2009

№ 7(45)

УДК 621.396.61

СИНТЕЗ И ОПТИМИЗАЦИЯ ПЕРЕДАЮЩИХ ЛИНИЙ ДЛЯ УСИЛИТЕЛЯ МОЩНОСТИ С РАСПРЕДЕЛЕННЫМ УСИЛЕНИЕМ

ЗЕНХЕК ХАН, И.Ю. МАЛЕВИЧ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 1 сентября 2009

Разработана процедура синтеза, проведены моделирование и экспериментальные исследования передающих линий для усилителя мощности с распределенным усилением. Полученные результаты позволяют оптимизировать характеристики линий по параметрам передачи, распределения и согласования.

Ключевые слова: усилитель с распределенным усилением, передаточные линии, синтез.

Введение

Как известно [1-8], функционирование усилителя с распределенным усилением (УРУ) основано на принципе сложения мощности нескольких усилительных элементов, работающих в режиме бегущей волны. В таком усилителе включение емкостей активных компонентов в состав линий передачи позволяет устранить принципиальное ограничение произведения полосы пропускания на коэффициент усиления и обеспечить наряду с широкополосностью невзаимное сложение коэффициентов усиления активных элементов. Очевидно, преимущества, реализуемые УРУ по сравнению с другими типами широкополосных высокочастотных усилителей, в значительной степени определяются передающими линиями.

Постановка задачи

К настоящему времени в практике проектирования УРУ накоплен обширный фактологи-ческий материал. Основная часть работ по решению проблемы синтеза УРУ канализируется в направлении оптимизации амплитудно-частотных характеристик тракта и его технической реа-лизации, в том числе параметров и структуры линий. Однако анализ методик синтеза передающих линий показал, что ни потери в линиях, ни режимные изменения параметров активных элементов, характерные для каскадов усиления мощности, в них не учитываются.

Таким образом, актуальными с точки зрения теории и практики синтеза усилителей мощности с распределенным усилением являются задачи оценки влияния на параметры передачи тракта добротности реактивных элементов, распределительных потерь, разброса емкостей активных элементов, вносимых в линию.

Математическая модель однородной передающей линии для УРУ

Передающими линиями в УРУ являются искусственные длинные линии с отводами, к которым подключаются активные элементы [1-3]. Во входном сечении УРУ волна напряжения $U_{\rm BX}$ по мере распространения вдоль линии создает на управляющих электродах усилительных приборов (точки «*A*» на рис. 1, *a*) напряжения $u_{\rm Y}$, сдвинутые по фазе в соответствии с временем задержки звеньев *Z*, *Y*. Для предотвращения образования отраженной волны выход линии на-

гружается согласованным балластным сопротивлением *R*₆. В выходной линии аналогичным образом усиленные волны напряжения суммируются.

Для определения параметров линии проведем анализ распространения волны в дискретной линии передачи с потерями (рис.1, δ). Применяя закон Кирхгофа к *j*-му элементу линии, не трудно записать следующие выражения:

$$\begin{vmatrix} i_{Y} = \dot{Y}u_{Y} \\ i_{j} = i_{j+1} + i_{Y} \\ u_{j} - u_{Y} = \frac{1}{2}\dot{Z}i_{j} \\ u_{Y} - u_{j+1} = \frac{1}{2}\dot{Z}i_{j+1} \end{vmatrix} \Rightarrow \begin{cases} i_{j-1} - (\dot{Z}\dot{Y} + 2)i_{j} + i_{j+1} = 0 ; \\ u_{j} - u_{j+1} - \frac{1}{2}\dot{Z}(i_{j} + i_{j+1}) = 0, \end{cases}$$
(1)

где $\dot{Z} = R + j\omega L$, $\dot{Y} = G + j\omega C$ – комплексные импедансы элементов передающей линии.

