МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ
«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»
ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ СИСТЕМ И СЕТЕЙ
КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
ФУНКЦИЙ ОДНОЙ И МНОГИХ ПЕРЕМЕННЫХ.
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Рекомендовано УМО по образованию
в области информатики и радиоэлектроники
в качестве учебно-методического пособия
для специальностей I ступени высшего образования,
закрепленных за УМО

МИНСК БГУИР 2018
Авторы:

В. В. Цегельник, Н. И. Кобринец, Е. А. Баркова,
В. М. Метельский, А. Н. Семеняко, Т. С. Степанова

Рецензенты:

кафедра высшей математики Белорусского государственного университета
(протокол №2 от 21.09.2017);

профессор кафедры высшей математики учреждения образования
«Белорусский государственный экономический университет»
dоктор физико-математических наук, профессор Н. С. Коваленко

Дифференциальное и интегральное исчисление функций одной и
многих переменных. Дифференциальные уравнения: учеб.-метод.

Является продолжением серии практикумов по высшей математике для
студентов технических и экономических специальностей по разделам:
«Комплексные числа», «Дифференциальное исчисление функций многих
переменных», «Интегральное исчисление функций одной и многих переменных»,
«Дифференциальные уравнения», «Элементы теории поля». Приведены
дополнительные задания с ответами. Предложены задания для самостоятельного
решения и контрольные работы.

УДК 517.2/3(075.8)
ББК 22.161.1я73

университет информатики
и радиоэлектроники», 2018
Занятие 1

Комплексные числа

Пример 1. Даны комплексные числа $z_1 = 2 + 3i$ и $z_2 = 1 - 2i$. Найти $z_1 + z_2$, $z_1 - z_2$, $z_1 \cdot z_2$, $z_1 : z_2$.

$\Delta \ z_1 + z_2 = (2 + 3i) + (1 - 2i) = 3 + i$;
$z_1 - z_2 = (2 + 3i) - (1 - 2i) = 1 + 5i$;
$z_1 \cdot z_2 = (2 + 3i)(1 - 2i) = 2 - 4i + 3i + 6 = 8 - i$;
$z_1 = (2 + 3i)(1 + 2i) = 2 + 4i + 3i - 6 = \frac{4}{5} + \frac{7}{5}i$. ▲

$z_2 = \frac{5 + i}{(1 + i)(2 - 3i)}$ в алгебраической форме.

$\Delta \ \frac{5 + i}{2 - 3i + 2i + 3} = \frac{5 + i}{5 - i} = \frac{(5 + i)^2}{(5 - i)(5 + i)} = \frac{25 + 10i - 1}{26} = \frac{12}{13} + \frac{5}{13}i$. ▲

Пример 3. Найти действительные x и y, удовлетворяющие уравнению $(3x - i)(2 + i) + (x - iy)(1 + 2i) = 5 + 6i$.

$\Delta \ 6x + 3xi - 2i + 1 + x + 2ix - iy + 2y = 5 + 6i$,

$\begin{cases} 6x + 1 + x + 2y = 5, & 7x + 2y = 4, \\ 3x - 2 + 2x - y = 6, & 5x - y = 8 \end{cases}$,

$17x = 20$, $x = \frac{20}{17}$, $y = -\frac{36}{17}$. ▲

Пример 4. Решить систему уравнений $\begin{cases} 3x - (2 + i)y = -7 - 5i, \\ ix - 5y = -7 + 15i \end{cases}$.

$\Delta \ \begin{vmatrix} 3x - (2 + i)y & -7 - 5i \\ ix - 5y & -7 + 15i \end{vmatrix}_{3i}$, $(-2 - 16i)y = -52 - 26i$,

$y = \frac{26(2 + i)}{2(1 + 8i)} = \frac{13(2 + i)(1 - 8i)}{65} = 2 - 3i$,

$ix = -7 + 15i + 10 - 15i$, $x = -3i$. ▲

Пример 5. Решить уравнение $z^2 + |z| = 0$.

Δ Пусть $z = x + iy$. Тогда $(x + iy)^2 + \sqrt{x^2 + y^2} = 0$, откуда

$(x^2 - y^2 + \sqrt{x^2 + y^2}) + 2xyi = 0$.

Следовательно,
\[
\begin{cases}
x^2 - y^2 + \sqrt{x^2 + y^2} = 0, & \text{если } x = 0, \text{ то } y_1 = 0, y_2 = 1, y_3 = -1. \\
2xy = 0, & \text{если } y = 0, \text{ то } x = 0.
\end{cases}
\]

Таким образом, корнями данного уравнения являются числа \(z_1 = 0, z_2 = i, z_3 = -i \). ▲

Пример 6. Записать комплексные числа в тригонометрической форме:

2, \(-3, -i, 1+i, \sin \frac{\pi}{5} - i \cos \frac{\pi}{5}\).

\[
\Delta 2 = 2(\cos 0 + i \sin 0); \ -3 = 3(\cos \pi + i \sin \pi);
\]

\(-i = 1 \left(\cos \left(-\frac{\pi}{2} \right) + i \sin \left(-\frac{\pi}{2} \right) \right); \ 1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right);
\]

\[
\sin \frac{\pi}{5} - i \cos \frac{\pi}{5} = \cos \frac{3\pi}{10} - i \sin \frac{3\pi}{10} = \cos \left(-\frac{3\pi}{10} \right) + i \sin \left(-\frac{3\pi}{10} \right). \quad \Box
\]

Пример 7. Записать в тригонометрической форме комплексное число \(2i \left(\cos \frac{\pi}{5} - i \sin \frac{\pi}{5} \right) \).

\[
\Delta \text{Рассмотрим два комплексных числа } z_1 = 2i = 2 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) \text{ и }
\]

\[
z_2 = \cos \frac{\pi}{5} - i \sin \frac{\pi}{5} = 1 \cdot \left(\cos \left(-\frac{\pi}{5} \right) + i \sin \left(-\frac{\pi}{5} \right) \right).
\]

|z_1| = 2 и \(\arg z_1 = \frac{\pi}{2} \); |z_2| = 1 и \(\arg z_2 = -\frac{\pi}{5} \).

Так как \(z = z_1 \cdot z_2 \), то |z| = 2 \cdot 1 = 2 и \(\text{Arg} z = \frac{\pi}{2} - \frac{\pi}{5} + 2\pi k = \frac{3\pi}{10} + 2\pi k \).

\[
z = 2 \left(\cos \left(\frac{3\pi}{10} + 2\pi k \right) + i \sin \left(\frac{3\pi}{10} + 2\pi k \right) \right) = 2 \left(\cos \frac{3\pi}{10} + i \sin \frac{3\pi}{10} \right). \quad \Box
\]

Пример 8. Записать в показательной форме комплексное число

\[
z = \frac{(-\sqrt{3} + i) \left(\cos \frac{7\pi}{12} - i \sin \frac{7\pi}{12} \right)}{-1 - i}.
\]

\[
\Delta \text{Каждое из трех чисел представим в показательной форме:}
\]

\[
z_1 = -\sqrt{3} + i = 2e^{i \frac{5\pi}{6}};
\]

\[
z_2 = \cos \frac{7\pi}{12} - i \sin \frac{7\pi}{12} = \cos \left(-\frac{7\pi}{12} \right) + i \sin \left(-\frac{7\pi}{12} \right) = le^{-i \frac{7\pi}{12}};
\]

\[
z_3 = -1 - i = \sqrt{2}e^{-i \frac{3\pi}{4}}.
\]
Тогда $z = \frac{2e^{i\frac{5\pi}{6}} \cdot 1e^{-i\frac{7\pi}{12}}}{\sqrt{2e^{-i\frac{3\pi}{4}}}} = \sqrt{2}e^{i\frac{\pi}{4}}$. ▲

Пример 9. Найти модуль и аргумент числа $(1+i)^5$.

Δ Пусть $z_1 = (1+i)$. Тогда $|z_1| = \sqrt{2}$ и $\arg z_1 = \frac{\pi}{4}$; $|z| = (\sqrt{2})^5 = 4\sqrt{2}$ и $\arg z = \frac{5\pi}{4} + 2\pi k = \frac{5\pi}{4} + 2\pi k$. Так как $-\pi < \arg z \leq \pi$, то $\arg z = -\frac{3\pi}{4}$. ▲

Пример 10. Вычислить $(\sqrt{3} + i)^{723} \cdot (i-1)^{358} : 2^{900}$.

Δ Запишем числа $\sqrt{3} + i$ и $i-1$ в тригонометрической форме:

$$\sqrt{3} + i = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right),$$
$$i-1 = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right).$$

Теперь по формуле Муавра находим:

$$(\sqrt{3} + i)^{723} = 2^{723}\left(\cos\frac{723\pi}{6} + i\sin\frac{723\pi}{6}\right) = 2^{723}\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 2^{723}i;$$

$$(i-1)^{358} = 2^{173}\left(\cos\frac{1074\pi}{4} + i\sin\frac{1074\pi}{4}\right) = 2^{179}\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 2^{179}i.$$

Искомое произведение равно

$$2^{723}i \cdot 2^{179}i \cdot 2^{-900} = 4i^2 = -4.$$ ▲

Пример 11. Вычислить $\left(\frac{1+i}{\sqrt{3} - 3i}\right)^{11}$.

Δ

$$\frac{1+i}{\sqrt{3} - 3i} = \frac{\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)}{2\sqrt{3}\left(\cos\frac{-\pi}{3} + i\sin\frac{-\pi}{3}\right)} = \frac{1}{\sqrt{6}}\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right).$$

$$\left(\frac{1+i}{\sqrt{3} - 3i}\right)^{11} \approx \frac{1}{6^5\sqrt{6}}\left(\cos\frac{77\pi}{12} + i\sin\frac{77\pi}{12}\right) = \frac{1}{6^5\sqrt{6}}\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right).$$ ▲

Пример 12. Исходя из определения, вычислить $\sqrt{3 - 4i}$.

Δ Пусть $\sqrt{3 - 4i} = x + iy$, тогда $(x + iy)^2 = 3 - 4i$ или

$$x^2 - y^2 + i2xy = 3 - 4i.$$ Получим систему

$$\begin{cases}
 x^2 - y^2 = 3, \\
 2xy = -4
\end{cases} \sim \begin{cases}
 x^2 - y^2 = 3, \\
 y = \frac{-2}{x}
\end{cases} \sim \begin{cases}
 x^2 - 4 = 3, \\
 y = \frac{-2}{x}
\end{cases} \sim \begin{cases}
 x^4 - 3x^2 - 4 = 0, \\
 y = \frac{-2}{x}
\end{cases} \sim \begin{cases}
 x^2 = 4, \\
 y = \frac{-2}{x}
\end{cases} \sim \begin{cases}
 x_1 = 2, \\
 y_1 = -1
\end{cases} \text{ или } \begin{cases}
 x_2 = -2, \\
 y_2 = 1.
\end{cases}$$
В результате получаем два значения квадратного корня $\sqrt{3 - 4i} = 2 - i$ и $\sqrt{3 - 4i} = -2 + i$. ▲

Пример 13. Найти все значения корня $3\sqrt{-1 - i\sqrt{3}}$.
Δ Записав комплексное число $-1 - i\sqrt{3}$ в тригонометрической форме

$-1 - i\sqrt{3} = 2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right)$, находим

$3\sqrt{-1 - i\sqrt{3}} = 3\sqrt{2}\left(\cos\frac{-2\pi + 2k\pi}{3} + i\sin\frac{-2\pi + 2k\pi}{3}\right)$, $k = 0, 1, 2$.

