УДК 621.396.61

# ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРИНЦИПА ПОСТРОЕНИЯ НА ФУНКЦИОНАЛЬНО-ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ШИРОКОПОЛОСНЫХ УСИЛИТЕЛЕЙ МОЩНОСТИ

# ЗЕН ХЕК ХАН, И.Ю. МАЛЕВИЧ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 6 ноября 2009

Проведен анализ влияния на функционально-энергетические характеристики принципа построения широкополосного усилителя мощности. Получены аналитические выражения для определения параметров широкополосных усилителей мощности.

*Ключевые слова:* функционально-энергетические характеристики, широкополосные усилители мощности, построение усилительного тракта.

#### Введение

Как известно [1–5], определяющее значение для получения заданных функциональноэнергетических характеристик широкополосных усилителей мощности (УМ) имеет их принцип построения: по схеме с корректирующими цепями, с согласующей обратной связью, по схеме с распределенным усилением.

Таким образом, с точки зрения теории и практики синтеза широкополосных усилителей мощности, актуально исследование влияния структуры усилительных звеньев на амплитудночастотную характеристику, КПД и линейность тракта.

# Влияние структуры усилительного звена на амплитудно-частотную характеристику УМ

Широкополосный усилительный каскад с корректирующей цепью (рис. 1) является одной из наиболее эффективных схем построения УМ с точки зрения простоты настройки и конструктивной реализации [2–5].



Рис. 1. УМ с корректирующей цепью

В таком УМ коэффициенты усиления по напряжению и мощности определяются соответственно выражениями:

$$K_{u} p = \frac{U_{gax}}{U_{gax}} = \frac{2g_{m}R_{\mu}R_{3}}{R_{\mu} + R_{3} + a_{1}p + a_{2}p^{2} + a_{3}p^{3}}; K_{p} p = K_{u} p^{2}\frac{R_{p}}{R_{\mu}}, \qquad (1)$$

2009

где  $p = j\Omega; \Omega = \omega/\omega_e$  — нормированная частота;  $\omega$  — текущая круговая частота;  $\omega_e$  — верхняя круговая частота полосы пропускания разрабатываемого усилителя;

$$a_{1} = \frac{\dot{L}_{2_{H}} + R_{3_{H}} C_{1_{H}} + C_{g_{SH}}}{1 + R_{3_{H}}}, \ a_{2} = \frac{\dot{L}_{2_{H}} C_{1_{H}} + R_{3_{H}} C_{g_{SH}}}{1 + R_{3_{H}}}, \ a_{3} = \frac{R_{3_{H}} \dot{L}_{2_{H}} C_{1_{H}} C_{g_{SH}}}{1 + R_{3_{H}}},$$
(2)

где  $C_{1n}^{'} = C_{1n} + C_{6blxn}$ ;  $L_{2n}^{'} = L_{2n} + L_{6xn}$ ;  $C_{1n}, L_{2n}, R_{3n}, C_{6blxn}, L_{6xn}, C_{6xn}$  — нормированные относительно  $\omega_{6}$  и  $R_{6blx}$  значения элементов  $C_{1}, L_{2}, R_{3}, C_{6blx}, L_{6x}, C_{6x}$ ;  $g_{m}$  — крутизна транзистора.

Полагая, что  $R_{ex} = R_{eblx} = 50 \text{ Om}$ , для допустимой неравномерности AЧX не более ±0,5 дБ, используя справочные данные мощного СВЧ МДП транзистора КП907A и соотношения для расчета значений элементов (2), получим значения элементов согласующей цепи:

$$C_1 = C'_{1\mu} / R_{e} \omega_e = 15,7 \text{ m} \Phi, \ L_2 = L'_2 - L_{ex} = 0,1796 \text{ M} \Gamma \text{H}, \ R_3 = R_{3\mu} R_e = 505 \text{ Om}.$$

На выходе каскада включена выходная широкополосная корректирующая цепь, состоящая из элементов  $L_4 = 0,7$  нГн,  $C_5 = 25 \,\mathrm{n}\Phi$ , которая обеспечивает минимально возможное полосное затухание при согласовании терминального нагрузочного сопротивления с приведенным внутренним сопротивлением транзистора.

