

264

Searching for Optimal Synchronizing Sequences for Testing Logic Circuits
Cheremisinova L.D.

The laboratory of logical design
The United Institute of Informatics Problems of National Academy of Sciences of Belarus

Minsk, Belarus
e-mail: cld@newman.bas-net.by

Abstract — The problem under consideration is to find a

synchronizing sequence for a logic network with memory. A
novel method is proposed that is based on formulation of the
task as Boolean satisfiability problem solved with any
standard SAT solver. The developed method allows creating a
Boolean equation presenting the problem in conjunctive
normal form.

Keywords: design automation; verification; testing

I. INTRODUCTION
With the increasing complexity of integrated circuits

the problem of ensuring that no faults exist which can
cause the device to malfunction is on the rise. The
necessity to improve the process of testing is urgent today.

The traditional method for testability verification is
based, as a rule, on gate-level simulation. A subset of the
functional test patterns (sequences of input vectors) is
applied to integrated circuits on the manufacturing testers.
The sequential circuit having memory can have internal
states that make sequential circuit testing more complex
than that of the combinational logic. That is because in
typical case the state of internal memory is not known at
the beginning of the simulation to test. In order to begin
execution of any test sequence it is necessary to bring a
sequential circuit under test to some identified state from
which it is known how to proceed. Test sequence (the
sequence of input vectors) that brings a sequential circuit to
some known state regardless of its initial state is the
synchronizing sequence. After applying a synchronizing
sequence, the final state of the circuit is known without
observing the outputs.

In the past and existing literature the problem of
homing synchronizing (and homing) sequences generation
is usually considered for the case of finite state machines
(FSM) [1]. In most applications the underlying FSM is an
automaton with abstract state, whose functionality is
described by a transition and an output tables (or by state
transition graph). Several approaches are used to obtain a
synchronizing (and homing) sequences for a FSM. A
survey of the main methods can be found in [2]. It should
note that finding a shortest synchronizing sequence (with
minimum length) is an NP-hard problem.

Unlike that the case considered here concerns to
synchronous logical circuits having flip-flop primitives of
D type as memory elements. For such a case a method of
finding a shortest synchronizing sequence is proposed. The
method allows to translate the problem of looking-for
synchronizing sequence into Boolean problem expressed
by Boolean equation in conjunctive normal form (CNF)
and solvable by existing SAT solvers.

II. THE PROBLEM STATEMENT
The proposed method works on a synchronous circuit is

imagined in the form of two blocks: combinational logic
and flip-flops. The combinational block has two types of
inputs: external inputs known as primary inputs and
internal inputs, that are supplied by the flip-flops.
Similarly, the block has two types of outputs: externally
observable and known as primary outputs, and internal

outputs, they feed a set of flip-flops and present their
excitation functions.

The combinational block is modeled as an interconnect
of primitive gates such as AND, OR, NOT, NAND, NOR,
XOR. The second block consists of register of the
frequently used data flip-flops – D flip-flops.

The task is to be initialize memory elements to some
reset states, that is, to find out the synchronizing sequence.
Informally, a synchronizing sequence is a sequence of
input sets that, when fed the sequential circuit, is
guaranteed to bring it to some specified final state.

Let we have a circuit with n primary inputs and m D
flip-flops. An input sequence, X = (x1, x2,…, xk) (where
xi = (x1

i, x2
i, …, xn

i) is a vector of input signals that is fed
the circuit in the time moment i) is said to be a
synchronizing sequence of a sequential circuit, if the final
circuit internal state after feeding it on the sequence can be
determined uniquely regardless of the circuit initial state.
We classify a synchronizing sequence X for a circuit as
optimal if it is the shortest for all synchronizing sequences
accepted by the circuit, that is X is of the shortest length k.
It can be not. The task is to find one of the shortest
synchronizing sequences.

The behavior of the D flip-flop is described as the
behavior of Moore’s automaton with two states: 0 and 1.
The symbol at its output coincides with the symbol of the
state, in which the flip-flop is at the current time instant.
The search for known D flip-flop states is reduced to
search for predefined values of excitation functions of the
flip-flops. So further we are allowed to consider only
combinational block having n + k primary inputs x1, x2, …,
xn, xn+1, xn+2, …, xn+k corresponding n primary inputs and k
flip-flop outputs, and k primary outputs y1, y2, …, yk
corresponding to flip-flop inputs defining their excitation
functions.

III. SAT-BASED APPROACH
A CNF represents a Boolean function as conjunction of

one or more clauses, each being in its turn a disjunction of
literals (Boolean variables or their inversions). Matrix
representation of CNF formula is a ternary matrix having a
row for each clause and a column for each variable. The
SAT problem is concerned with finding a truth assignment
of literals which simultaneously satisfies each of CNF
clauses. If such an assignment exists the CNF is referred to
as satisfiable, and the assignment is called as a satisfying
one.

Majority of SAT applications derived from circuit
representation produce so called conventional CNF
describing all combinations of signal values on all circuit
terminals. The procedure of derivation of conventional
CNF associates a CNF formula [3] with each circuit gate
that captures the consistent assignments between gate
primary inputs and outputs. Here are the conventional CNF
representations of 2EXOR, nAND, nOR functions:

y = z1  z2 

 (z1  z2 y)(z1 z2 y)(z1 z2  y)(z1  z2  y);
y = z1  z2 …  zn 

 (z1 y) (z2 y) … (zn y) (z1 z2  … zn  y);

Би
бл
ио
те
ка

 БГ
УИ
Р

265

y = z1  z2 …  zn 
 (z1  y) (z2  y) … (zn  y) (z1  z2  …  zn y);

The obtained gate local CNFs are joined then in the
overall circuit CNF by using the conjunction operation.