Откуда

$u_0 = 3\sqrt{-1 - i\sqrt{3}} = 3\sqrt{2}\left(\cos\left(-\frac{2\pi}{9}\right) + i\sin\left(-\frac{2\pi}{9}\right)\right)$, $k = 0$.

$u_1 = 3\sqrt{-1 - i\sqrt{3}} = 3\sqrt{2}\left(\cos\frac{4\pi}{9} + i\sin\frac{4\pi}{9}\right)$, $k = 1$.

$u_2 = 3\sqrt{-1 - i\sqrt{3}} = 3\sqrt{2}\left(\cos\frac{10\pi}{9} + i\sin\frac{10\pi}{9}\right)$, $k = 2$. ▲

Пример 14. Найти все значения корня $\frac{4}{16i}$.
Δ Поскольку $16i = 16\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$, то

$\frac{4}{16i} = \frac{4}{16}\left(\cos\frac{\pi}{8} + 2k\pi + i\sin\frac{\pi}{8} + 2k\pi\right)$, $k = 0, 1, 2, 3$.

Следовательно,

$\omega_0 = 2\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)$; $\omega_1 = 2\left(\cos\frac{5\pi}{8} + i\sin\frac{5\pi}{8}\right)$;

$\omega_2 = 2\left(\cos\frac{9\pi}{8} + i\sin\frac{9\pi}{8}\right)$; $\omega_3 = 2\left(\cos\frac{13\pi}{8} + i\sin\frac{13\pi}{8}\right)$. ▲

Пример 15. Используя формулы Эйлера, доказать равенство $2\sin \varphi \cos \varphi = \sin 2\varphi$.
Δ $2\sin \varphi \cos \varphi = 2\frac{e^{i\varphi} - e^{-i\varphi}}{2i}\cdot \frac{e^{i\varphi} + e^{-i\varphi}}{2} = \frac{(e^{i\varphi})^2 - (e^{-i\varphi})^2}{2i} = e^{2i\varphi} - e^{-2i\varphi} = \sin 2\varphi$. ▲

Пример 16. Найти множество точек z комплексной плоскости, удовлетворяющих условию $\text{Im}\left(\frac{1}{z} + \frac{2}{\bar{z}}\right) \geq 1$.
Δ ОДЗ: $z \neq 0$, $\frac{1}{z} + \frac{2}{\bar{z}} = \frac{1}{x + iy} + \frac{2}{x - iy} = \frac{x - iy + 2x + 2iy}{x^2 + y^2} = \frac{3x + iy}{x^2 + y^2}$, $\frac{y}{x^2 + y^2} \geq 1$, $y \geq x^2 + y^2$, $x^2 + y^2 - y \leq 0$, $x^2 + \left(y - \frac{1}{2}\right)^2 \leq \frac{1}{4}$. ▲
Дополнительные задачи

1. Представить в алгебраической форме комплексные числа:
 a) \(z = (2 + i)^2 \); б) \(z = \frac{13 + 12i}{6i - 8} + \frac{(1 + 2i)^2}{2 + i} \).

 Ответ: a) \(\frac{3}{25} - \frac{4}{25}i \); б) \(-\frac{18}{25} + \frac{23}{50}i \).

2. Решить уравнение \(2z = |z| + 2i \).

 Ответ: \(\frac{1}{\sqrt{3}} + i \).

3. Решить систему
 \[
 \begin{cases}
 z_1 + 2z_2 = 1 + i, \\
 3z_1 - iz_2 = 2 - 3i.
 \end{cases}
 \]

 Ответ: \(z_1 = \frac{13 - 33i}{37}, \quad z_2 = \frac{12 + 35i}{37} \).

4. Представить в тригонометрической форме комплексные числа:
 a) \(z = -3 + i \); б) \(z = 1 + \cos \frac{\pi}{7} + i \sin \frac{\pi}{7} \).

 Ответ: a) \(\sqrt{10} \left(\cos \left(\arccos \left(-\frac{3}{\sqrt{10}} \right) \right) + i \sin \left(\arccos \left(-\frac{3}{\sqrt{10}} \right) \right) \right) \); б) \(2 \cos \frac{\pi}{14} \left(\cos \frac{\pi}{14} + i \sin \frac{\pi}{14} \right) \).

5. Найти все натуральные значения \(n \), при которых справедливо равенство \((1 + i)^n = (1 - i)^n \).

 Ответ: \(n = 4k, \quad k \in \mathbb{N} \).

6. Используя формулу Муавра, выразить \(\sin 3x \) и \(\cos 3x \) через \(\sin x \) и \(\cos x \).

 Ответ: \(\cos 3x = \cos^3 x - 3\cos x \sin^2 x, \quad \sin 3x = 3\cos^2 x \sin x - \sin^3 x \).

7. Найти все значения \(\sqrt[4]{-16} \).

 Ответ: \(w_0 = \sqrt{2} + i \sqrt{2}, \quad w_1 = -\sqrt{2} + i \sqrt{2}, \quad w_2 = -\sqrt{2} - i \sqrt{2}, \quad w_3 = \sqrt{2} - i \sqrt{2} \).

8. Используя формулы Эйлера, доказать равенство \(\cos 2\varphi = \cos^2 \varphi - \sin^2 \varphi \).
Занятия 2–3

Непосредственное интегрирование.
Метод подстановки, интегрирование по частям

Примеры
Найти следующие интегралы:

1. \[\int \frac{2^3 x^2 - 3^{\sqrt{x}}}{\sqrt{x}} + 5 \, dx; \]
2. \[\int (\sqrt{x} + 2^3 x)^3 \, dx; \]
3. \[\int 2^3 x e^{2x} \, dx; \]
4. \[\int (\tan^2 x - 1) \, dx; \]
5. \[\int \frac{dx}{\sin^2 x \cos^2 x}; \]
6. \[\int \frac{2x^3 + 3x^2 - 8x - 7}{x^2 - 4} \, dx; \]
7. \[\int \frac{5x^2 + 2}{x^2(1 + 2x^2)} \, dx; \]
8. \[\int \cos(2x - 3) \, dx; \]
9. \[\int \sin^4 x \cos x \, dx; \]
10. \[\int \frac{dx}{(1 + x)\sqrt{x}}; \]
11. \[\int x(2x + 3)^9 \, dx; \]
12. \[\int \frac{\ln x \, dx}{x(1 - \ln^2 x)^2}; \]
13. \[\int \frac{\arccos x - x}{\sqrt{1 - x^2}} \, dx; \]
14. \[\int \frac{\sqrt{1 + \sqrt{x}} \, dx}{\sqrt{x}}; \]
15. \[\int \frac{dx}{\sqrt{e^x - 1}}; \]
16. \[\int \frac{x \, dx}{\sqrt{x + 1}}; \]
17. \[\int \frac{dx}{1 + \sqrt{x} + 3}; \]
18. \[\int \frac{dx}{e^x + 1}; \]
19. \[\int \frac{dx}{x\sqrt{x^2 - 1}}, \quad x < -1; \]
20. \[\int \frac{dx}{x^2 + 4x + 9}; \]
21. \[\int \frac{dx}{2x^2 - 4x + 7}; \]
22. \[\int \frac{dx}{\sqrt{15 + 4x - x^2}}; \]
23. \[\int \frac{dx}{\sqrt{14 - 6x - 3x^2}}; \]
24. \[\int \frac{5x - 2}{x^2 + 6x + 17} \, dx; \]
25. \[\int \frac{3x - 7}{x^2 + 4x + 1} \, dx; \]
26. \[\int \frac{x + 3}{\sqrt{2x^2 + 8x + 11}} \, dx; \]
27. \[\int x \sin 2x \, dx; \]
28. \[\int \arcsin x \, dx; \]
29. \[\int x e^{-3x} \, dx; \]
30. \[\int x \arctg x \, dx; \]
31. ∫ (x² + 3x + 5) \cos 2xdx;
32. ∫ x³ \ln² xdx;
33. ∫ \cos(\ln x)dx;
34. ∫ eᵃx \cos bxdx;
35. ∫ \frac{\arctg \sqrt{x}}{\sqrt{x}} dx.

\[\Delta \]
1. ∫ \frac{2³x² - 3\sqrt[3]{x} + 5}{\sqrt{x}} dx = \int (2x⁶ - 3x^{-1/4} + 5x^{-3/2}) dx = 2 \cdot \frac{6}{7} x^6 - 3 \cdot \frac{4}{3} x^{3/2} +
+ 5 \cdot 2x^{3/2} + C = \frac{12}{7} x^6 - 4x^{3/4} + 10x^{1/2} + C.

2. ∫ (\sqrt{x} + 2\sqrt[3]{x})³ dx = \int (x^{3/2} + 6x^{4/3} + 12x^{7/6} + 8x) dx = \frac{2}{5} x^{5/2} +
+ \frac{18}{7} x^{7/3} + \frac{72}{13} x^{13/6} + 4x^2 + C.

3. ∫ 2³x \cdot e²x dx = \int (8e²)^x dx = \frac{(8e²)^x}{\ln 8e²} + C.

4. ∫ (\tg² x - 1) dx = \int \left(\frac{1}{\cos² x} - 2 \right) dx = \tg x - 2x + C.

5. ∫ \frac{dx}{\sin² x \cos² x} = ∫ \frac{\sin² x + \cos² x}{\sin² x \cos² x} dx = \int \frac{dx}{\cos² x} + \int \frac{dx}{\sin² x} = \tg x - \ctg x + C.

6. ∫ \frac{2x³ + 3x² - 8x - 7}{x² - 4} dx.

Разделим уголком числитель на знаменатель:

\[\begin{array}{c|c}
-2x³ + 3x² - 8x - 7 & \frac{x² - 4}{2x + 3} \\
3x² - 8x & -7 \\
3x² - 12 & 5.
\end{array} \]

Следовательно,

\[\int \frac{2x³ + 3x² - 8x - 7}{x² - 4} dx = \int \left(2x³ + 3 + \frac{5}{x² - 4} \right) dx = x³ + 3x + \frac{5}{4} \ln \left| \frac{x - 2}{x + 2} \right| + C. \]

7. ∫ \frac{5x² + 2}{x²(1 + 2x²)} dx = \int \frac{2(2x² + 1) + x²}{x²(2x² + 1)} dx = 2\int \frac{dx}{x²} + \frac{1}{2} \int \frac{dx}{x² + \frac{1}{2}} =
= -\frac{2}{x} + \frac{\sqrt{2}}{2} \arctg \sqrt{2} x + C.
8. $\int \cos (2x - 3) \, dx = \frac{1}{2} \int \cos (2x - 3) \, d(2x - 3) = \frac{1}{2} \sin (2x - 3) + C$.

