2009 № 6 (44)

УДК 621.391+621.395

ОПТИМИЗАЦИЯ ЛИНЕЙНОГО ТРАКТА ЦИФРОВЫХ СИСТЕМ ПЕРЕДАЧИ ДЛЯ ОДНОЧЕТВЕРОЧНЫХ МЕДНО-КАБЕЛЬНЫХ ЛИНИЙ СВЯЗИ

В.И. КИРИЛЛОВ, А.И. БЕЛКО

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Могилевский филиал РУП "Белтелеком" Ленинская, 12, Могилев, 212030, Беларусь

Поступила в редакцию 8 апреля 2009

Предложены варианты структурной оптимизации цифровых систем передачи для одночетверочных медно-кабельных линий связи. Разработаны методики расчета предельной длины участка регенерации. Проведен сравнительный анализ различных вариантов построения цифровых систем передачи.

Ключевые слова: цифровая система передачи, кабельная линия связи, технология передачи, фантомная цепь, участок регенерации.

Введение

Рост потребностей абонентов телекоммуникационных сетей по номенклатуре, качеству и объему предоставляемых услуг требуют непрерывной модернизации этих сетей в направлении увеличения их пропускной способности. Возможные варианты решения этой задачи зависят от текущего состояния конкретного сегмента сети и перспектив ее развития. Так, например, для густонаселенных городских территорий наилучшее решение обеспечивают волоконно-оптические технологии и их сочетания с короткими медно-кабельными линиями. Однако для удаленных и малонаселенных сельских районов вряд ли это является экономически целесообразным. Здесь необходимы другие решения, исключающие строительство новых линий связи (ЛС). Один из них — более эффективное использование уже существующих одночетверочных медных кабелей (КСПП, ЗКП и др.), проложенных ранее на сельском участке цифровой сети в расчете на цифровые системы передачи (ЦСП) типа ИКМ-15/30 [1, 2].

Целью данной работы является анализ эффективности ряда новых предлагаемых вариантов модернизации линейного тракта для четырехпроводных ЦСП, в которых на тех же кабелях применяются современные технологии xDSL. В качестве объекта сравнения примем четырехпроводные ЦСП, построенные по "стандартным" технологиям xDSL [1, 2], с учетом некоторых из ранее предложенных авторами решений по их параметрической оптимизации [3–5].

Анализ эффективности вариантов построения ЦСП

Анализ предлагаемых решений будем производить, принимая за основной критерий качества ЦСП величину предельно достижимой для каждого варианта длины участка регенерации $l_{\rm pmax}$. Последняя в свою очередь существенно зависит от выбора оптимальных

параметров линейного сигнала. Целесообразно рассмотреть два, наиболее широко используемые вида линейного сигнала: а) многоуровневый с амплитудно-импульсной модуляцией (АИМ или РАМ) сигнал, принимающий $Z=2^m$ возможных мгновенных значений, где m — число двоичных символов исходного цифрового потока (ЦП), заменяемых одним символом АИМ(РАМ) сигнала [1]; б) квадратурно-модулированный (QAM или CAP) сигнал несущей частоты f_0 , у которого каждая синфазная и квадратурная компонента модулирована по амплитуде АИМ(РАМ) сигналом, принимающим $Z=2^n$ возможных состояний [3].

Оптимальные параметры каждого из рассмотренных вариантов для заданной скорости передачи V исходного ЦП будут характеризоваться в общем случае триадой значений $l_{\rm pmax}$, m и n, а в частных случаях парой значений: $l_{\rm pmax}$ и m/n или $l_{\rm pmax}$ и Z.

Результаты рассчитанных значений $l_{\rm pmax}$, m и n удобно свести по вариантам в итоговые таблицы (см. табл. 1 и 2), где каждый k-й столбец характеризует оптимальные параметры своего k-го варианта для соответствующей скорости передачи $V_{\rm j}$, а каждая строка таблицы соответствует определенному значению $V_{\rm j}$.