б)

Рис. 1. Структура передающей линии (а) и схема распространения в ней волны напряжения (б)

Если представить бегущую волну как $u_n = Ue^{-j\theta_n}$ и $i_n = Ie^{-j\theta_n}$, то можно получить выражения для определения фазовой задержки и входного импеданса линий:

$$\theta = \cos^{-1}(1 + \frac{1}{2}\dot{Z}\dot{Y}) = 2\sin^{-1}\sqrt{-\frac{1}{4}\dot{Z}\dot{Y}} ; \qquad (2)$$

$$\dot{Z}_{\rm ex} = \sqrt{\frac{\dot{Z}}{\dot{Y}}} \cos\frac{\theta}{2} = \sqrt{\frac{\dot{Z}}{\dot{Y}}} \sqrt{1 + \frac{1}{4}\dot{Z}\dot{Y}} \quad , \tag{3}$$

где $\dot{Z}_0 = \sqrt{\frac{\dot{Z}}{\dot{Y}}} = \sqrt{\frac{R+j\omega L}{G+j\omega C}}$ – волновое сопротивление линии с потерями. Как видно, входное сопротивление линии (Z_{ex}) комплексно и зависит от частоты. Для линии без потерь, с учетом значения критической частоты линии $f_{\kappa p} = \frac{1}{\pi \sqrt{LC}}$ и волнового сопротивления $Z_0 = \rho = \sqrt{\frac{L}{C}}$, выражение (3) преобразуется к известному виду:

$$Z_{ex} = \rho \sqrt{1 - \left(\frac{f}{f_{xp}}\right)^2} \,. \tag{4}$$

С учетом (1) – (3) не трудно определить напряжение U_j и мощность сигнала P_j , подводимые с помощью распределительной линии на вход *j*-го звена:

$$U_{j} = \frac{U_{ex}e^{-\left(\frac{\gamma}{2} + (j-1)\gamma\right)}}{\sqrt{1 + \frac{X_{L}}{4X_{C}}}},$$
(5)

$$P_{j} = \frac{U_{j}^{2}}{2Z_{0}} = \frac{U_{ex}^{2} e^{-2\left(\frac{\gamma}{2} + (j-1)\gamma\right)}}{2Z_{0}\left(1 + \frac{X_{L}}{4X_{C}}\right)} , \qquad (6)$$

где $\gamma = \alpha + j\beta$ – постоянная распространения ячейки; α, β – коэффициенты затухания и фазы линии передачи:

$$\alpha = \operatorname{Re}\left\{\!\!\sqrt{(R+jX_L)(G+jX_C^{-1})}\right\}, \quad \beta = 2\pi f \sqrt{LC} , \qquad (7)$$

где $X_L = 2\pi f L$, $X_C = (2\pi f C)^{-1}$ – реактивные сопротивления элементов линии.

Из (6) видно, что для линии передачи с потерями мощность сигнала, подводимого к входам активных звеньев, уменьшается по экспонентному закону в соответствии с добротностью элементов дискретной искусственной распределительной линии.

Синтез и оптимизация однородной передающей линии для УРУ

Исходными параметрами при синтезе дискретной передающей линии УРУ являются: волновое сопротивление (ρ), число активных звеньев (n) и их присоединительные реактивности ($C_{\text{вх}}$ либо $C_{\text{вых}}$) и максимальная рабочая частота (f_{max}).

Для надежного перекрытия заданного диапазона частот емкость ячейки линии принимается на 40–50% больше, чем вносимая суммарная емкость активных звеньев и монтажа:

$$C = 1, 4...1, 5(C_{\text{BX(Bbix)}} + C_{\text{MOHT}}) , \qquad (8)$$

а критическая частота линии – на 20–25 % выше заданного значения максимальной частоты рабочего диапазона

$$f_{\kappa p} = 1, 2...1, 25 f_{\text{max}} \,. \tag{9}$$

Затем, с учетом критической частоты звеньев линии, определяется значение индуктивности

$$L = \rho^2 \cdot C \,. \tag{10}$$

Обеспечить оптимизацию коэффициента передачи ячейки линии и подстройку амплитудно-частотной характеристики всего УРУ возможно при использовании дополнительного конденсатора с переменной емкостью $C_{\text{доп}}$, подключаемого в сечение A (рис. 1). Максимальное значение этой емкости составляет 30–50% от присоединяемой емкости активного звена.