9. $\int \sin^4 x \cos x \, dx = \int \sin^4 x \, d\sin x = \frac{\sin^5 x}{5} + C$.

10. $\int \frac{dx}{(1 + x)\sqrt{x}} = 2 \int \frac{\sqrt{x}}{1 + (\sqrt{x})^2} = 2 \arctg \sqrt{x} + C$.

11. $\int x(2x + 3)^9 \, dx = \frac{1}{2} \int ((2x + 3) - 3)(2x + 3)^9 \, dx = \frac{1}{2} \int (2x + 3)^{10} \, dx - \frac{3}{2} \int (2x + 3)^9 \, dx = \frac{1}{4} \int (2x + 3)^{10} \, d(2x + 3) - \frac{3}{4} \int (2x + 3)^9 \, d(2x + 3) = \frac{1}{44} (2x + 3)^{11} - \frac{3}{40} (2x + 3)^{10} + C$.
 Второе решение:
 $\int x(2x + 3)^9 \, dx = \left| \begin{array}{c} 2x + 3 = t \\ x = \frac{1}{2}(t - 3) \\ dx = \frac{1}{2} \, dt \end{array} \right| = \frac{1}{4} \int (t - 3)^9 \, dt = \frac{1}{4} \int t^{11} - \frac{3}{4} t^{10} + C = \frac{1}{44} (2x + 3)^{11} - \frac{3}{40} (2x + 3)^{10} + C$.

12. $\int \frac{\ln x \, dx}{x(1 - \ln^2 x)^2} = -\frac{1}{2} \int \frac{d(1 - \ln^2 x)}{(1 - \ln^2 x)^2} = \frac{1}{2(1 - \ln^2 x)} + C$.
 Второе решение:
 $\int \frac{\ln x}{x(1 - \ln^2 x)^2} \, dx = \left| \begin{array}{c} 1 - \ln^2 x = t \\ 1 - \ln x = \frac{1}{\sqrt{t}} \\ dx = -\frac{1}{\sqrt{t}} \, dt \\ \frac{\ln x}{x} \, dx = -\frac{1}{2} \, dt \end{array} \right| = -\frac{1}{2} \int dt = \frac{1}{2}t + C = \frac{1}{2(1 - \ln^2 x)} + C$.

13. $\int \frac{\arccos x - x}{\sqrt{1 - x^2}} \, dx = -\int \arccos x \, d\arccos x + \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} \, d(1 - x^2) = -\frac{1}{2} (\arccos x)^2 + \sqrt{1 - x^2} + C$.

14. $\int \frac{\sqrt{1 + \sqrt{x}}}{\sqrt{x}} \, dx = 2 \int (1 + \sqrt{x})^{\frac{1}{2}} \, d(1 + \sqrt{x}) = \frac{4}{3} \sqrt{(1 + \sqrt{x})^3} + C$.

10
15. \[\int \frac{dx}{\sqrt{e^x - 1}} = \left| \frac{\sqrt{e^x - 1}}{t} \right| = \frac{2dt}{t^2 + 1} = 2\arctg t + C = \]

= 2\arctg \sqrt{e^x - 1} + C.

16. \[\int \frac{xdx}{\sqrt{x + 1}} = \left| \frac{x + 1}{2t} \right| = 2\int \frac{t^2 - 1}{t} dt = 2\left(\frac{t^3}{3} - t \right) + C = \]

= \frac{2}{3} (x + 1)^3 - 2x + 1 + C.

17. \[\int \frac{dx}{1 + \sqrt{x + 3}} = \left| \frac{x + 3}{2t} \right| = \frac{2t}{1 + t} dt = 2\int \left(\frac{1}{t} - \frac{1}{t + 1} \right) dt = \]

= 2t - 2 \ln |t + 1| + C = 2\sqrt{x + 3} - 2 \ln (1 + \sqrt{x + 3}) + C.

18. \[\int \frac{dx}{e^x + 1} = \left| \frac{e^x - 1}{t} \right| = \int \frac{-dt}{t} = -\int \frac{d(t + 1)}{t + 1} = -\ln |t + 1| + C = \]

= -\ln (e^{-x} + 1) + C.

Второе решение:

\[\int \frac{dx}{e^x + 1} = \int \frac{e^{-x} dx}{e^{-x} (e^x + 1)} = \int \frac{e^{-x} dx}{e^{-x} + 1} = -\int \frac{d(e^{-x} + 1)}{e^{-x} + 1} = -\ln (e^{-x} + 1) + C. \]

19. \[\int \frac{dx}{x\sqrt{x^2 - 1}}, \ x < -1. \]

Поскольку \[\int \frac{dx}{x\sqrt{x^2 - 1}} = - \int \frac{dx}{x^2 \sqrt{1 - \left(\frac{1}{x} \right)^2}} = \frac{d\left(\frac{1}{x} \right)}{\sqrt{1 - \left(\frac{1}{x} \right)^2}}, \]

то \[\int \frac{dx}{x\sqrt{x^2 - 1}} = \int \frac{d\left(\frac{1}{x} \right)}{\sqrt{1 - \left(\frac{1}{x} \right)^2}} = \arcsin \frac{1}{x} + C. \]

Легко показать, что при \(x > 1 \) \[\int \frac{dx}{x\sqrt{x^2 - 1}} = -\arcsin \frac{1}{x} + C. \]

20. \[\int \frac{dx}{x^2 + 4x + 9} = \int \frac{d(x + 2)}{(x + 2)^2 + 5} = \frac{1}{\sqrt{5}} \arctg \frac{x + 2}{\sqrt{5}} + C. \]
21. \[
\int \frac{dx}{2x^2 - 4x + 7} = \int \frac{dx}{2(x-1)^2 + 5} = \frac{1}{2} \int \frac{d(x-1)}{(x-1)^2 + \frac{5}{2}} = \frac{1}{\sqrt{10}} \arctg \left(\frac{\sqrt{2}}{\sqrt{5}} (x-1) \right) + C.
\]

22. \[
\int \frac{dx}{\sqrt{15 + 4x - x^2}} = \int \frac{d(x-2)}{\sqrt{19 - (x-2)^2}} = \arcsin \frac{x-2}{\sqrt{19}} + C.
\]

23. \[
\int \frac{dx}{\sqrt{14 - 6x - 3x^2}} = \frac{1}{\sqrt{3}} \int \frac{dx}{\sqrt{14 - 2x - x^2}} = \frac{1}{\sqrt{3}} \int \frac{d(x+1)}{\sqrt{17 - (x+1)^2}} =
\]
\[
= \frac{1}{\sqrt{3}} \arcsin \frac{x+1}{\sqrt{17}} + C.
\]

24. \[
\int \frac{5x - 2}{x^2 + 6x + 17} \, dx = \int \frac{5}{2} \frac{(2x + 6) - 17}{x^2 + 6x + 17} \, dx = \frac{5}{2} \int \frac{d(x^2 + 6x + 17)}{x^2 + 6x + 17} -
\]
\[
-17 \int \frac{d(x+3)}{(x+3)^2 + 8} = \frac{5}{2} \ln(x^2 + 6x + 17) - \frac{17}{2\sqrt{2}} \arctg \frac{x+3}{\sqrt{2}} + C.
\]

25. \[
\int \frac{3x - 7}{x^2 + 4x + 1} \, dx = \int \frac{3}{2} \frac{(2x + 4) - 6 - 7}{x^2 + 4x + 1} \, dx = \frac{3}{2} \int \frac{d(x^2 + 4x + 1)}{x^2 + 4x + 1} -
\]
\[
-13 \int \frac{d(x+2)}{(x+2)^2 - 3} = \frac{3}{2} \ln|x^2 + 4x + 1| - \frac{13}{2\sqrt{3}} \ln|\frac{x+2-\sqrt{3}}{x+2+\sqrt{3}}| + C.
\]

26. \[
\int \frac{x + 3}{\sqrt{2x^2 + 8x + 11}} \, dx = \int \frac{1}{4} \frac{(4x + 8) - 2 + 3}{\sqrt{2x^2 + 8x + 11}} \, dx =
\]
\[
= \frac{1}{4} \int (2x^2 + 8x + 11)^{-\frac{1}{2}} d(2x^2 + 8x + 11) + \frac{1}{\sqrt{2}} \int \frac{d(x+2)}{\sqrt{(x+2)^2 + \frac{3}{2}}} =
\]
\[
= \frac{1}{2} \sqrt{2x^2 + 8x + 11} + \frac{1}{\sqrt{2}} \ln|x + 2 + \sqrt{(x+2)^2 + \frac{3}{2}}| + C.
\]

27. \[
\int x \sin 2x \, dx = \left. u = x, \quad du = dx \right|_{\sin 2x \, dx = dv, \quad v = -\frac{1}{2} \cos 2x} = -\frac{1}{2} x \cos 2x +
\]
\[
+ \frac{1}{2} \int \cos 2x \, dx = -\frac{1}{2} x \cos 2x + \frac{1}{4} \sin 2x + C.
\]

28. \[
\int \arcsin x \, dx = \left. u = \arcsin x, \quad du = \frac{dx}{\sqrt{1-x^2}} \right|_{dv = dx, \quad v = x} = x \arcsin x - \int \frac{x}{\sqrt{1-x^2}} \, dx =
\]
\[
= x \arcsin x + \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} d(1 - x^2) = x \arcsin x + \sqrt{1 - x^2} + C.
\]

29. \[\int x e^{-3x} dx = \begin{vmatrix} u = x, & du = dx \\ e^{-3x} dx = dv, & v = -\frac{1}{3} e^{-3x} \end{vmatrix} = -\frac{1}{3} x e^{-3x} + \frac{1}{3} \int e^{-3x} dx =
\]

\[= -\frac{1}{3} x e^{-3x} - \frac{1}{9} e^{-3x} + C.
\]

30. \[\int x \arctg x dx = \begin{vmatrix} u = \arctg x, & du = \frac{dx}{1 + x^2} \\ dv = x dx, & v = \frac{1}{2} x^2 \end{vmatrix} = \frac{1}{2} x^2 \arctg x - \frac{1}{2} \int \frac{x^2}{1 + x^2} dx =
\]

\[= \frac{1}{2} \arctg x - \frac{1}{2} \int \frac{x^2 + 1 - 1}{1 + x^2} dx = \frac{x^2}{2} \arctg x - \frac{1}{2} x + \frac{1}{2} \arctg x + C.
\]

31. \[\int (x^2 + 3x + 5) \cos 2x dx = \begin{vmatrix} u = x^2 + 3x + 5, & du = (2x + 3) dx \\ \cos 2x dx = dv, & v = \frac{1}{2} \sin 2x \end{vmatrix} =
\]

\[= \frac{1}{2} (x^2 + 3x + 5) \sin 2x - \frac{1}{2} \int (2x + 3) \sin 2x dx = \begin{vmatrix} u = 2x + 3, & du = 2dx \\ \sin 2x dx = dv, & v = -\frac{1}{2} \cos 2x \end{vmatrix} =
\]

\[= \frac{1}{2} (x^2 + 3x + 5) \sin 2x - \frac{1}{2} \left(-\frac{1}{2} (2x + 3) \cos 2x + \int \cos 2x dx \right) =
\]

\[= \left(\frac{1}{2} x^2 + \frac{3}{2} x + \frac{9}{4} \right) \sin 2x + \left(\frac{x}{2} + \frac{3}{4} \right) \cos 2x + C.
\]