<i>V</i> , кбит/с	№ 1		№ 2	№3			№5		№6			
	l _p (Z=3)	Z	$l_{ m p}$	Z	$l_{ m p}$	$l_{\rm p} (Z_1 = Z_2)$	$l_{\rm p} $	$l_{\rm p} \ \rlap{/}\!$	$Z_1=Z_2$	l_{p}	$l_{\rm p}$ ($n/n = 6/4$)	
2064	4,05	8	7,1	8	12,0	8	12,2	13,2	8	15,7		
		16	7,75	16	12,5	16	12,6	13,6	16	17,0	19,1	
		32	7,5	32	12,3	32	12,4	13,3	32	18,0		
4128	2,5	8	4,7	8	7,6	8	7,7	8,25	8	10,7	13,1	
		16	4,7	16	7,75	16	7,8	8,4	16	11,6		
		32	4,4	32	7,5	32	7,4	8,1	32	12,1		
6192	1,85	8	3,5	8	5,75	8	5,8	6,25	8	8,6		
		16	3,5	16	5,8	16	5,85	6,3	16	9,2	10,4	
		32	3,2	32	5,5	32	5,6	5,8	32	9,6		
		Q	2.75	Q	17	Q	1 2	5.1	Q	7.2		

Таблица 1. Предельная длина участка регенерации $l_{
m p}$, км, для вариантов №М 1-6

Таблица 2. Предельная длина участка регенерации l_{pmax} , км, для вариантов № 7 - 13

16

4.4

4,85

4,5

5,1

4.7

7,6

8,1

8,8

16

V, кбит/с	Z	№7	№8	№9	№ 10	№ 11	№12	№13
	4	13,8	16,6	18,1	19,0	22,2	20,1	16,7
2064	8	15,4	18,5	20,8	22,0	25,6	23,2	19,3
2004	16	15,8	18,6	21,8	24,0	28,0	25,4	21,2
	32	15,5	18,5	21,7	25,2	29,5	27,1	22,7
	4	8,8	10,8	11,9	13,0	15,2	14,0	11,5
4128	8	9,7	11,8	13,1	15,2	17,5	16,1	13,3
4120	16	9,9	12,0	13,7	16,5	19,1	17,2	14,5
	32	9,4	11,7	13,5	17,2	20,0	18,4	15,4
	4	6,8	8,2	9,0	10,4	12,3	11,5	9,3
6192	8	7,4	9,0	10,0	12,0	14,1	13,4	10,7
0192	16	7,4	9,1	10,4	13,2	15,2	15,2	11,8
	32	6,9	8,7	10,0	13,5	16,0	15,6	12,3
	4	5,6	6,8	7,4	8,9	10,4	9,2	8,0
8256	8	6,0	7,4	8,3	10,3	12,0	10,8	9,2
6230	16	6,0	7,4	8,5	11,2	13,1	11,6	10,0
	32	5,6	6,9	8,2	11,6	13,6	12,2	10,8

Не останавливаясь пока на методике расчета $l_{\rm pmax}$, которая основана на работах [1–7] и приведена в приложении, примем, что в качестве четырехпроводной ЛС использован широко распространенный одночетверочный кабель КСПП — $1\times4\times1,2$, по двум парам которого передается исходный ЦП со скоростью соответственно V_i =2064, 4128, 6192 и 8256 кбит/с.

8256

1,5

Анализируемые варианты построения четырехпроводной ЦСП для такого кабеля будем рассматривать в порядке их постепенного усложнения и улучшения качественных показателей.