На рис. 4,*а* приведены результаты моделирования передаточной характеристики каскада широкополосного УМ на МДП транзисторе КП907А с рассчитанной корректирующей цепью.

Широкополосный усилительный каскад с согласующей отрицательной обратной связью (ООС) (рис. 2) обеспечивает требуемое согласование и диапазонную равномерность коэффициента передачи цепью, параллельной ООС по напряжению (*R<sub>ne</sub>*) [6–8].



Рис. 2. Принципиальная схема УТ с ООС (*a*), модель МДП транзистора с общим истоком с учетом индуктивности истока (*б*) и высокочастотная эквивалентная схема усилителя с ООС (*в*)

Для усилительного каскада на МДП транзисторе (рис. 2) величина оптимального сопротивления обратной связи может быть определена с использованием *S*-параметров:

$$S_{11} = \frac{1}{\Sigma} \left[ \frac{R_{oe}}{R_{ex}} + g_{cu}R_{ex} - g_{m} + g_{cu} + g_{ex} \right], \quad S_{12} = \frac{2}{\Sigma} + S_{21} = \frac{2}{\Sigma} + g_{m}R_{oe} - 1 \quad ,$$

$$S_{22} = \frac{1}{\Sigma} \left[ \frac{R_{oe}}{R_{ebax}} + 1 - g_{cu}R_{ebax} - g_{m} + g_{cu} + R_{ebax} \right], \quad (3)$$

где  $\sum = 2 + (g_m + g_{cu})R_{ex} + \frac{R_{oe}}{R_{ex}}(1 + g_{cu}R_{ex}), g_{cu}$  — выходная проводимость активного звена.

Если пренебречь  $g_{cu}$ , то выражения (3) преобразуются к виду:

$$S_{11} = S_{22} = \frac{1}{\Sigma} \left[ \frac{R_{oe}}{R_{ex}} - g_m R_{ex} \right], \ S_{12} = \frac{2}{\Sigma}, \ S_{21} = \frac{2}{\Sigma} \ g_m R_{oe} - 1 \ , \ \Sigma = 2 + g_m R_{ebix} + \frac{R_{oe}}{R_{ebix}}.$$
(4)

Идеальное согласование обеспечивается при условии  $S_{11} = S_{22} = 0$ . При этом

$$R_{oe} = g_m R_{ox}^2, \ K_u = 20 \lg \left(\frac{2}{\Sigma} g_m R_{oe} - 1\right).$$
(5)

С использованием (3)–(5) нетрудно определить оптимальную величину  $R_{oe}$  для данного типа активного прибора: для МДП транзистора с крутизной ВАХ 0,1А/В оптимальное сопротивление обратной связи составляет 250 Ом.

На рис. 4,6 приведен результат моделирования передаточной характеристики однокаскадного усилительного звена с ООС на МДП транзисторе КП907А.

Широкополосный усилительный тракт с распределенным усилением (УРУ) (рис. 3).



Рис. 3. Схема четырехкаскадного УРУ

Усилитель с распределенным усилением, как известно [9–14], позволяет устранить принципиальное ограничение произведения полосы пропускания на коэффициент усиления и обеспечить наряду с широкополосностью передаточной характеристики невзаимное сложение коэффициентов усиления активных элементов:

$$K_{U} = \left| \frac{U_{_{6blx}}}{U_{_{6x}}} \right| = \frac{Z_{\pi}^{c}}{2} \sum_{k=1}^{N} g_{mk} e^{-\left\{ \left[ 2 \ N-k \ +1 \right] \frac{r_{_{2}}}{2} + 2k-1 \ \frac{r_{_{c}}}{2} \right\}} = \frac{g_{m}}{2} \sqrt{\frac{Z_{1}^{c} Z_{2}^{c}}{1 + \frac{Z_{1}^{c}}{4Z_{2}^{c}}}} \frac{e^{-N \frac{r_{_{c}} + r_{_{3}}}{2}} \sinh\left[ N \frac{(r_{_{c}} - r_{_{3}})}{2} \right]}{\sinh\left[ \frac{(r_{_{c}} - r_{_{3}})}{2} \right]}.$$
 (6)