32. \[\int x^3 \ln^2 x dx = \begin{vmatrix} u = \ln^2 x, & du = 2 \ln x \cdot \frac{1}{x} dx \\ dv = x^3 dx, & v = \frac{x^4}{4} \end{vmatrix} = \frac{1}{4} x^4 \cdot \ln^2 x - \frac{1}{2} \int x^3 \ln x dx =
\]

\[= \begin{vmatrix} u = \ln x, & du = \frac{dx}{x} \\ x^3 dx = dv, & v = \frac{x^4}{4} \end{vmatrix} = \frac{1}{4} x^4 \ln^2 x - \frac{1}{8} x^4 \ln x - \frac{1}{32} x^4 + C.
\]
33. \[I = \int \cos(\ln x) \, dx = \begin{vmatrix} u = \cos(\ln x), & du = -\sin(\ln x) \cdot \frac{dx}{x} \\ dv = dx, & v = x \end{vmatrix} = x\cos(\ln x) + \]
\[+ \int \sin(\ln x) \, dx = \begin{vmatrix} u = \sin(\ln x), & du = \cos(\ln x) \cdot \frac{dx}{x} \\ dv = dx, & v = x \end{vmatrix} = x\cos(\ln x) + x\sin(\ln x) - \]
\[- \int \cos(\ln x) \, dx. \]
\[I = \frac{x}{2} (\cos(\ln x) + \sin(\ln x)) + C. \]

34. \[I = \int e^{ax} \cos bx \, dx = \begin{vmatrix} u = e^{ax}, & du = ae^{ax} \cdot \frac{dx}{b} \\ dv = \cos bx \, dx, & v = \frac{1}{b} \sin bx \end{vmatrix} = \frac{e^{ax} \sin bx}{b} - \]
\[- \frac{a}{b} \int e^{ax} \sin bx \, dx = \begin{vmatrix} u = e^{ax}, & du = ae^{ax} \cdot \frac{dx}{b} \\ dv = \sin bx \, dx, & v = \frac{1}{b} \cos bx \end{vmatrix} = \frac{e^{ax} \sin bx}{b} - \]
\[- \frac{a}{b} \left(-\frac{1}{b} e^{ax} \cos bx + \frac{a}{b} \int e^{ax} \cos bx \, dx \right). \]
\[I \left(1 + \frac{a^2}{b^2} \right) = \frac{e^{ax} \sin bx}{b} + \frac{a}{b^2} e^{ax} \cos bx. \]
\[I = \int e^{ax} \cos bx \, dx = \frac{b \sin bx + a \cos bx}{a^2 + b^2} e^{ax} + C. \]

35. \[\int \arctg \sqrt{x} \, dx = \begin{vmatrix} x = t^2, & \frac{dx}{dt} = 2t \end{vmatrix} = 2 \int \arctg t \, dt = \begin{vmatrix} u = \arctg t, & du = \frac{dt}{1 + t^2} \\ dv = dt, & v = t \end{vmatrix} = \]
\[= 2 \left(t \arctg t - \int \frac{t \, dt}{1 + t^2} \right) = 2t \arctg t - \ln (1 + t^2) + C = \]
\[= 2\sqrt{x} \arctg \sqrt{x} - \ln (1 + x) + C. \]

Дополнительные задачи

Найти неопределенные интегралы:

1. \[\int \frac{\sqrt{x} - 2\sqrt[3]{x^2}}{4\sqrt{x}} \, dx. \] Ответ: \[\frac{4}{5} x^{4/3} - \frac{24}{17} x^{12/5} + \frac{4}{3} x^{3/2} + C. \]
2. \(\int \frac{x^2}{1+x^2} \, dx \).
Ответ: \(x - \arctg x + C \).

3. \(\int \frac{dx}{\sqrt{2-5x}} \).
Ответ: \(-\frac{2}{5}\sqrt{2-5x} + C \).

4. \(\int \frac{x \, dx}{(1+x^2)^2} \).
Ответ: \(-\frac{1}{2(1+x^2)} + C \).

5. \(\int \frac{dx}{e^x + e^{-x}} \).
Ответ: \(\arctge^x + C \).

6. \(\int \frac{\sin x}{\sqrt{\cos^3 x}} \, dx \).
Ответ: \(\frac{2}{\sqrt{\cos x}} + C \).

7. \(\int \frac{dx}{x \ln x \ln(\ln x)} \).
Ответ: \(\ln |\ln(\ln x)| + C \).

8. \(\int \frac{3x + 5}{\sqrt{1-x^2}} \, dx \).
Ответ: \(3\sqrt{1-x^2} + 5\arcsin x + C \).

9. \(\int x\sqrt{x-5} \, dx \).
Ответ: \(2(x-5)^{\frac{5}{2}} + 10(x-5)^{\frac{3}{2}} + C \).

10. \(\int \frac{dx}{2 + \sqrt{1+x}} \).
Ответ: \(2\sqrt{1+x} - 4\ln(\sqrt{1+x} + 2) + C \).

11. \(\int \frac{dx}{2x^2 - 3x + 2} \).
Ответ: \(\frac{2}{\sqrt{7}} \arctg \frac{4x-3}{\sqrt{7}} + C \).

12. \(\int \frac{dx}{1 - 2x - 3x^2} \).
Ответ: \(-\frac{1}{4} \ln \left| \frac{3x-1}{3x+3} \right| + C \).

13. \(\int \frac{dx}{\sqrt{3x+2} - 2x^2} \).
Ответ: \(\frac{1}{\sqrt{2}} \arcsin \frac{4x-3}{5} + C \).

14. \(\int \frac{(x+1) \, dx}{x^2 + x + 1} \).
Ответ: \(\frac{1}{2} \ln (x^2 + x + 1) + \frac{1}{\sqrt{3}} \arctg \frac{2x+1}{\sqrt{3}} + C \).

15. \(\int \frac{xdx}{\sqrt{5+x-x^2}} \).
Ответ: \(-\sqrt{5} + x - x^2 + \frac{1}{2} \arcsin \frac{2x-1}{\sqrt{21}} + C \).

16. \(\int (x^2 - 2x + 3) \ln x \, dx \).
Ответ: \(x\ln x - \ln \cos x | + C \).

17. \(\int \frac{x \, dx}{\cos^2 x} \).
Ответ: \(2\sqrt{x} \arcsin \sqrt{x} + C \).

18. \(\int \frac{\arcsin \sqrt{x}}{\sqrt{x}} \, dx \).
Ответ: \(2\sqrt{x} \arcsin \sqrt{x} - 2\sqrt{1-x} + C \).

19. \(\int \frac{x \cos x}{\sin^3 x} \, dx \).
Ответ: \(-\frac{1}{2}\left(\frac{x}{\sin^2 x} + \cotg x \right) + C \).
20. \[\int (x^2 + 2x - 1) \sin 3xdx. \] Ответ: \[\frac{9x^2 + 18x - 11}{27} \cos 3x + \frac{2x + 2}{9} \sin 3x + C. \]

21. \[\int \arcsin^2 xdx. \] Ответ: \[x \arcsin^2 x + 2 \sqrt{1 - x^2} \arcsin x - 2x + C. \]

Занятие 4

Интегрирование рациональных функций

Пример 1. Представить неправильную рациональную дробь в виде суммы многочлена и правильной рациональной дроби:

1) \[f(x) = \frac{x^3 + 1}{x^2 + x + 1}; \]
2) \[f(x) = \frac{2x^3 + 3x^2 - 5x + 8}{x^2 + 3x + 7}. \]

\[\Delta \]
1) Разделим уголком числитель на знаменатель:
\[\begin{align*}
\frac{x^3 + 1}{x^2 + x + 1} &= x - 1 + \frac{2}{x^2 + x + 1}. \\
\frac{x^3 + 1}{x^2 + x + 1} &= -x^2 - x + 1 \\
&= -x^2 - x - 1 \\
&= 2.
\end{align*} \]

Следовательно, \[\frac{x^3 + 1}{x^2 + x + 1} = x - 1 + \frac{2}{x^2 + x + 1}. \]

2) Числитель неправильной рациональной дроби преобразуем так, чтобы в нем выделить слагаемое, кратное знаменателю и включающее старшую степень многочлена \(x \):

\[f(x) = \frac{2x^3 + 3x^2 - 5x + 8}{x^2 + 3x + 7} = \frac{2x(x^2 + 3x + 7 - 3x - 7) + 3x^2 - 5x + 8}{x^2 + 3x + 7} = \]
\[= 2x + \frac{-3x^2 - 19x + 8}{x^2 + 3x + 7} = 2x + \frac{-3(x^2 + 3x + 7 - 3x - 7) - 19x + 8}{x^2 + 3x + 7} = \]
\[= 2x - 3 + \frac{-10x + 29}{x^2 + 3x + 7}. \]

Пример 2. С помощью элементарных преобразований разложить рациональную дробь \[\frac{1}{x^2(x^2 + 1)^2} \] на простейшие.

\[\Delta \]
\[\frac{1}{x^2(x^2 + 1)^2} = \frac{(x^2 + 1) - x^2}{x^2(x^2 + 1)^2} = \frac{1}{x^2(x^2 + 1)} - \frac{1}{(x^2 + 1)^2} = \]
Пример 3. Найти \(\int \frac{dx}{x^3 + 1} \).

Поскольку \(x^3 + 1 = (x + 1)(x^2 - x + 1) \), то

\[
\frac{1}{x^3 + 1} = \frac{1}{(x + 1)(x^2 - x + 1)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 - x + 1}.
\]

Для нахождения значений \(A, B \) и \(C \) используем метод неопределенных коэффициентов:

\[
A(x^2 - x + 1) + (Bx + C)(x + 1) = 1, \quad (A + B)x^2 + (B + C - A)x + A + C = 1.
\]

Приравнивая коэффициенты при одинаковых степенях многочленов, получаем систему уравнений

\[
\begin{align*}
x^2 &: A + B = 0, \\
x^1 &: - A + B + C = 0, \\
x^0 &: A + C = 1.
\end{align*}
\]

Отсюда \(A = \frac{1}{3}, \quad B = -\frac{1}{3}, \quad C = \frac{2}{3} \). Таким образом, при \(x \neq -1 \)

\[
\int \frac{dx}{x^3 + 1} = \frac{1}{3} \int \frac{dx}{x + 1} + \frac{1}{3} \int \frac{-x + 2}{x^2 - x + 1} \, dx = \frac{1}{3} \ln |x + 1| - \frac{1}{6} \int \frac{2x - 1}{x^2 - x + 1} \, dx +
\]

\[
+ \frac{1}{2} \int \left(\frac{x - \frac{1}{2}}{x - \frac{1}{2}} \right)^2 + \frac{3}{4} \, dx = \frac{1}{3} \ln |x + 1| - \frac{1}{6} \ln (x^2 - x + 1) + \frac{1}{\sqrt{3}} \arctg \frac{2x - 1}{\sqrt{3}} + C.
\]

Пример 4. Найти \(\int \frac{2x^3 + x^2 + 5x + 1}{(x^2 + 3)(x^2 - x + 1)} \, dx \).