- 1. Исторически первым был вариант №1, предусматривающий использование каждой из двух пар только для одного направления передачи, а в качестве линейного сигнала трехуровневый сигнал в коде HDB-3 (Z=3). Это самый простой по построению вариант, но величина $l_{\rm pmax}$ явно недостаточна (табл. 1) из-за сильных переходных влияний (ПВ) на ближний конец (БК) [2].
- 2. Теоретический (не реализованный на практике) вариант №2 отличается от предыдущего использованием однотипного многоуровневого АИМ(РАМ) линейного сигнала для каждой пары/направления. Вариант достаточно прост в реализации и обеспечивает определенный выигрыш по $l_{\rm pmax}$ (табл. 1), который достигает максимума при Z=16.
- 3. "Стандартный" вариант типа HDSL (№3). Здесь исходный ЦП в каждом направлении делится на два равноскоростных подпотока (ПП1, ПП2) и по каждой паре осуществляется независимая однополосная дуплексная передача ПП1 (ПП2) с уменьшенной вдвое скоростью $(V=V_1+V_2;\ V_1=V_2=0,5V)$ с использованием АИМ(РАМ) модуляции и сложной системы разделения направлений передачи, состоящей из дифсистемы (ДС) и адаптивного эхокомпенсатора (ЭК) [1, 5].
- 4. Показано [6], что вариант №3 может быть оптимизирован (приведен к варианту №4), если по каждой паре осуществляется дуплексная передача АИМ(РАМ)-сигналов с разными скоростями $V_1 \neq V_2$ ($V = V_1 + V_2$), причем наилучшим является вариант разделения подпотоков вида $V_1 : V_2 = 1 : (1,5 \div 2)$. Расчет l_{pmax} для этого варианта приведен для $Z_1 = Z_2$, хотя как правило оптимальные параметры модуляции линейного сигнала для каждой пары разные: $m_1 \neq m_2$.
- 5. Доказано [3], что длина участка регенерации по сравнению с вариантами №№ 3 и 4 может быть увеличена, если по каждой паре осуществлять независимую двухстороннюю передачу ПП1(ПП2) со скоростью V_1 = V_2 =0,5V, но с частотным разделением направлений (двухполосный режим) и использованием QAM(CAP)-модуляции для каждого направления на несущей частоте соответственно f_{01} и f_{02} . Структура построения такого варианта №5, как нам кажется, не требует пояснений (см., например, [2, 13]). Увеличение длины участка регенерации обусловлено тем, что в этом случае сказывается только более слабый эффект от ПВ соседней пары на дальний конец (ДК). Несущие частоты для каждой пары выбираются из условий f_{01} ≥0,5 f_{7} /2 n_{1} и f_{02} ≥(f_{01} +0,5 f_{7} (1/2 n_{1} +1/2 n_{2}), что обеспечивает частотное разделение направлений передачи с помощью "вилки" полосовых фильтров (ПФ). Здесь f_{7} тактовая частота исходного ЦП системы передачи; n_{1} и n_{2} число двоичных разрядов, заменяемых одним символом каждой квадратурной компоненты QAM(CAP)-сигнала в одном и другом направлении передачи соответственно.
- 6. Нами предложено [8, 9] решение по оптимизации предыдущего варианта ЦСП (вариант №6), которое упрощает построение и обеспечивает увеличение $l_{\rm pmax}$ (рис. 1). На рис. 1 обозначены: 1 устройство разделения подпотока ПП1(ПП2) на два равноскоростных "квадратурных" подпотока (КПП); 2, 3, 16 многоуровневые модуляторы АИМ (цифроаналоговые преобразователи); 4 квадратурный модулятор (КМ); 5, 6 полосовые фильтры (ПФ); 7, 13 корректирующий усилитель (УК) линейного сигнала; 8 квадратурный демодулятор (КД); 9, 10, 12 демодулятор АИМ (аналого-цифровой преобразователь); 14, 15 фильтр нижних частот (ФНЧ); 11 устройство объединения "квадратурных" подпотоков в ПП1(ПП2); совокупность блоков $1 \div 4$ квадратурный передатчик (КПД); совокупность блоков $7 \div 11$ квадратурный приемник; совокупность блоков $12 \div 13$ приемник АИМ линейного сигнала (ПРМ-АИМ).

Вариант № 6, как и предыдущий, основан на разделении исходного ЦП на два равноскоростных ПП, каждый из которых передается по своей паре кабеля с использованием частотного разделения направлений передачи. Отличие состоит в том, что в одном направлении, например А-Б, линейный сигнал формируется с помощью АИМ(РАМ) в низкочастотной части спектра частот, а в другом (Б-А) — с помощью квадратурной (QAM/CAP) модуляции на несущей частоте f_{01} — в высокочастотной части спектра (рис. 2). Разделение направлений на станциях А и Б осуществляется с помощью "вилки" фильтров (ПФ 5 и 6 и ФНЧ 14 и 15). Формирование линейного сигнала с QAM/CAP-модуляцией осуществляется с помощью типового квадратурного передатчика (КПД), состоящего из блоков

1–4, обратное преобразование — с помощью квадратурного приемника (КПМ), состоящего из блоков 7–11. Формирование АИМ(РАМ)-линейного сигнала производится с помощью типового передатчика (ПРД АИМ) 16, обратное преобразование — с помощью приемника (ПРМ АИМ), состоящего из блоков 12 и 13. Несущую частоту f_{01} выбирают из условия: $f_{01} \ge 0.5 f_{\rm T} (1/m + 1/2n)$.