где  $r_c = \alpha_c + j\beta_c$  и  $r_s = \alpha_s + j\beta_s$  — постоянная распространения и  $\alpha_c, \beta_c, \alpha_s, \beta_s$  — коэффициенты затухания и фазы передающих линий.

$$\alpha_{c} = \operatorname{Re}\left\{\sqrt{j2\pi fL + R\left(\frac{1}{r_{cu}} + j2\pi fC\right)}\right\}, \ \alpha_{3} = \operatorname{Re} \sqrt{j2\pi fL + R} \frac{j2\pi fC}{j2\pi fC}$$
$$\beta_{c(3)} = \omega\sqrt{L_{c(3)}C_{c(3)}}, \ Z_{1}^{3} = j\omega L_{3}, \ Z_{2}^{3} = \frac{1}{j\omega C_{3u}}, \ Z_{1}^{c} = j\omega L_{c}, \ Z_{2}^{c} = \frac{1}{\frac{1}{r_{cu}} + j\omega C_{cu}}, \ Z_{\pi}^{c} = \sqrt{\frac{Z_{1}^{c}Z_{2}^{c}}{1 + \frac{Z_{1}^{c}}{4Z_{2}^{c}}}}$$

В случае идеальных линий передачи коэффициент усиления по мощности определяется следующим выражением:

$$K_{p} = \left|K_{u}\right|^{2} = \frac{N^{2}g_{m}^{2}Z_{3}Z_{c}}{4}, \ Z_{3(c)} = \sqrt{\frac{L_{3(c)}}{C_{3(c)}}} \ .$$
(7)

На рис. 4, в приведен результат моделирования передаточной характеристики оптимизированного четырехкаскадного УРУ на МДП транзисторах КП907А.



Рис. 4. Результаты моделирования амплитудно-частотных характеристик различных типов широкополосных звеньев: *а* — УМ с корректирующей цепью; *б* — УМ с ООС; *в* — УМ по схеме УРУ

# Влияние структуры звена на коэффициент полезного действия УМ

Между током, крутизной вольт-амперной характеристики, напряжением питания, мощностью потребления, напряжением нагрузки и углом отсечки существуют следующие отношения [1]:

$$I_{k1} = I_{km} \alpha_1(\theta), \ I_{k0} = I_{km} \alpha_0(\theta), \ S = \frac{I_{k1}}{U_{ex}}, \ P_0 = I_{k0} E_n = I_{k0}(e_{ocm} + U_n),$$

$$K_u = \frac{U_u}{U_{ex}}, \ \alpha_1 \ \theta \ = \frac{\theta - \sin \theta \, \cos \theta}{\pi \, 1 - \cos \theta}, \ \alpha_0 \ \theta \ = \frac{\sin \theta - \theta \cos \theta}{\pi \, 1 - \cos \theta},$$
(8)

где  $e_{ocm}$  — остаточное напряжение активных звеньев и  $\theta$  — угол отсечки выходного тока.

Из выражений (1), (5) и (8) нетрудно получить выражение для определения коэффициента полезного действия широкополосного усилительного тракта с КЦ и ООС:

$$\eta_{KII} = \frac{P_1}{P_0} = \frac{\alpha_1 \ \theta}{2\alpha_0 \ \theta \left(1 + \frac{e_{ocm}}{K_u U_{ex}}\right)}, \ \eta_{OOC} = \frac{P_1}{P_0} = \frac{\alpha_1 \ \theta}{2\alpha_0 \ \theta \left(1 + \frac{e_{ocm}}{2U_{ex} \ g_m R_{oe} - 1 \ / \Sigma}\right)}.$$
(9)

На рис. 5, а приведены зависимости КПД в функции угла отсечки для однокаскадных широкополосных усилительных звеньев с КЦ и ООС на МДП транзисторах КП907А.