Разложение подынтегральной функции на простейшие дроби имеет вид

\[
\frac{2x^3 + x^2 + 5x + 1}{(x^2 + 3)(x^2 - x + 1)} = \frac{Ax + B}{x^2 + 3} + \frac{Mx + N}{x^2 - x + 1}.
\]

Значения \(A, B, M \) и \(N \) найдем методом неопределенных коэффициентов

\[
2x^3 + x^2 + 5x + 1 = (Ax + B)(x^2 - x + 1) + (Mx + N)(x^2 + 3).
\]

Приравнивая коэффициенты при одинаковых степенях получим систему

\[
\begin{align*}
x^3 &: A + M = 2, \\
x^2 &: - A + B + N = 1, \\
x^1 &: A - B + 3M = 5, \\
x^0 &: B + 3N = 1.
\end{align*}
\]
Решением этой системы являются числа $A = 0$, $B = 1$, $M = 2$, $N = 0$.

Таким образом,

$$\int \frac{2x^3 + x^2 + 5x + 1}{(x^2 + 3)(x^2 - x + 1)} \, dx = \int \frac{dx}{x^2 + 3} + \int \frac{2x \, dx}{x^2 - x + 1} = \int \frac{dx}{x^2 + 3} + \int \frac{2x - 1}{x^2 - x + 1} \, dx +$$

$$+ \int \frac{d\left(x - \frac{1}{2}\right)}{(x - \frac{1}{2})^2 + 3/4} = \frac{1}{\sqrt{3}} \arctg \frac{x}{\sqrt{3}} + \ln (x^2 - x + 1) + \frac{2}{\sqrt{3}} \arctg \frac{2x - 1}{\sqrt{3}} + C. \quad \blacktriangle$$

Пример 5. Найти $\int \frac{x^4 - 3x^2 - 3x - 2}{x^3 - x^2 - 2x} \, dx$.

Δ Разделив числитель на знаменатель, выделим целую часть неправильной рациональной дроби:

$$\frac{x^4 - 3x^2 - 3x - 2}{x^3 - x^2 - 2x} = \frac{x^3 - x^2 - 2x}{x + 1} - \frac{x^3 - x^2 - 3x - 2}{x^3 - x^2 - 2x}$$

Следовательно, $\int \frac{x^4 - 3x^2 - 3x - 2}{x^3 - x^2 - 2x} \, dx = \int (x + 1) \, dx - \int \frac{(x + 2)}{x(x - 2)(x + 1)} \, dx$.

Разлагаем оставшуюся правильную дробь на простейшие:

$$\frac{x + 2}{x(x - 2)(x + 1)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{D}{x + 1}.$$

Значения A, B и D можно найти методом неопределенных коэффициентов. Но так как все корни знаменателя вещественные и простые, более удобным является метод частных значений: $A(x - 2)(x + 1) + B(x + 1) + Dx(x - 2) = x + 2$.

Подставляя поочередно в правую и левую часть значения $x_1 = 0$, $x_2 = 2$, $x_3 = -1$, (корни знаменателя), получим $A = -1$, $B = \frac{2}{3}$, $D = \frac{1}{3}$. Таким образом,

$$\int \frac{x^4 - 3x^2 - 3x - 2}{x^3 - x^2 - 2x} \, dx = \int (x + 1) \, dx + \int \frac{dx}{x} - 2 \int \frac{dx}{x - 2} - \frac{1}{3} \int \frac{dx}{x + 1} =$$

$$= \frac{x^2}{2} + x + \ln|x| - \frac{2}{3} \ln|x - 2| - \frac{1}{3} \ln|x + 1| + C. \quad \blacktriangle$$

Пример 6. Найти $\int \frac{x^4 - 3}{x(x^8 + 3x^4 + 2)} \, dx$.

Δ Полагая $x^4 = t$, находим
\[
\int \frac{x^4 - 3}{x(x^8 + 3x^4 + 2)} \, dx = \int \frac{x^3(x^4 - 3)}{x^4(x^8 + 3x^4 + 2)} \, dx = \frac{1}{4} \int \frac{(t - 3) \, dt}{t(t + 1)(t + 2)}.
\]
Разложение функции на простые дроби имеет вид
\[
\frac{t - 3}{t(t + 1)(t + 2)} = \frac{A}{t} + \frac{B}{t + 1} + \frac{D}{t + 2},
\]
откуда \(t - 3 = A(t + 1)(t + 2) + B(t + 2) + D(t + 1) \). Полагая последовательно \(t = 0, -1, -2 \), находим \(A = -\frac{3}{2}, B = 4, C = -\frac{5}{2} \).

Таким образом,
\[
\int \frac{x^4 - 3}{x(x^8 + 3x^4 + 2)} \, dx = -\frac{3}{8} \ln |t| + \ln |t + 1| - \frac{5}{8} \ln |t + 2| + C = -\frac{3}{8} \ln x^4 + \\
+ \ln (x^4 + 1) - \frac{5}{8} \ln (x^4 + 2) + C. \]

Пример 7. Найти \(\int \frac{dx}{x(x+1)(x^2 + x + 1)} \).

\(\Delta \) Имеем
\[
\frac{1}{x(x+1)(x^2 + x + 1)} = \frac{A}{x} + \frac{B}{x+1} + \frac{Cx + D}{x^2 + x + 1},
\]
\(A(x+1)(x^2 + x + 1) + Bx(x^2 + x + 1) + (Cx + D)(x^2 + x) = 1. \)

Здесь удобно первые два коэффициента \(A \) и \(B \) получить методом частных значений, а \(C \) и \(D \) – методом неопределенных коэффициентов. Подставив поочередно \(x = 0 \) и \(x = -1 \), получим \(A = 1, B = -1 \). Приравняв коэффициенты при \(x^3 \) и \(x^2 \), получим систему
\[
\begin{align*}
A + B + C &= 0, \\
2A + B + D &= 0,
\end{align*}
\]
из которой находим \(C = 0, D = -1 \).

Таким образом,
\[
\int \frac{dx}{x(x+1)(x^2 + x + 1)} = \int \frac{dx}{x} - \int \frac{dx}{x+1} - \int \frac{dx}{x^2 + x + 1} = \ln|x| - \ln|x + 1| - \\
- \int \frac{d \left(\frac{x+1}{2} \right)}{\left(\frac{x+1}{2} \right)^2 + \frac{3}{4}} = \ln|x| - \ln|x + 1| - \frac{2}{\sqrt{3}} \arctg \frac{2x+1}{\sqrt{3}} + C. \]

Пример 8. Найти \(\int \frac{7x^2 + 18x - 14}{(x+6)(2x^2 + 2x + 5)} \, dx \).

\(\Delta \) Разложение подынтегральной функции на простейшие дроби имеет вид
\[
\frac{7x^2 + 18x - 14}{(x+6)(2x^2 + 2x + 5)} = \frac{A}{x+6} + \frac{Mx + N}{2x^2 + 2x + 5},
\]
откуда \(7x^2+18x-14 = A(2x^2 + 2x + 5) + (Mx + N)(x + 6)\).

Положив \(x = -6\), получаем \(A = 2\).

Приравнивая коэффициенты при \(x^2\) и \(x^0\), имеем
\[
\begin{align*}
x^2 \bigg| \begin{align*}
7 &= 4 + M, \\
M &= 3,
\end{align*} \\
nx^0 \bigg| \begin{align*}
-14 &= 10 + 6N, \\
N &= -4.
\end{align*}
\]

Таким образом,
\[
\int -\frac{7x^2+18x-14}{(x+6)(2x^2+2x+5)}\,dx = 2\int \frac{dx}{x+6} + \frac{3x-4}{2x^2+2x+5}\,dx =
\]
\[
= 2\ln|x+6| + \frac{3}{4}\int \frac{d(2x^2+2x+5)}{2x^2+2x+5} - \frac{11}{4}\int \frac{dx}{(x+\frac{1}{2})^2 + (\frac{3}{2})^2} =
\]
\[
= 2\ln|x+6| + \frac{3}{4}\ln(2x^2+2x+5) - \frac{11}{6}\arctg\frac{2x+1}{3} + C. \quad \Delta
\]

Пример 9. Найти \(\int \frac{dx}{(x^2 + 2x + 3)^2}\).

Имеем
\[
\int \frac{dx}{(x^2 + 2x + 3)^2} = \int \frac{d(x+1)}{(x+1)^2 + 2} = |x+1 = t| = \int \frac{dt}{(t^2 + 2)^2} = I_2.
\]

Для вычисления \(I_2\) вспользуем рекуррентным соотношением
\[
I_k = \frac{t}{2a^2(k-1)(t^2 + a^2)^{k-1} + \frac{2k-3}{2a^2(k-1)}} I_{k-1}.
\]

Так как \(I_1 = \int \frac{dt}{t^2 + a^2} = \frac{1}{a}\arctg\frac{t}{a} + C\), то \(I_2 = \frac{1}{4} \cdot \frac{t}{t^2 + 2} + \frac{1}{4} \int \frac{dt}{t^2 + 2} =
\]
\[
= \frac{1}{4} \cdot \frac{t}{t^2 + 2} + \frac{1}{4\sqrt{2}} \arctg\frac{t}{\sqrt{2}} + C = \frac{1}{4} \cdot \frac{x+1}{x^2 + 2x + 3} + \frac{1}{4\sqrt{2}} \arctg\frac{x+1}{\sqrt{2}} + C. \quad \Delta
\]

Замечание. \(\int \frac{dt}{(t^2 + 2)^2}\) можно вычислить с помощью подстановки \(t = \sqrt{2}\tan\theta\).

Пример 10. Найти \(\int \frac{x^2\,dx}{(x-1)^{100}}\).

