-invariant equation  (23) as the 

Schrödinger  equation  

                                                    
   
i!
∂Ψ

"
R, "r ,t( )
∂t

= ĤΨ
"
R, "r ,t( ) ,                                                   (42)                                                                                                                                                                                                                                                                                                                                     

               
 

where according to (40) and (41)
  

                         
Ĥ = 1

2m
!̂
P2 + 1

2µ
!̂p2 + "

2

2µ
C

sin2 Cr
− 1

r 2

⎛
⎝⎜

⎞
⎠⎟

q q +1( ) + L̂2

"2

⎛
⎝⎜

⎞
⎠⎟
+U !r( ),

                   
(43)            

  
 

where     
!̂
P = i"

!
D = −i"∂ ∂

!
R ,      

!̂p = −i"∇,  
  
L̂2 = 1

2
L̂µν L̂µν ,  

   
L̂µν = i!τ µν  

and    U
!r( ) = "Φ !r( ).  Here 

and further the symbol « ^ » above a letter is used to denote Hermitian operators (with respect to 

the  scalar product (14)). In particular, the operators    
!̂
R  and    

!̂r  are specified in the usual way, as 

multiplication of the function
   
Ψ
!
R, !r ,t( )   by the variables   

!
R  and   

!r . Similarly, any functions of 

these operators are defined. Therefor everywhere further the sign « ^ » above the variables   
!
R  

and   
!r  is omitted. 

From  (20) and (21)  follows,  that 
  

for  operators    
!̂
P  and   Ĥ  the following

 
homothetic 

transformations are fulfilled: 

                                           
    

!̂
′P = T g( ) !̂PT-1 g( ) = ℜ −!c( ) !̂P − m

!
V( ) ,                                          (44)                               

                                               
ˆ ′H = T g( ) ĤT-1 g( ) = Ĥ −

!
V
!̂
P + mV 2 2.                                         (45)  

 We also note that, in accordance with (8) 
   

!̂
P = !̂pk

k=1

N

∑ ,  where   
!̂pk = −i"∂ ∂!xk .  

Further one can show, using (8), (13) and (18), that for operators    
!̂xk and  such 

transformations give 

                                           
    
!̂′xk = T g( ) !̂xkT

-1 g( ) = ℜ −!c( ) !̂xk −
!

V t −τ( )− !a( ),                         (46)                                  

                               
    
!̂ ′pk = T g( ) !̂pkT

-1 g( ) = ℜ −!c( ) !̂pk −α km
!

V( ).                                (47)   
 
 

From  (44) – (47) obviously follows, that under condition   Ψ,Ψ( ) = 1   the quantities 

  q = Ψ, q̂Ψ( )  and 
   

′q = Ψ, ˆ′q Ψ( ) = Ψ,T g( ) q̂T−1 g( )Ψ( )   
 for each of the introduced operators 

are related by the equations 

                                        
  
!′xk = ℜ −!c( ) !xk −

!
V t −τ( )− !a( ) ,                                         (48)                                                               

   
!̂pk
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! ′pk = ℜ −!c( ) !pk −α km

!
V( ) ,                                               (49)                                                              

                                          
  
!
′P = ℜ −!c( ) !P − m

!
V( ) ,                                                    (50)                                                                                                         

                                           
   ′H = H −

!
V
!
P + mV 2 2 .                                              (51)                                                            

Then from (48) – (51)  follows, that the quantities 
   
!xk , !pk ,

!
P , H  it is necessary to 

interpret respectively as average values of the results of measurements of dynamic variables of 

position and momentum of a particle with the mass  mk =α km , total momentum and mechanical 

energy of a material system with the mass  m  in the quantum state 
   
Ψ
!
R, !r ,t( ),  

having put to them 

in correspondence Hermitian operators    
!̂xk , !̂pk ,

!̂
P, Ĥ .  Then operators    

!̂xk , !̂pk ,
!̂
P, Ĥ  and  

   
!̂′xk , !̂ ′pk ,

!̂
′P , ˆ ′H  will represent the measuring procedures carried out by means of the devices 

bound by transformations (3). 

The physical meaning of the tensor operator 
   
L̂µν = i!τ µν  given by the rotation generators 

depends on the number of  particles of a system. In paper [13], where 3-particle system are 

discussed, this tensor termed the grand angular momentum tensor.  For 2-particles system the 

non-diagjnal elements of this tensor form the vector of a proper angular momentum of a system.  

Thus, all quantum mechanical dynamic variables and equation of motion of a system can 

be  specified  on the basis of the transformation laws (19 – 21) and (44 – 47) caused by the 

Galilei group representation (13), where the parameter λ  entering into the operator factor (16) is 

determined  by the mass of a system:    λ = i m ! .  