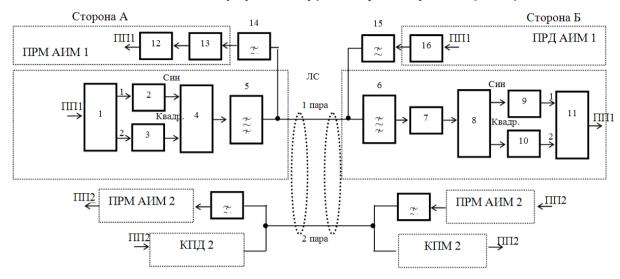


Рис. 1 Вариант построения четырехпроводной ЦСП с разделением потоков и частотным разделением направлений

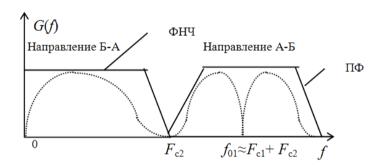


Рис. 2 Спектр линейного сигнала по каждой паре

Рассматриваемые далее варианты №№ 7–13 основаны на использовании для передачи цифрового сигнала кроме двух физических пар кабеля еще одной, третьей, так называемой "фантомной" пары [2] (рис. 3). Как показывают результаты исследований [10], характеристики фантомной цепи (ФЦ), измеренные со стороны сечений 3–3′ станций А и Б, позволяют обеспечить передачу цифрового сигнала со скоростью, сопоставимой со скоростью передачи по физической паре. В результате приходим к эквивалентной трехпарной линии связи, которую можно эффективно использовать одним из рассмотренных ниже способов.

7. Вариант №7 схож с одним из "стандартных" вариантов HDSL, который применяется при работе ЦСП по трехпарной линии связи. В ней исходный ЦП разделяется на три равноскоростных ПП ($V=V_1+V_2+V_3$; $V_1:V_2:V_3=1:1:1$), каждый из которых передается по своей паре путем однополосной многоуровневой АИМ(PAM)-модуляции с использованием ЭК и ДС для разделения направлений. Отличительной особенностью варианта №7 является то, что ФЦ (рис. 3) не является источником ПВ для физических пар и, в свою очередь, не подвергается электромагнитному воздействию от этих пар [11, 12]. Это позволяет существенно улучшить показатели такой ЦСП (табл. 2). Как показывают расчеты, для этого и всех последующих вариантов, оптимальные параметры модуляции линейных сигналов для физических пар и ФЦ оказываются разными ($m_1=m_2\neq m_3$, $Z_i=2^{m_i}$ — число уровней АИМ-сигнала, передаваемого по i-й паре, i=1, 2, 3). При этом в большинстве случаев определяющее значение имеет оптимизация линейных сигналов, передаваемых по физическим парам.