Имеем
\[
\int \frac{x^2\,dx}{(x-1)^{100}} = \left|\frac{x-1 = t}{\frac{d(x}{dx} = dt}\right| = \int \frac{(t+1)^2}{t^{100}}\,dt = \int \frac{t^2 + 2t + 1}{t^{100}}\,dt =
\]
\[
= \int t^{-98}\,dt + 2\int t^{-99}\,dt + \int t^{-100}\,dt = -\frac{1}{97t^{97}} - \frac{2}{98t^{98}} - \frac{1}{99t^{99}} + C =
\]
\[
= -\frac{1}{97(x-1)^{97}} - \frac{2}{98(x-1)^{98}} - \frac{1}{99(x-1)^{99}} + C. \quad \Delta
\]
Найти неопределенные интегралы:

1. \(\int \frac{x}{x^3 - 1} \, dx \)
 \[\text{Ответ: } \frac{1}{3} \ln|x - 1| - \frac{1}{6} \ln (x^2 + x + 1) + \frac{1}{\sqrt{3}} \arctg \frac{2x + 1}{\sqrt{3}} + C. \]

2. \(\int \frac{x + 1}{x^3 - 5x^2 + 6x} \, dx \)
 \[\text{Ответ: } \frac{1}{6} \ln |x| - \frac{3}{2} \ln |x - 2| + \frac{4}{3} \ln |x - 3| + C. \]

3. \(\int \frac{2x - 5}{x^3 - 3x^2 + 4} \, dx \)
 \[\text{Ответ: } \frac{1}{3(x - 2)} + \frac{7}{9} \ln \left| \frac{x - 2}{x + 1} \right| + C. \]

4. \(\int \frac{5x^3 + 9x^2 - 22x - 8}{x^3 - 4x} \, dx \)
 \[\text{Ответ: } 5x + \ln \left| x^2 (x + 2)^4 (x - 2)^3 \right| + C. \]

5. \(\int \frac{x^4 + 3x^2 + 1}{x(x^2 + 1)^2} \, dx \)
 \[\text{Ответ: } \frac{1}{2} \ln |x| + \frac{1}{2(x^2 + 1)} + C. \]

6. \(\int \frac{3x^3 + 4x^2 + 6x}{(x^2 + 2)(x^2 + 2x + 2)} \, dx \)
 \[\text{Ответ: } \ln \left((x^2 + 2) \sqrt{x^2 + 2x + 2} \right) - \arctg (x + 1) + C. \]

7. Используя рекуррентное соотношение, найти \(\int \frac{dx}{(x^2 + 2)^3} \).
 \[\text{Ответ: } \frac{x}{8(x^2 + 2)^2} + \frac{3}{8} \left(\frac{x}{4(x^2 + 2)} + \frac{1}{4\sqrt{2}} \arctg \frac{x}{\sqrt{2}} \right) + C. \]

Занятие 5

Интегрирование тригонометрических и иррациональных выражений

Пример 1. Найти \(\int \frac{dx}{2 \sin x - \cos x + 5} \).
Применим универсальную подстановку $\tan \frac{x}{2} = t$:

$$\int \frac{dx}{2 \sin x - \cos x + 5} = \left| \begin{array}{l}
x = 2 \arctg t, \\
dx = \frac{2dt}{1 + t^2}
\end{array} \right| =$$

$$\sin x = \frac{2t}{1 + t^2}, \cos x = \frac{1 - t^2}{1 + t^2} =$$

$$= 2 \int \frac{dt}{\left(2 \cdot \frac{2t}{1 + t^2} - \frac{1 - t^2}{1 + t^2} + 5\right)(1 + t^2)} = 2 \int \frac{dt}{6t^2 + 4t + 4} = \frac{1}{3} \int \frac{dt}{t^2 + \frac{2}{3}t + \frac{2}{3}} =$$

$$= \frac{1}{3} \int \frac{d\left(t + \frac{1}{3}\right)}{\left(t + \frac{1}{3}\right)^2 + \left(\frac{\sqrt{5}}{3}\right)^2} = \frac{1}{3} \cdot \frac{3}{\sqrt{5}} \arctg \frac{t + \frac{1}{3}}{\frac{\sqrt{5}}{3}} + C = \frac{1}{\sqrt{5}} \arctg \frac{3 \tan \frac{x}{2} + 1}{\sqrt{5}} + C. \ ▲$$

Пример 2. Найти $\int \frac{dx}{4 \sin x + 3 \cos x + 5}$.

$$\Delta \int \frac{dx}{4 \sin x + 3 \cos x + 5} = \left| \begin{array}{l}
\tan \frac{x}{2} = t
\end{array} \right| = 2 \int \frac{dt}{\left(\frac{4 \cdot 2t}{1 + t^2} + 3 \frac{1 - t^2}{1 + t^2} + 5\right)(1 + t^2)} =$$

$$= \int \frac{dt}{t^2 + 4t + 4} = \int \left(t + 2\right)^2 - d(t + 2) = - \frac{1}{t + 2} + C = - \frac{1}{\tan \frac{x}{2} + 2} + C. \ ▲$$

Пример 3. Найти $\int \frac{\sin^3 x}{\cos x \cdot 3\sqrt{\cos x}} dx$.

Δ При вычислении интегралов $\int \sin^m x \cos^n x dx$, если m — нечетное положительное число, то применяется подстановка $\cos x = t$, если же n — нечетное положительное число, то применяется подстановка $\sin x = t$.

$$\int \frac{\sin^3 x}{\cos x \cdot 3\sqrt{\cos x}} dx = \int (1 - \cos^2 x) \cos^{-\frac{4}{3}} x \sin x dx = |\cos x = t| =$$

$$= - \int (1 - t^2) t^{-\frac{4}{3}} dt = - \int t^{-\frac{4}{3}} dt + \int t^\frac{2}{3} dt = 3 t^{-\frac{1}{3}} + \frac{3}{5} t^\frac{5}{3} + C = \frac{3}{\sqrt{\cos x}} + \frac{3}{5} \cos \frac{3}{\sqrt{\cos x}} \cos^2 x + C. \ ▲$$

Пример 4. Найти $\int \sin^4 x \cos^5 x dx$.

$\Delta \int \sin^4 x (1 - \sin^2 x)^2 \cos x dx = \int (\sin^4 x - 2 \sin^6 x + \sin^8 x) d \sin x =$

$$= \frac{1}{5} \sin^5 x - \frac{2}{7} \sin^7 x + \frac{1}{9} \sin^9 x + C. \ ▲$$
Пример 5. Найти $\int \sin^4 x \cos^2 x \, dx$.

Δ Применив формулы понижения степени, получим

$\int \sin^4 x \cos^2 x \, dx = \int (\sin x \cdot \cos x)^2 \, dx =$

$= \frac{1}{8} (1 - \cos 2x) \cdot \sin^2 2x \, dx = \frac{1}{8} \left(\int \sin^2 2x \, dx - \int \sin^2 2x \cdot \cos 2x \, dx \right) =$

$= \frac{1}{16} \int (1 - \cos 4x) \, dx - \frac{1}{16} \int \sin^2 2x \cdot \sin 2x = \frac{1}{16} x - \frac{1}{64} \sin 4x - \frac{1}{48} \sin^3 2x + C. \quad \triangle$

Пример 6. Найти $\int \frac{dx}{\sin^3 x \cos x}$.

Δ Функция $R(x) = \frac{1}{\sin^3 x \cos x}$ является четной по совокупности аргументов $\sin x$ и $\cos x$. Поэтому для ее интегрирования целесообразно применить подстановку $t = \tan x$.

$\int \frac{dx}{\sin^3 x \cdot \cos x} = \int \frac{\tan x \, dx}{\sin^4 x} = \left| \begin{array}{l} t = \tan x, \quad x = \arctg t \\ dx = \frac{dt}{1 + t^2}, \quad \sin^2 x = \frac{t^2}{1 + t^2} \end{array} \right| =$

$= \int \frac{(1 + t^2)^2}{t^2(1 + t^2)} \, dt = \int \frac{1 + t^2}{t^3} \, dt = \int \frac{dt}{t} + \int t^{-3} \, dt = \ln|t| - \frac{1}{2t^2} + C = \ln|\tan x| - \frac{1}{2\tan^2 x} + C. \quad \triangle$

Пример 7. Найти $\int \tan^7 x \, dx$.

Δ $\int \tan^7 x \, dx = \left| \begin{array}{l} \tan x = t, \quad x = \arctg t \\ dx = \frac{dt}{1 + t^2} \end{array} \right| = \int \frac{t^7 \, dt}{1 + t^2} =$

$= \int \frac{t^7 + t^5 - t^5 - t^3 + t^3 + t - t}{1 + t^2} \, dt = \int \left(t^5 - t^3 + t - \frac{t}{1 + t^2} \right) \, dt =$

$= \frac{1}{6} t^6 - \frac{1}{4} t^4 - \frac{1}{2} t^2 - \frac{1}{2} \ln|1 + t^2| + C = \frac{1}{6} \tan^6 x - \frac{1}{4} \tan^4 x + \frac{1}{2} \tan^2 x + \ln|\cos x| + C. \quad \triangle$

Пример 8. Найти $\int \cot^6 x \, dx$.

Δ $\int \cot^6 x \, dx = \left| \begin{array}{l} \cot x = t, \quad x = \arccot t \\ dx = -\frac{dt}{1 + t^2} \end{array} \right| = -\int \frac{t^6 \, dt}{t^2 + 1} =$

$= -\int \frac{t^6 + t^4 - t^4 - t^2 + t^2 + 1 - 1}{t^2 + 1} \, dt = \int \left(-t^4 + t^2 - 1 + \frac{1}{t^2 + 1} \right) \, dt =$

$= -\frac{1}{5} t^5 + \frac{1}{3} t^3 - t - \arccot t + C = -\frac{1}{5} \cot^5 x + \frac{1}{3} \cot^3 x - \cot x - x + C. \quad \triangle$
Пример 9. Найти \(\int \cos 2x \cos 6x \, dx \).

\[\int \cos 2x \cos 6x \, dx = \frac{1}{2} \int (\cos 4x + \cos 8x) \, dx = \frac{1}{8} \sin 4x + \frac{1}{16} \sin 8x + C. \]

Пример 10. Найти \(\int \frac{dx}{1 + \sin x} \).

\(\Delta \) Этот интеграл можно вычислить с помощью универсальной подстановки \(\tan \frac{x}{2} = t \), но проще произвести следующие преобразования:

\[\int \frac{dx}{1 + \sin x} = -\int \frac{d\left(\frac{\pi}{2} - x\right)}{1 + \cos \left(\frac{\pi}{2} - x\right)} = -\int \frac{d\left(\frac{\pi}{4} - \frac{x}{2}\right)}{\cos^2 \left(\frac{\pi}{4} - \frac{x}{2}\right)} = -\tan \left(\frac{\pi}{4} - \frac{x}{2}\right) + C. \]

Пример 11. Найти \(\int \frac{1}{\cos^4 x \sin^2 x} \, dx \).

\(\Delta \) \[\int \frac{dx}{\cos^4 x \sin^2 x} = \int \frac{(\sin^2 x + \cos^2 x)^2}{\cos^2 x \sin^2 x} \, dx = \int \frac{\sin^2 x}{\cos^2 x} \, dx + 2 \int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x} = \int \tan^2 x \, dx + 2 \tan x - \sec x + C = \frac{1}{3} \tan^3 x + 2 \tan x - \sec x + C. \]

Пример 12. Найти \(\int \frac{dx}{\sqrt{x + \frac{3}{\sqrt{x}}} \, dx} \).

\(\Delta \) Наименьшее общее кратное чисел (2, 3) равно 6, поэтому делаем подстановку \(x = t^6 \), \(dx = 6t^5 \, dt \).

\[\int \frac{dx}{\sqrt{x + \frac{3}{\sqrt{x}}} \, dx} = 6 \int \frac{t^5 \, dt}{t^3 + t^2} = 6 \int \frac{t^3 \, dt}{t + 1} = 6 \left[\frac{(t^3 + 1)}{t + 1} \right] \, dt = 6 \left[t^3 \right. - t + 1 \left. - \frac{1}{t + 1} \right] \, dt = 2t^3 - 3t^2 + 6t - 6 \ln |t + 1| + C = 2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[5]{x} - 6 \ln \sqrt[6]{x + 1} + C. \]

Пример 13. Найти \(\int \frac{\sqrt{x + \frac{3}{\sqrt{x}}}}{\sqrt{x^5} - \sqrt[6]{x^7}} \, dx \).