If now we choose in (43) the mass parameter µ  in the form  
  
µ = m α k

k=1

N

∏⎛⎝⎜
⎞
⎠⎟

1 N−1( )
  then  

                                   

!̂
P2 2m( ) + !̂p2 2µ( ) = !̂pk

2 2α km( )
k=1

N

∑ ,  

and  at   C → 0  operator (43) will coincide with Hamiltonian for a system of  N  particles with 

masses   mk =α km   and interaction potential    U
!r( ).  Thus we can consider equation (42) as the  

Schrödinger  equation for a  N − particle system with interaction presented in operator (43) by 

the item  

   
W = !

2

2µ
C

sin2 Cr
− 1

r 2

⎛
⎝⎜

⎞
⎠⎟

q q +1( ) + L̂2

!2

⎛
⎝⎜

⎞
⎠⎟
+U r( ).                                      (52)       

Further we'll retain for function   U
!r( )  the term potential at any values of the constant C . A sign 
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of the constant   C,  reflecting  the specificity of non-Abelian translations of the relative space of a 

system, is the primary characteristic of the interaction described by function (52).                                            

  Really, in the case of   C < 0   the space    ! rel
3N−3   coincides with all infinite space    !

3N−3,  

and as   L̂2  does not depend from radial variable  r  the first item in (52), defined for all values of 

  r,  vanishes at  r →∞ . In this case both finite motion of particles of system and their infinite 

motion, free on large relative distances between them, are possible.  Then coefficients  α k  in (8) 

one can define as  α k = mk m , where  mk  is the mass  of  the  k − th free particle, 
  
m = mk

k=1

N

∑ ,

  
µ = m−1 mk

k=1

N

∏⎛
⎝⎜

⎞
⎠⎟

1 N−1( )
,
 
 and   

!
R  coincides with the radius-vector of the center of mass of a system  

in the classical mechanics (in this case variables 
   
!
R, !rj{ },1≤ j ≤ N −1,  coincide with the 

rationalized Jacobi coordinates [13]).  This sense can be retained  for   
!
R  and in the quantum 

mechanics.  

At   C > 0  the first item in (52) is defined  in    !3N−3  almost everywhere, excepting 

hypespheres with the radiuses    rn = nρ, n = 1,2,3,…, ρ = π C .   This makes it possible to 

restrict a relative motion of the particles by any transitivity domain of group  G (isomorphic to

  SO 3N − 2( ) ) defined by the inequalities   0 ≤ r < ρ  or   nρ < r < n+1( )ρ,    n = 1,2,3… .  In 

particular, if to choose as the relative space    ! rel
3N−3

 the open ball    0 ≤ r < ρ , a solution of 

equation (42) should be finite at   r = 0  and vanish for all values of   r ≥ ρ.  It means that in this 

case it is possible only finite motion of the particles of a system in a neighbourhood of point   
!
R  

of physical space on the relative distances 
  
!xk −
!x j  satisfying  in accordance  with (9) the 

condition    

                                 
α kα j

1≤k< j≤N
∑ !

xk −
!
x j

2
≤ α i

i=1

N

∏⎛⎝⎜
⎞
⎠⎟
ρ 2 ,  

i.e. their confinement in the limited region of physical space in a neighbourhood of it point   
!
R .  

In this case the the considered system  cannot be divided on the free components so that their 

masses are measurable separately, and therefor we can only define these masses by formula  

  mk =α km,  where  α k  are the coefficients of the transformation (8) and  m  is the observable mass  

of a system. Bearing in mind that the first item in (52) vanishes at   r → 0  one can specify the 
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mass parameter µ  by the formula 
  
µ = m α k

k=1

N

∏⎛⎝⎜
⎞
⎠⎟

1 N−1( )
only under condition    U

!r( )→ 0  at   r → 0,   

i.e. if the interpartial interaction allows asymptotic freedom of particles on a small relative 

distances. 

The stationary states of a system in the centre-of-mass reference frame at any value of the 

constant  C  are given by solutions of equation (42) of the form 

   
Ψ
!
R, !r ,t( ) !

P=
!
0
= exp −iEt "( )ψ !r( ),  where  E  is the system's energy and the function   ψ

!r( )
satisfies the equation 

      
   
− !

2

2µ
∇2 + !

2

2µ
C

sin2 Cr
− 1

r 2

⎛
⎝⎜

⎞
⎠⎟

q q +1( ) + L2

!2

⎛
⎝⎜

⎞
⎠⎟
+U "r( )⎛

⎝⎜
⎞

⎠⎟
ψ "r( ) = Eψ "r( ).

               
(53)

  

  

 6. Concluding remark 

 Since in our approach to the construction of quantum dynamics its classical counterpart 

is not used, the definition of the explicit form of the function   U
!r( )  even in the case   C = 0  can 

be based  only on a dynamic symmetry of the equation (53).  It is clear that fundamental to the 

establishment of the explicit form of the potential   U
!r( )  is the 2-particle interaction.  This issue 

will be discussed in detail in our next publication. 
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