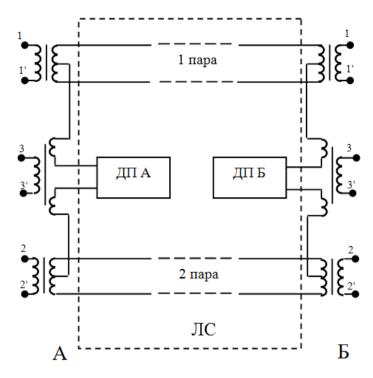


Рис. 3. Формирование фантомной цепи

- 8. Показано [11, 13], что вариант №7 можно оптимизировать (получив вариант №8), если исходный ЦП разделять на подпотоки (ПП) между 1-й и 2-й физическими парами и 3-й (фантомной) парой в пропорции $V_1:V_2:V_3=1:1:2$ ($V=V_1+V_2+V_3$), а не поровну. То есть половину ЦП передавать по ФЦ со скоростью $V_3=0,5V$, а по каждой физической паре передавать 1/4 ЦП (со скоростью $V_1=V_2=V/4$) путем однополосной дуплексной АИМ(РАМ).
- 9. Показано [13], что вариант №8 можно в свою очередь дополнительно оптимизировать (получив вариант №9), если половину ЦП, передаваемого по физическим парам, распределять между ними в соотношении не 1:1, а 1:2. В результате приходим к следующей пропорции распределения скоростей ПП: V_1 : V_2 : V_3 =1:2:3. Результаты такого решения приведены в табл. 2.
- 10. Новые возможности открывает вариант №10 [14, 15], когда по каждой паре (двум физическим и фантомной) передается свой ПП, причем подобно варианту №6, используется частотное разделение направлений передачи. При этом ПП_i, i=1,2,3, в одном направлении передается с помощью Z_i =2 m_i -уровневой АИМ(РАМ)-модуляции, а в другом направлении на несущей f_{0i} =(1/3) f_{τ} (1/ m_i +1/2 n_i) с помощью многоуровневой (Z_i =2 n_i) QAM/CAP-модуляции. Структурную схему такого варианта можно построить, объединяя элементы рис.1 и рис.3.
- 11. Вариант №11 отличается от предыдущего №10 тем, что, во-первых, скорости подпотоков $\Pi\Pi_i$, передаваемых по отдельным парам, выбираются не из условия $V_1:V_2:V_3=1:1:1$, а из условия $V_1:V_2:V_3=1:1:2$. Во-вторых, для передачи по ФЦ со скоростью $V_3=0,5V$ применяется режим дуплексной однополосной АИМ(РАМ)-модуляции с ЭК и ДС [13]. Здесь выигрыш получается за счет того, что по взаимовлияющим физическим парам передается ПП с уменьшенной скоростью $V_1=V_2=V/4$ и, кроме того, сказываются только ПВ на ДК.
- 12. С целью упрощения построения ЦСП без существенного проигрыша в длине участка регенерации предлагается вариант №12, который отличается от варианта №11 тем, что по ФЦ осуществляется только односторонняя передача (например, в направлении Б-А) цифрового ПП со скоростью V_3 =(4/6)V с помощью АИМ(РАМ)-модуляции, а по физическим парам двухсторонняя передача с частотным разделением. При этом в направлении А-Б по каждой паре передается цифровой ПП со скоростью V_1 = V_2 =0,5V с использованием АИМ(РАМ)-модуляции, а в направлении Б-А по каждой физической паре передается цифровой ПП со скоростью V_1 = V_2 =(1/6)V с использованием QAM(CAP)-модуляции на несущей частоте f_0 , выбираемой из условия: f_0 > f_T (0,5/m+(1/6)/2n).
- 13. Вариант № 13 является самым простым в реализации [16], но не самым худшим по своим показателям (табл. 2). В нем по ФЦ осуществляется односторонняя передача (например,

в направлении Б-A) полного цифропотока (со скоростью $V_3=V$) с помощью АИМ(РАМ). В другом направлении (A-Б) по каждой физической паре передаются ПП со скоростью $V_1=V_2=0,5V$ также с помощью АИМ(РАМ). Оптимальные параметры модуляции линейных сигналов, передаваемых по ФЦ и по физическим парам, как правило, неодинаковы: $m_1=m_2\neq m_3$.

Заключение

Проведенные исследования позволяют сделать следующие выводы: 1) имеется значительное число вариантов построения ЦСП на базе четырехпроводной (одночетверочной) линии связи; 2) ни один из вариантов по совокупности требуемых показателей качества (максимально возможная длина участка регенерации $l_{\rm p\ max}$, простота реализации, устойчивость к действию дестабилизирующих факторов и т.п.) не является абсолютно лучшим; 3) каждый из вариантов может быть оптимизирован по предлагаемым методикам расчета путем выбора определенных параметров линейного сигнала, при этом всегда целесообразно использовать сложные линейные сигналы и многоуровневую АИМ; 4) целесообразно отдавать предпочтение вариантам построения, в которых слабо проявляется эффект переходных влияний физических пар на ближний конец; по возможности следует избегать вариантов, требующих применения эхо-компенсации: эта процедура всегда выполняется со значительной погрешностью, особенно при высоких скоростях передачи; 5) использование ФЦ существенно расширяет возможности использования четырехпроводных ЦСП и улучшает их качественные показатели; как правило, целесообразно применять различные оптимальные линейные сигналы для передачи по фантомной и физическим парам; 6) варианты построения ЦСП с использованием ФЦ особенно для протяженных линейных трактов, требующих значительного промежуточных регенераторов, питаемых дистанционно (блоки ДП на рис.3).