\(\Delta \) Наименьшее общее кратное чисел (2, 3, 4, 6) равно 12, поэтому делаем подстановку \(x = t^{12} \).

\[\int \frac{\sqrt{x + \frac{3}{\sqrt{x}}}}{\sqrt{x^5} - \sqrt[6]{x^7}} \, dx = \left| \begin{array}{c} x = t^{12} \ = 12 \int \frac{t^{11}(t^6 + t^4)}{t^{15} - t^{14}} \, dt = 12 \int \frac{t^{11}}{t^1} \, dt = 12 \frac{t^{12}}{t^1 - 1} \right| \]
= 12 \int \frac{(t^3 - 1) + (t - 1) + 2}{t - 1} dt = 12 \int \frac{t^2 + 2 + \frac{2}{t - 1}}{t - 1} dt =

= 4t^3 + 6t^2 + 24t + 24 \ln|t - 1| + C = 4\sqrt[4]{x} + 6\sqrt[6]{x} + 24\sqrt[12]{x} + 24 \ln\sqrt[12]{x} - 1| + C. ▲

Пример 14. Найти \(\int \frac{1 + x}{\sqrt{1 - x}} \cdot \frac{dx}{1 - x} \).

\[\Delta \int \frac{1 + x}{\sqrt{1 - x}} \cdot \frac{dx}{1 - x} = \left| t = \frac{1 + x}{\sqrt{1 - x}}, \ x = \frac{t^2 - 1}{t^2 + 1} \right| = 2\int \frac{t^2 dt}{t^2 + 1} =

= 2\int \frac{t^2 + 1 - 1}{t^2 + 1} dt = 2t - 2\arctgt + C = 2\sqrt{\frac{1 + x}{1 - x}} - 2\arctg\left(\sqrt{\frac{1 + x}{1 - x}}\right) + C. ▲

Пример 15. Найти \(\int \frac{2x^2 - x - 5}{\sqrt{x^2 - 2x}} dx \).

\[\Delta \text{Интеграл} \int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx \text{ можно найти по формуле}

\[\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx = Q_{n-1}(x)\sqrt{ax^2 + bx + c} + \lambda\int \frac{dx}{\sqrt{ax^2 + bx + c}}.

\int \frac{2x^2 - x - 5}{\sqrt{x^2 - 2x}} dx = (Ax + B)\sqrt{x^2 - 2x} + \lambda\int \frac{dx}{\sqrt{x^2 - 2x}}.

Для определения постоянных \(A, B \) и \(\lambda \) дифференцируем обе части равенства, затем умножаем его на \(\sqrt{x^2 - 2x} \):

\[\frac{2x^2 - x - 5}{\sqrt{x^2 - 2x}} = A\sqrt{x^2 - 2x} + (Ax + B)\frac{x - 1}{\sqrt{x^2 - 2x}} + \lambda\frac{x}{\sqrt{x^2 - 2x}};

\[2x^2 - x - 5 = A(x^2 - 2x) + (Ax + B)(x - 1) + \lambda = 2Ax^2 + (B - 3A)x + (\lambda - B).

Сравнивая коэффициенты при одинаковых степенях, получим \(A = 1, B = 2, \lambda = -3 \).

\[\int \frac{2x^2 - x - 5}{\sqrt{x^2 - 2x}} dx = (x + 2)\sqrt{x^2 - 2x} - 3\int \frac{dx}{\sqrt{x^2 - 2x}} = (x + 2)\sqrt{x^2 - 2x} - 3\ln|x - 1 + \sqrt{x^2 - 2x}| + C. ▲

\]
Пример 16. Найти \[\int \frac{dx}{(x-1)\sqrt{1-x^2}}. \]

\[\Delta \text{ Интегралы вида } \int \frac{dx}{(x-\alpha)^k \sqrt{ax^2 + bx + c}} \text{ можно найти подстановкой } x - \alpha = \frac{1}{t}, \]

\[\int \frac{dx}{(x-1)\sqrt{1-x^2}} = \left| \begin{array}{c} x - 1 = \frac{1}{t} \\ dx = -\frac{1}{t^2} dt \end{array} \right| = \int \frac{-dt}{t^2} \left| \frac{1}{t\sqrt{1+2t}} \right| = -\int \frac{|t|dt}{t\sqrt{-1-2t}} = \int \frac{dt}{\sqrt{-1-2t}}, \]

tак как \[t = \frac{1}{x-1} < 0. \]

\[\int \frac{dt}{\sqrt{-1-2t}} = -\frac{1}{2} \int (-1-2t)^{-\frac{1}{2}} d(-1-2t) = -(1-2t)^\frac{1}{2} + C = \]

\[= -\sqrt{1-\frac{2}{x-1}} + C = -\frac{\sqrt{x+1}}{\sqrt{1-x}} + C. \]

Пример 17. Найти \[\int \frac{x^2}{\sqrt{6-4x-2x^2}} dx. \]

\[\Delta \text{ Интегралы вида } \int R(x, \sqrt{ax^2 + bx + c}) dx \text{ можно находить с помощью тригонометрических подстановок:} \]

\[\int \frac{x^2}{\sqrt{6-4x-2x^2}} dx = \int \frac{x^2}{\sqrt{8-2(x+1)^2}} dx = \frac{1}{\sqrt{2}} \int \frac{x^2}{\sqrt{4-(x+1)^2}} dx = \]

\[= \left| \begin{array}{c} x + 1 = 2\cos \varphi, \ dx = -2\sin \varphi \ d\varphi, \ (0 \leq \varphi \leq \pi) \\ \sin \varphi = \sqrt{1-\cos^2 \varphi} = \sqrt{1-\frac{(x+1)^2}{4}} = \frac{1}{2} \sqrt{3-2x-x^2} \end{array} \right| = \]

\[= \frac{1}{\sqrt{2}} \int \frac{(2\cos \varphi - 1)^2 (-2\sin \varphi)}{2\sin \varphi} d\varphi = -2\sqrt{2} \int \cos^2 \varphi d\varphi + 2\sqrt{2} \int \cos \varphi d\varphi - \frac{\varphi}{\sqrt{2}} = \]

\[= -2\sqrt{2} \int (1 + \cos 2\varphi) d\varphi + 2\sqrt{2} \sin \varphi - \frac{\sqrt{2}}{2} \varphi = -\frac{\sqrt{2}}{2} (3\varphi + \sin 2\varphi - 4\sin \varphi) + C = \]

\[= -\frac{3\sqrt{2}}{2} \arccos \frac{x+1}{2} + \frac{\sqrt{2}}{4} (3-x)\sqrt{3-2x-x^2} + C. \]

Для данной подынтегральной функции применима также замена \[x + 1 = 2\sin \varphi. \]

Пример 18. Найти \[\int \frac{dx}{x^4\sqrt{x^2+4}}, \ x > 0. \]
Пример 19. Интеграл \(\int R(x, \sqrt{ax^2 + bx + c}) \, dx \) можно свести к интегралу от рациональной функции при помощи одной из подстановок Эйлера:

1) \(\sqrt{ax^2 + bx + c} = \pm x \sqrt{a} + t \), если \(a > 0 \);

2) \(\sqrt{ax^2 + bx + c} = xt \pm \sqrt{c} \), если \(c > 0 \);

3) \(\sqrt{ax^2 + bx + c} = (x - \alpha) \cdot t \), если \(ax^2 + bx + c = a(x - \alpha)(x - \beta) \).

Найти \(\int \frac{1}{\sqrt{x^2 + A}} \, dx \).

\(\Delta \) Так как \(a > 0 \) (\(a = 1 \)), то можно использовать первую подстановку Эйлера, причем более целесообразно в данном случае принять \(\sqrt{x^2 + A} = -x + t \).

Тогда \(x = \frac{t^2 - A}{2t}, \quad dx = \frac{t^2 + A}{2t^2} \, dt, \quad \sqrt{x^2 + A} = \frac{t^2 + A}{2t}, \quad t = x + \sqrt{x^2 + A} \).

Подставляя эти соотношения в подынтегральное выражение получим

\[
\int \frac{dx}{\sqrt{x^2 + A}} = \int \frac{2t (t^2 + A)}{(t^2 + A) 2t^2} \, dt = \int \frac{dt}{t} = \ln |t| + C = \ln \left| x + \sqrt{x^2 + A} \right| + C.
\]

Мы получили табличный интеграл \(\int \frac{dx}{\sqrt{x^2 + A}} = \ln \left| x + \sqrt{x^2 + A} \right| + C \).

Отметим, что нахождение интегралов с помощью подстановок Эйлера обычно приводит к громоздким вычислениям.

Пример 20. Найти \(\int \frac{\sqrt{1 + \frac{3}{x^2}}}{x^2} \, dx \).

\(\Delta \) \(\int \frac{\sqrt{1 + \frac{3}{x^2}}}{x^2} \, dx = \int x^{-\frac{2}{3}} \left(1 + x^\frac{3}{2} \right)^{\frac{1}{2}} \, dx \). Это интеграл от дифференциального бинома. Здесь \(m = -\frac{2}{3}, \quad n = \frac{1}{3}, \quad P = \frac{1}{2}, \quad \frac{m + 1}{n} = 1 \) – целое число.
Имеем случай 2. Применим подстановку $1 + x^3 = t^2$, тогда

$$\frac{1}{3}x^{-\frac{2}{3}}dx = 2tdt.$$

Следовательно,

$$\int x^{-\frac{2}{3}}\left(1 + x^3\right)^{\frac{1}{2}}dx = 6\int t^2 dt = 2t^3 + C = 2\left(1 + x^3\right)^{\frac{3}{2}} + C. \ ▲$$

Пример 21. Найти $\int x^{-2} (1 + x^3)^{-\frac{5}{3}}dx$.

Δ Здесь $m = -2, n = 3, p = -\frac{5}{3}, \frac{m+1}{n} + p = -2$ – целое число.

Имеем случай 3. Применим подстановку $1 + x^3 = x^3 t^3$. Тогда $x^3 = \frac{1}{t^3 - 1}$,

$$1 + x^3 = \frac{t^3}{t^3 - 1}, x = (t^3 - 1)^{-\frac{1}{3}}, dx = -t^2(t^3 - 1)^{-\frac{4}{3}}dt.$$

$$\int x^{-2} (1 + x^3)^{-\frac{5}{3}}dx = -\int (t^3 - 1)^{\frac{2}{3}}\left(\frac{t^3}{t^3 - 1}\right)^{\frac{5}{3}}t^2(t^3 - 1)^{-\frac{4}{3}}dt =$$

$$= \int t^\frac{-3}{2}dt = t^\frac{-2}{2} - t + C = \frac{-1 + 2t^3}{2t^2} + C = \frac{2 + 3x^3}{2x^3(1 + x^3)^2} + C. \ ▲$$

Дополнительные задачи

Найти неопределенные интегралы:

1. $\int \frac{dx}{\sin x(2 + \cos x - 2\sin x)}$.