Выходная мощность P<sub>1</sub> для УРУ может быть рассчитана, используя выражение

$$P_{1} = \frac{U_{H}^{2}}{2R_{H}} = \frac{U_{H}^{2}}{2\rho_{_{GbLX}}} \approx \frac{I_{1}^{2}n^{2}\rho_{_{GbLX}}}{8} = \frac{g_{m}^{2}U_{_{ex}}^{2}n^{2}\rho_{_{GbLX}}}{8}.$$
(10)

Тогда КПД УРУ определяется выражением:

$$\eta_{ypy} = \frac{P_1}{P_0} = \frac{\gamma}{4\left(\frac{2e_{ocm}}{I_1\rho_{ebx}n} + 1\right)} = \frac{\gamma}{4\left(1 + \frac{2}{g_m\alpha_1 \ \theta \ \rho_{ebx}n}\right)} = \frac{\alpha_1 \ \theta}{4\alpha_0 \ \theta \ \left(1 + \frac{2e_{ocm}}{g_mU_{ex}\rho_{ebx}n}\right)},\tag{11}$$

где  $P_0 = nI_0E_n$ ,  $E_{II} = e_{ocm} + U_n$ ,  $\gamma = I_1/I_0$  — коэффициент формы выходного тока активных звеньев.

На рис. 5,6 приведены зависимости КПД в функции угла отсечки при различном числе активных звеньев в 4-каскадном УРУ, выполненном на МДП транзисторах КП907А.



Рис. 5. Режимная зависимость КПД для усилительных звеньев различного типа

#### Влияние структуры усилительного звена на линейность УМ

Как известно, амплитудная характеристика широкополосного усилительного звена может быть представлена зависимостью [9, 10, 14]:

$$U_{_{6bix}} = k_1 \ U_{_{6x}} \ U_{_{6x}} + k_2 \ U_{_{6x}} \ U_{_{6x}}^2 + \dots + k_n \ U_{_{6x}} \ U_{_{6x}}^n = \sum_{i=1}^n k_i \ U_{_{6x}} \ U_{_{6x}}^i \ .$$
(12)

Применяя метод разложения в виде ряда Тэйлора, можно находить величины коэффициентов степенного ряда

$$k_i = \frac{U_{\scriptscriptstyle ebsx}{}^i U_{\scriptscriptstyle ex}}{i!}.$$
(13)

Крутизна вольт-амперной характеристики транзистора  $g_{mk}$  изменяется в зависимости от напряжения входного сигнала. Для МДП транзистора КП907А принята аппроксимация вида:

$$I_{Ck} = AU_{ex}^{B} + C, \qquad (14)$$

с параметрами: *А*=0,7765, *B*=0,3139 и *C*=0.

При действии на входе активного звена двухтонового сигнала с амплитудами  $U_{ex}$  и угловыми частотами  $\omega_1, \omega_2$  на выходе образуются интермодуляционные составляющие:

$$U_{\omega_{1}-\omega_{2}} = U_{\omega_{2}-\omega_{1}} = k_{2}U_{ex}^{2}, \ U_{2\omega_{2}-\omega_{1}} = U_{2\omega_{2}-\omega_{1}} = 0,75k_{3}U_{ex}^{3},$$

$$U_{3\omega_{2}-2\omega_{1}} = U_{2\omega_{2}-3\omega_{1}} = 0,625k_{3}U_{ex}^{3}.$$
(15)

С учетом (15) параметры ослабления интермодуляционных продуктов второго и третьего порядков определятся выражениями:

$$IMD2 = 20\lg\left(\frac{U_{\omega_1-\omega_2}}{U_{_{6blx}}}\right) = 20\lg\left(\frac{k_2U_{_{6x}}}{k_1}\right), IMD3 = 20\lg\left(\frac{U_{2\omega_1-\omega_2}}{U_{_{6blx}}}\right) = 20\lg\left(\frac{0.75k_3U_{_{6x}}^2}{k_1}\right).$$
(16)

На рис. 6 с учетом (1), (5), (6), (13)–(16) приведены расчетные значения параметров ослабления интермодуляционных продуктов второго и третьего порядков в функции угла отсечки для усилительных звеньев различного типа.