Приложение

Приведенные в табл. 1 и 2 результаты расчетов предельной длины участка регенерации $l_{\rm pmax}$ при оптимальных параметрах модуляции линейного сигнала для каждого направления передачи ($m_{\rm i}$ для i-го линейного сигнала с АИМ/РАМ-модуляцией, i=1, 2, 3 и/или $n_{\rm i}$ — для линейного сигнала с QAM(CAP)-модуляцией) определялись на основании [1–7, 13] по следующему алгоритму:

- 1. Выбирался вариант построения ЦСП (например, один из 13 рассмотренных).
- 2. Для выбранного варианта задавалась скорость исходного двоичного цифрового потока ($f_{\rm T}$ или V).
- 3. Для выбранного значения V задавались дискретные значения модулирующих параметров $m_{\rm i}$ и $n_{\rm i}$.
- 4. При заданных по п.п. 2, 3 параметрах и известном варианте разделения ЦП на подпотоки (ПП $_{\rm i}$) между физическими и фантомными парами кабеля производился расчет предельной длины участка регенерации $l_{\rm pi}$ для каждой пары для обоих направлений передачи (при необходимости). Расчет $l_{\rm pi}$ производится по отдельному, "вложенному" алгоритму, описанному ниже.
- 5. Минимальное значение $l_{\rm pi}$ (для какой-то пары и/или направления) принимается за предельную длину участка регенерации ЦСП при выбранных параметрах $m_{\rm i}$ и $n_{\rm i}$: $l_{\rm p}$ =min $l_{\rm pi}$.
- 6. Задается другая совокупность модулирующих параметров m_i и n_i и повторяются п.п. 3—5. После нескольких подобных циклов определяются оптимальные значения m_i орт и n_i орт, максимизирующие длину участка ЦСП, которая считается предельной: $l_{\rm p \ max} = {\rm max} \ l_{\rm p}$ при $m_i \rightarrow m_i$ орт, $n_i \rightarrow n_i$ орт, n_i

Расчет l_{pi} для каждого линейного сигнала (РАМ или QАМ) и выбранных параметрах модуляции m_i и n_i проводится по следующему алгоритму [1–7, 13]:

1. Задается некоторое начальное значение $l_{\rm pi0}$ и для него рассчитывают допустимую $A_{\rm 3\, Доп}$ и ожидаемую $A_{\rm 3\, D}$ защищенность линейного сигнала на входе решающего устройства (РУ) регенератора. Эти функции для произвольного значения $l_{\rm p}$ рассчитывают из выражений:

$$A_{3,\text{don}}(l_p) = 10,65 + 11,42 \lg - \lg K_{\text{om}} l_p + 20 \lg (Z_i - 1)/2$$
, (1)

где $Z_{\rm i} = 2^{m_{\rm i}}$ и/или $Z_{\rm i} = 2^{n_{\rm i}}$; ${\rm K_{out1}} = 2.5 \cdot 10^{-10} \, [1/{\rm km}]$ — допустимый коэффициент ошибок для городских и сельских первичных сетей связи длиной 1 км [2];

$$A_{_{3\Sigma}}(l_p) = -10 \lg \det \left[-0.1 A_{_{3III}}(l_p) \right] + M \det \left[-0.1 A_{_{3\delta}}(l_p) \right] + N \det \left[-0.1 A_{_{3\eta}}(l_p) \right]. \tag{2}$$