Улучшить диапазонную равномерность передаточной характеристики линии возможно с помощью включения перед нагрузочным балластным сопротивлением R_6 согласующего четырехполюсника, состоящего из двух полузвеньев типа «*m*» (рис. 2, *a*) [3]. Параметр *m* для левого полузвена выбирается таким же, как и для основных звеньев линии, а правого полузвена – таким, чтобы характеристическое сопротивление Z_c в полосе $0...f_{\kappa p}$ было относительно постоянным (это обеспечит согласование полузвена с $R_{\delta} = \rho_{ex(back)}$):

$$Z_{n \text{ BX(Bbix)}} = \frac{\rho_{\text{BX(Bbix)}} \left[1 - x_{\text{BX(Bbix)}}^2 (1 - m^2) \right]}{\sqrt{1 - x_{\text{BX(Bbix)}}^2}} , \qquad (11)$$

где $x_{\text{вх(вых)}} = f / f_{\text{кр вх(вых)}}$ – относительная частота для входной (выходной) линий. При этом индуктивность и емкость согласующих полузвеньев типа «*m*» определяются выражениями:

$$0,5L_{c} = \frac{m_{c}R_{\delta}}{2\pi f_{\rm kp}}; \quad 0,5C_{c} = \frac{m_{c}}{2\pi f_{\rm kp}R_{\delta}}; \quad 2L_{mc} = \frac{(1-m_{c}^{2})R_{\delta}}{2m}. \tag{12}$$

На рис. 2, б приведены результаты расчета нормированного присоединительного сопротивления согласующего четырехполюсника от *x* для различных значений параметра *m*.

Рис. 2. Согласующий четырехполюсник (*a*) и зависимости его нормированного присоединительного сопротивления (б)

Как видно, оптимальная величина параметра *m* при условии согласования четырехполюсника с характеристическим сопротивлением линии составляет 0,6.

Результаты моделирования и экспериментальных исследований

Рассмотрим решение задачи синтеза и оптимизации передающих линий для мощного УРУ метрового диапазона, выполненного на полевых транзисторах КП907А. Используя разработанную методику с учетом емкости активного компонента ($C_{\text{вх КП907A}} = 20 \text{ пФ}$), рассчитаем номинальные значения элементов передающей дискретной 50-омной линии с критической частотой 250 МГц: L = 62,5 нГн; C = 26 пФ; $C_{\text{доп}} = 6$ пФ; $L_c = 20$ нГн; $C_c = 7,6$ пФ; $L_m = 19$ нГн.

Для рассмотренного случая на рис. 3,*а* приведены результаты моделирования передаточной характеристики дискретной линии без потерь с различным числом звеньев, на рис. 3,*б* – передаточные характеристики с согласующим четырехполюсником *m*-типа.

На рис. 3,*а* хорошо видно, что при отсутствии в линии цепей согласования на верхних частотах рабочего диапазона формируется заметная неравномерность амплитудно-частотной характеристики (АЧХ), которая увеличивается с ростом числа элементов линии и при n=8 достигает значения +5 дБ. На рис. 3, δ показано, как включение цепей согласования в линию передачи позволяет существенно снизить неравномерность АЧХ и довести ее до значений, не превышающих ±0,5дБ.

Рис. 3. Результаты моделирования передаточной характеристики дискретной линии без потерь с различным числом звеньев (*a*) и с согласующим звеном при числе звеньев *n*=4 и *n*=8 (*б*)

На рис. 4 приведены результаты моделирования передаточной характеристики дискретной линии с числом звеньев *n*=4 и согласующим звеном *m*-типа для различных значений добротности индуктивных элементов линии.

Рис. 4. Результаты моделирования передаточной характеристики дискретной линии при различных значениях добротности индуктивных элементов линии

Видно, что в диапазоне частот от 10 до 230 МГц последовательное снижение добротности индуктивных элементов (Q = 100, 30 u 10) приводит к экспоненциальному уве-личению потерь в линии передачи (которые составляют соответственно -0,5 дБ, -2 дБ и -5 дБ) и неравномерности передаточной характеристики (соответственно ±0,3дБ, ±0,8дБ и ±1,5дБ).