Given a conventional CNF formula, the SAT problem
may be restated as the problem of finding a variable value
assignment that satisfies every clause.

IV. THE METHOD OF SEARCH FOR SYNCHRONIZING
SEQUENCE

During the search for SAT solution of the
synchronizing sequence problem there is no cost
mechanisms to favor one solution over another. Thus
formulating SAT problem of searching the shortest
synchronizing sequence, we are able only to get the answer
whether some solution (of the predefined length) of our
problem exists. That is why the problem of optimal
synchronizing sequence finding is solved regarding a priori
assigned synchronizing sequence length.

Thus, we are forced to reformate continuously the
folding problem with increasing values of synchronizing
sequence length until a satisfiable problem formulation
arises. Such a reformulation of the problem based on
enumeration of sequence length values seems cumbersome
for logic circuits of great size, but below it will be shown
that the process of alternate CNF building for increasing
synchronizing sequence length is iterative.

At the beginning we search for a synchronizing
sequence X1 = (x1) of the length 1 and form conventional
CNF C1 for the combinational circuit under test assuming
that its primary inputs corresponding to primary inputs of
ancestor sequential circuit are (x1

1, x2
1, …, xn

1) and primary
inputs corresponding to flip-flop outputs of ancestor
sequential circuit are (xn+1

1, xn+2
1, …, xn+k

1). The values of
the last variables are accepted to be don’t-care: xn+1

1 = “–”,
xn+2

1 = “–”, …, xn+k
1 = “–” because we don’t know their

initial values.
If such a manner formed CNF C1 is satisfiable we will

obtain synchronizing sequence X1 = (x1
1, x2

1, …, xn
1) of

unit length and the corresponding values of the circuit
primary outputs y1

1, y2
1, …, yk

1 that define values of
excitation functions. Otherwise we should augment the
experiment length and form the conventional CNF C2 to
search for a two cycle synchronizing sequence X2 = (x1,
x2). So two block combinational circuit will be considered:
the first block is the circuit considered on the first step and
the second one is a circuit identical to the first one but
having primary inputs (x1

2, x2
2, …, xn

2) and xn+1
2 = y1

1,
xn+2

2 = y2
1, …, xn+k

2 = yk
1. Its k primary inputs xn+1

2, xn+2
2,

…, xn+k
2 are connected with primary outputs y1

1, y2
1, …, yk

1
of the first block circuit, identifying the variables y1

1, y2
1,

…, yk
1 and xn+1

2, xn+2
2, …, xn+k

2, so we use the first ones
(have been introduced earlier) instead of the second ones.
Then we again verify whether such a formed CNF C2 is
satisfiable to test whether there exists synchronizing
sequence X2 = (x1, x2) of the length 2 and so on as long as
we will obtain satisfiable CNF or the number of iterations
exceeds the limit of iterations predefined in advance. In the
last case our search fails and we don’t find out any
synchronizing sequence.

In Figure 1 the process of augmentation of a circuit
copies is shown. For the case of three input two output
logic circuit three copies are connected in series to search
for synchronizing sequence X3 = (x1, x2, x3) of the length
3.

Fig. 1. The process of augmentation of a circuit copies

V. SOME PECULIARITIES OF THE METHOD
Here one should draw attention that there are some

peculiarities of searching for synchronizing sequence via
Boolean satisfiability. They result from existence of don’t-
care signals in tested circuit that can cause local fragments
of conventional CNF to be unsatisfiable though the tested
circuit has a synchronizing sequence. That is because
don’t-care signal run through this circuit fragment from
input to output. The characteristic example of such a case is
primitive gate, such as XOR that always has don’t-care on
its output when it has don’t-care signal at least in an input.
When forming conventional CNF for the tested circuit we
may delete fragments associated with such gates taking the
values of their output variables to be don’t-care.

Moreover there can exist circuit fragment implementing
a function like XOR. To do not miss a synchronizing
sequence for a circuit having such fragments, when testing
CNF satisfiability it should use SAT solvers (for instance,
SAT solver PicoSAT [4]) that permit to give proof traces
from which it is possible to extract a reason why the tested
CNF is erroneous. In that case we can substitute the
unsatisfiable fragment with assigning don’t-care value to
the appropriate fragment output signal, just as we have
substituted CNF fragments concerned with XOR gate.

VI. CONCLUSION
The problem of search for synchronizing sequence for

logic circuits with memory elements is considered. A novel
reformulation of the problem as the Boolean satisfiability
problem solved with any existing SAT-solver was
developed.

[1] Z. Kohavi, Switching and Finite Automata Theory, 2nd ed., The
McGraw-Hill College, 1978.
[2] D. Lee and M. Yannakakis, “Principles and methods of testing
finite state machine – a survey”, Proc. of the IEEE, 84(8), Aug.
1996, pp. 1090–1123.
[3] W. Kunz, J. Marques-Silva, S. Malik, “SAT and ATPG:
Algorithms for Boolean Decision Problems” in Logic synthesis and
Verification (Ed. S.Hassoun, T.Sasao and R.K.Brayton), Kluwer
Academic Publishers, 2002, pp. 309–341.
[4] A. Biere, “PicoSAT Essentials”, in Journal on Satisfiability,
Boolean Modeling and Computation, vol. 4, 2008, pp. 75–97. Би

бл
ио
те
ка

 БГ
УИ
Р