- В (2) обозначено: $dec(x)=10^x$; $A_{3m}(l_p)$ защищенность на входе РУ от собственных шумов; $A_{36}(l_p)$ — защищенность от ПВ на БК; $A_{3g}(l_p)$ — защищенность от ПВ на ДК; M, N постоянные коэффициенты, принимающие для одночетверочного кабеля значения 0 или 1 в зависимости от наличия или отсутствия соответствующих ПВ.
 - 2. Проверяется выполнение условия:

$$A_{3\text{ДОП}}(l_{\text{p}}) = A_{3\text{N}}(l_{\text{p}}). \tag{3}$$

3. Если оно не выполняется для $l_{\rm p} = l_{\rm pi0}$, то далее используют метод последовательного приближения, задавая новое значение l_p и проверяя условие (3). Для ускорения этой процедуры обычно используют метод дихотомии. Пусть, например, $A_{3\text{дon}}(l_{\text{pi0}}) > A_{3\Sigma}(l_{\text{pi0}})$. Тогда на 1-м шаге берут $l_{\rm pil} = l_{\rm pio}/2$. Если $A_{\rm 3доп}(l_{\rm pil}) < A_{\rm 3\Sigma}(l_{\rm pil})$, то на 2-м шаге берут $l_{\rm pi2} = (l_{\rm pio} + l_{\rm pil})/2$ и т.д.

A LINE PATH OPTIMIZATION OF THE DIGITAL TRANSMISSION SYSTEMS FOR THE ONE-QUADDED COPPER-CABLE COMMUNICATION LINES

V.I. KIRILLOV, A.I. BELKO

Abstract

The variants of the digital transmission systems structural optimization for the one-quadded cupper-cable communication lines are offered. The procedures of a regeneration section limiting length account are developed. The comparative analysis of various variants of the digital transmission systems construction is carried out.

Литература

- 1. Кириллов В.И., Белко А.И. // Электросвязь. 2002. № 11. С. 25–28.
- 2. Кириллов В.И. Многоканальные системы передачи: Учебник. 2-е изд. М., 2003.
- 3. Кириллов В.И., Белко А.И. // Электросвязь. 2003. № 10. С. 32–36.
- 4. Кириллов В.И., Белко А.И., Синица В.Н., Жаденов О.А. // Электросвязь. 2005. № 2. С. 13–16.
- 5. Кириллов В.И., Белко А.И., Сухвал Ю.А. // Электросвязь. 2005. № 10. С. 31–34.
- 6. *Кириллов В.И., Белко А.И.* // Электросвязь. 2005. № 12. С. 31–34. 7. *Кириллов В.И., Белко А.И.* // Электросвязь. 2006. № 6. С. 46–49.
- 8. Пат. RU 2259013 (РФ) C2 H04B 3/50 от 06.12.2002. Двухпроводная цифровая система передачи / Кириллов В.И., Белко А.И. и др., Бюл. № 23, 2005.
- 9. Пат. ВУ 9400 (РБ) С1 2007.06.30 Н04В 3/00 от 02.12.2002. Двухпроводная цифровая система передачи / Кириллов В.И., Белко А.И. и др.
- 10. Кириллов В.И., Белко А.И., Малашкевич Д.Ф. // Веснік сувязі. 2003. № 3. С. 56–58.
- 11. Пат. RU 2260909 (РФ) С2 Н04В 3/50 от 24.12.2002. Четырехпроводная цифровая система передачи / Кириллов В.И., Белко А.И. и др., Бюл. № 26, 2005.
- 12. Пат. ВУ 9206 (РБ) С1 2007.04.30 Н04В 3/23, Н04Ј 3/04 от 16.12.2002. Четырехпроводная цифровая система передачи / Кириллов В.И., Белко А.И. и др.
- 13. Кириллов В.И., Белко А.И. // Докл. БГУИР. 2006. № 1. С. 5–14.
- 14. Пат. RU 2259014 (РФ) C2 H04B 3/50 от 21.03.2003. Цифровая система передачи для четырехпроводных линий связи / Кириллов В.И., Белко А.И. и др., Бюл. № 23, 2005.
- 15. Пат. ВУ 9401 (РБ) С1 2007.06.30 Н04В 3/23, Н04Ј 3/04 от 18.03.2003. Цифровая система передачи для четырехпроводных линий связи / Кириллов В.И., Белко А.И. и др.
- 16. Пат. BY 9225 (РБ) C1 2007.04.30 H04B 3/23, H04J 3/04 от 31.10.2003. Устройство преобразования сигналов для четырехпроводных цифровых систем передачи / Кириллов В.И., Белко А.И. и др.