На рис. 5 приведены передаточные характеристики дискретной четырехэлементной линии при небалансе волнового (ρ) и терминального (R_6) сопротивлений для различных значений добротности индуктивных элементов линии.

Видно, что наибольшая неравномерность передаточной характеристики (более ± 4 дБ) наблюдается у линии с добротностью индуктивных элементов Q = 100.

На рис. 6 приведены результаты моделирования передаточных характеристик дискретной линии передачи с различными значениями добротности индуктивных элементов при варьируемых значениях вносимой активным компонентом УРУ емкости ($C_{ex}\pm\Delta C$). Из рис. 6 видно, что изменение вносимой емкости звена линии на величину ΔC приводит к увеличению амплитудной неравномерности частотной характеристики, однако для 80% полосы рабочих частот это значение практически не превышает 1 дБ. При высокой добротности элементов искусственной линии неравномерность передаточной характеристики выше. С увеличением приращения емкости ΔC верхняя частота линии уменьшается для высокодобротных элементов с меньшей интенсивностью: $\Delta f_{\rm B} = -20$ МГц при Q = 100 и $\Delta f_{\rm B} = -60$ МГц при Q = 10.

Рис. 5. Передаточные характеристики дискретной линии при небалансе волнового и терминального сопротивлений при *Q* = 100 (*a*), *Q* = 30 (*б*) и *Q* = 10 (*b*)

Рис. 6. Передаточные характеристики дискретной линии в зависимости от изменения емкости активного компонента при различных значениях добротности индуктивных элементов линии

На рис. 7 приведены принципиальная схема передающей линии для мощного четырехкаскадного УРУ метрового диапазона, фотографии конструктивного исполнения линий и эпюры их АХЧ для различных добротностей индуктивных элементов.

Рис. 7. Принципиальная схема передающей линии (*a*), ее общий вид (*б*) и амплитудно-частотные характеристики линии при добротности индуктивных элементов *Q* = 100 (*в*) и *Q* = 10 (*г*)

Результаты эксперимента показывают, что синтезированные дискретные передающие линии для мощного УРУ обеспечивают в 50-омном тракте при добротности индуктивных элементов 100 потери 0,7 дБ и неравномерность передаточной характеристики $\pm 0,5$ дБ в диапазоне частот 10–230 МГц, а при Q = 10 соответственно 3 дБ, $\pm 1,5$ дБ.

Заключение

Таким образом, разработана процедура проектирования линий передачи для усилительных трактов с распределенным усилением. Полученные аналитические выражения позволяют осуществлять синтез и оптимизацию искусственных дискретных однородных распределительных линий с заданными функционально-энергетическими характеристиками.

SYNTHSIS AND OPTIMIZATION OF THE DISTRIBUTED POWER AMPLIFIER'S TRNSMISSION LINE

JONG HYOK HAN, I.Yu. MALEVICH

Abstract

The advanced analysis, modeling and experimental research about the distributed power amplifier's transmission line are presented. Obtained results allow to optimize characte-rizations of the transmission lines by transmission parameters, distribution and matching.

Литература

1. Алексеева О.В. Проектирование радиопередающих устройств с применением ЭВМ. М., 1987.

2. Окснер Э.С. Мощные полевые транзисторы и их применение. М., 1985.

3. Шахгильдян В.В. Радиопередающие устройства. М., 1996.

4. Hajimiri A. // IEEE Communications Magazine. 2002. Vol. 40, №2. P. 168–173.

5. Yazdi A., Heydari P. // IEEE International Symposium on Circuits and Systems. 2004. P. 384-385.

6. Ballweber B.M., Gupta R., Allstot D.J. // IEEE Journal of Solid-State Circuits. 2000. Vol. 35, No. P. 231-239.

7. Ahn H. and Allstot D.J. // IEEE Journal of Solid-State Circuits. 2002. Vol. 37, No8. P. 985-993.

8. *Chen P.F., Johnson R.A., Wetzel M.* et al. // IEEE Radio Frequency Integrated Circuits Symposium. 2004. P. 161-164.