Рис. 6. Зависимость ослабления нелинейных искажений второго и третьего порядка от режима работы: *a* — в УТ с КЦ; *б* — УТ с ООС; *в* — УТ по схеме УРУ

Результаты анализа и моделирования типовых усилительных звеньев широкополосных УМ показывают, что при заданных технических характеристиках самой эффективной схемой построения усилительного тракта с точки зрения широкополосности, равномерности АЧХ и ослабления интермодуляционных составляющих является схема УРУ. Так, даже для случая однозвенного УРУ параметры ослабления интермодуляционных искажений по второму порядку выше на 3 дБ, а по третьему порядку — на 8 и 5 дБ соответственно по сравнению с усилителем с корректирующими цепями и усилителем с ООС. При этом УРУ уступает другим типам звеньев в коэффициенте усиления и КПД.

Сравнительная оценка параметров различных типов широкополосных УМ в таблице.

| Тип усилителя                 | Достоинства                                                                                                                                                               | Недостатки                                                                            |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| С корректирующими<br>цепями   | Наибольший коэффициент усиления по мощности, наибольший КПД                                                                                                               | Полоса ограничена, высокий КСВН,<br>низкая линейность, большая<br>неравномерность АЧХ |
| C OOC                         | Равномерная амплитудно-частотная<br>характеристика, хорошая линейность                                                                                                    | Полоса ограничена, пониженная<br>выходная мощность                                    |
| С распределенным<br>усилением | Равномерная амплитудно-частотная<br>характеристика, наибольшая полоса пропускания,<br>хорошее согласование, высокая линейность,<br>линейная фазо-частотная характеристика | Низкий коэффициент усиления,<br>пониженный КПД                                        |

#### Параметры широкополосных усилителей мощности

#### Заключение

В работе проведен анализ влияния структуры усилительного тракта на функциональноэнергетические характеристики широкополосных усилителей мощности.

Полученные результаты позволяют комплексно оптимизировать структуру усилителя мощности по полосе пропускания, коэффициенту полезного действия и параметрам ослабления интермодуляционных искажений.

# INFLUENCE STUDY BY CONSTRUCTION PRINCIPLE TO FUNCTIONAL ENERGY CHARACTERISTICS OF THE WIDEBAND POWER AMPLIFIERS

# HAN JONG HYOK, I.Yu. MALEVICH

### Abstract

The influence on the functional energy characteristics of the principle of building a broadband power is analyzed. The analytical expressions for parameters determination of the wideband power amplifiers are obtained.

# Литература

1. Алексеев О.В. Проектирование радиопередающих устройств с применением ЭВМ. М., 1987.

2. Cripps S.C. Advanced Techniques in RF Power Amplifier Design. 2002.

3. Титов А.А. Транзисторные усилители мощности МВ и ДМВ. М., 2009.

4. Шахгильдян В.В. Радиопередающие устройства. М., 2003.

5. Ворона В.А. Радиопередающие устройства. М., 2007.

6. Dawson J.L., Lee T.H. Feedback Linearization of RF Power Amplifiers. 2004.

7. Niclas K.B. // IEEE Trans. technology. 2005. Vol. 285, № 4. 294 c.

8. Окснер Э.С. Мощные полевые транзисторы и их применение. М., 1985.

9. Shapiro E.S., Xu J., Nagra A.S. et al. // IEEE Microwave and guided wave letters. 1998. Vol. 8, № 3.

10. Ahn H.-T., Allstot D.J. // IEEE J. of Solid-State Circuits. 2002. Vol. 37, P. 985-993.

11. Ballweber B.M., Gupta R., Allstot D.J. // IEEE J. of Solid-State Circuits. 2000. Vol. 35, P. 231-239.

12. Liu R.-C., Deng K.-L., Wang H. // RFIC Symp. Dig. 2003. P. 103-106.

13. Yazdi A., Heydari P. // IEEE Int. Symposium on Circuits and Systems. May 2004. P. 384-385.

14. Beyer J.B., Prasad S.N., Becker R.C. et al. // IEEE Trans. on Microwave Theory and Techniques. 1984. Vol. 32. P. 268–275.