Ответ: $\frac{1}{3}\ln |\tan \frac{x}{2}| + \frac{5}{3}\ln |\tan \frac{x}{2} - 3| - \ln |\tan \frac{x}{2} - 1| + C.$

2. $\int \frac{\sin^5 x}{\sqrt{\cos^3 x}}dx$.

Ответ: $\frac{2}{\sqrt{\cos x}} + \frac{4}{3}\sqrt{\cos^3 x} - \frac{2}{7}\sqrt{\cos^7 x} + C.$

3. $\int \sin^4 3x dx$.

Ответ: $\frac{3}{8}x - \frac{1}{12}\sin 6x + \frac{1}{96}\sin 12x + C.$
4. \[\int \frac{dx}{\sin^2 x + 6 \sin x \cos x - 16 \cos^2 x} . \]
Ответ: \[\frac{1}{10} \ln \left| \frac{\tan x - 2}{\tan x + 8} \right| + C. \]
5. \[\int \cos 2x \sin 12x \, dx. \]
Ответ: \[-\frac{1}{20} \cos 10x - \frac{1}{28} \cos 14x + C. \]
6. \[\int \frac{dx}{\cos^6 x} . \]
Ответ: \[\tan x + \frac{2}{3} \tan^3 x + \frac{1}{5} \tan^5 x + C. \]
7. \[\int \frac{3 \sqrt{x} \, dx}{x (\sqrt{x} + \frac{3}{\sqrt{x}})} . \]
Ответ: \[6 \ln \left| \frac{\sqrt{x}}{\sqrt{3}} \right| + C. \]
8. \[\int \frac{dx}{\sqrt{x (4/\sqrt{x} + 1)^3}} . \]
Ответ: \[-\frac{1}{2 (4/\sqrt{x} + 1)^8} + \frac{4}{9 (4/\sqrt{x} + 1)^9} + C. \]
9. \[\int \frac{2 - x}{2 + x} \cdot \frac{dx}{(2 - x)^2} . \]
Ответ: \[\frac{3}{8} \sqrt{\frac{2 + x}{2 - x}} + C. \]
10. \[\int \frac{dx}{(x - 1)^3 \sqrt{x^2 - 2x - 1}}, \quad x > 3. \]
Ответ: \[\frac{\sqrt{x^2 - 2x - 1}}{4(x - 1)^2} + \frac{1}{4 \sqrt{2}} \arctg \frac{\sqrt{x^2 - 2x - 1}}{\sqrt{2}} + C. \]
11. \[\int \frac{dx}{(x^2 - 2x + 5)^{3/2}} . \]
Ответ: \[\frac{x - 1}{4 \sqrt{x^2 - 2x + 5}} + C. \]
12. \[\int \frac{\sqrt{x^2-a^2}}{x} \, dx. \]

Ответ: \(\sqrt{x^2-a^2} - a \arccos \frac{a}{x} + C. \)

13. \[\frac{x^2}{\sqrt{x^2-x+1}}. \]

Ответ: \(\frac{2x+3}{4} \sqrt{x^2-x+1} - \frac{1}{8} \ln \left| 2x-1+2\sqrt{x^2-x+1} \right| + C. \)

14. \(8 \cdot \int x^3 (1-x^2)^{-\frac{3}{2}} \, dx. \)

Ответ: \(\frac{2-x^2}{\sqrt{1-x^2}} + C. \)

Занятие 6

Контрольная работа. Неопределенный интеграл

Вариант 1

Найти интегралы:

1. \(\int x^3 (1-2x^4)^4 \, dx. \)
Ответ: \(-\frac{1}{40} (1-2x^4)^5 + C. \)

2. \(\int x^2 (2x+5)^{10} \, dx. \)
Ответ: \(\frac{1}{104} (2x+5)^{13} - \frac{5}{48} (2x+5)^{12} + \frac{25}{88} (2x+5)^{11}. \)

3. \(\int \frac{\ln x}{\sqrt{x}} \, dx. \)
Ответ: \(2\sqrt{x} \ln x - 4\sqrt{x} + C. \)

4. \(\int x^2 e^{-2x} \, dx. \)
Ответ: \(-\frac{e^{-2x}}{2} \left(x^2 + x + \frac{1}{2} \right) + C. \)

5. \(\int \frac{2x+8}{\sqrt{1-x-x^2}} \, dx. \)
Ответ: \(-2\sqrt{1-x-x^2} + 7 \arcsin \frac{2x+1}{\sqrt{5}} + C. \)

6. \(\int \frac{x+4}{(x+1)(x+2)(x+3)} \, dx. \)
Ответ: \(\frac{3}{2} \ln |x+1| - 2 \ln |x+2| + \frac{1}{2} \ln |x+3| + C. \)

7. \(\int \frac{2x^2+x+3}{(x+2)(x^2+x+1)} \, dx. \)
Ответ: $-\frac{1}{2}\ln(x^2 + x + 1) + 3\ln|x + 2| + \frac{1}{\sqrt{3}}\arctg\frac{2x + 1}{\sqrt{3}} + C.$

8. $\int \sin^5 x \sqrt{\cos x} dx.$

Ответ: $-\frac{3}{80}\cos^3 x (20 - 16\cos^2 x + 5\cos^4 x) + C.$

9. $\int \frac{dx}{2\sin x - \cos x}.$

Ответ: $\frac{1}{\sqrt{5}}\ln\left|\frac{2 - \sqrt{5} + \tan\frac{x}{2}}{2 + \sqrt{5} + \tan\frac{x}{2}}\right| + C.$

10. $\int \frac{1 + x}{1 + \sqrt{x}} dx.$

Ответ: $2\left(\frac{1}{3}x^\frac{3}{2} - \frac{1}{2}x + 2x^\frac{1}{2}\right) - 4\ln|x + 1| + C.$

11. $\int x^3(1 + 2x^2)^{-\frac{3}{2}} dx.$

Ответ: $\frac{1}{2} - \frac{1 + x^2}{\sqrt{1 + 2x^2}} + C.$

Вариант 2

Найти интегралы:

1. $\int x^4(1 - 3x^5)^4 dx.$

Ответ: $-\frac{1}{75}(1 - 3x^5)^5 + C.$

2. $\int x^2(2x - 3)^9 dx.$

Ответ: $\frac{1}{96}(2x - 3)^{12} + \frac{3}{44}(2x - 3)^{11} + \frac{9}{80}(2x - 3)^{10} + C.$

3. $\int \frac{\ln x}{\sqrt{x}} dx.$

Ответ: $\frac{3^3\sqrt{x^2}}{2}\ln x - \frac{9}{4}\sqrt{x^2} + C.$

4. $\int x^2\sin 2x dx.$

Ответ: $-\frac{2x^2 - 1}{4}\cos 2x + \frac{x}{2}\sin 2x + C.$

5. $\int \frac{3x + 4}{\sqrt{-x^2 + 6x - 8}} dx.$

Ответ: $-3\sqrt{-x^2 + 6x - 8} + 13\arcsin(x - 3) + C.$

6. $\int \frac{x^2 + 2x + 6}{(x - 1)(x - 2)(x - 4)} dx.$

Ответ: $3\ln|x - 1| - 7\ln|x - 2| + 5\ln|x - 4| + C.$
Занятие 7
Определенный интеграл

Пример 1. Показать, что функция Дирихле \(f(x) = \begin{cases} 1, & x \in Q, \\ 0, & x \notin Q \end{cases} \) не интегрируема на отрезке \([0;1]\).

Для любого разбиения отрезка \([0; 1]\) на частичных отрезках можно выбрать только рациональные значения \(\xi_i\). Тогда любая из интегральных сумм примет вид \(S = \sum_{i=1}^{n} f(\xi_i)\Delta x_i = \sum_{i=1}^{n} 1 \cdot \Delta x_i = 1\).

В случае же выбора на частичных отрезках только иррациональных значений \(\xi_i\) получим \(S = \sum_{i=1}^{n} f(\xi_i)\Delta x_i = \sum_{i=1}^{n} 0 \cdot \Delta x_i = 0\).

Поэтому не существует предела интегральных сумм, а это значит, что функция Дирихле не интегрируема на отрезке \([0;1]\). ▲

Пример 2. Вычислить, исходя из определения, интеграл \(\int_{0}^{1} xdx\).

По определению \(\int_{0}^{1} xdx = \lim_{\lambda \to 0, \xi = 1} \sum_{i=1}^{n} \xi_i \Delta x_i\).

Разобьем отрезок \([0;1]\) на \(n\) равных частей точками \(x_i = \frac{i}{n}\) \((i = 1,\ldots,n)\).
Длина каждого частичного отрезка равна \(\Delta x_i = \frac{1}{n} \). В нашем случае \(\lambda = \frac{1}{n} \), причем \(\lambda \to 0 \), при \(n \to \infty \).

В качестве точек \(\xi_i \) возьмем правые концы частичных отрезков:

\[\xi_i = x_i = \frac{1}{n} \quad (i = 1, 2, \ldots, n). \]

Составим интегральную сумму:

\[S_n = \sum_{i=1}^{n} i \cdot \frac{1}{n} = \frac{1}{n^2} (1 + 2 + \ldots + n) = \frac{n(n+1)}{2n^2}. \]

\[\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n(n+1)}{2n^2} = \frac{1}{2}. \]

Следовательно, \(\int_0^1 x\,dx = \frac{1}{2}. \)

Легко показать, что и при другом выборе точек \(\xi_i \), например если в качестве \(\xi_i \) взять левые концы частичных отрезков, то предел интегральной суммы будет тот же.

\[\lim_{n \to \infty} \lim_{\lambda \to 0} \frac{i-1}{n} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} (1 + 2 + \ldots + n - 1) = \lim_{n \to \infty} \frac{n(n-1)}{2n^2} = \frac{1}{2}. \]

Пример 3. Используя геометрический смысл интеграла, вычислить \(I = \int_0^4 \sqrt{16 - x^2} \,dx. \)

\(\Delta \) Линия \(y = \sqrt{16 - x^2} \) есть верхняя половина окружности \(x^2 + y^2 = 16 \). Та часть линии, которая получается при изменении \(x \) от 0 до 4, лежит в первой координатной четверти. Таким образом, мы имеем криволинейную трапецию, которая является четвертью круга. Поэтому \(I = \int_0^4 \sqrt{16 - x^2} = \frac{1}{4} \pi R^2 = \frac{1}{4} \pi \cdot 16 = 4 \pi. \)

Пример 4. Установить, какой из двух интегралов \(\int_0^1 \sqrt{x} \,dx, \int_0^1 x^2 \,dx \) больше?

\(\Delta \) Так как \(\sqrt{x} > x^2 \) при \(0 < x < 1 \), следовательно, \(\int_0^1 \sqrt{x} \,dx > \int_0^1 x^2 \,dx. \)

Пример 5. Оценить интеграл \(I = \int_0^3 (x^2 - 2x + 5) \,dx. \)

\(\Delta \) Функция \(y = x^2 - 2x + 5 \) на отрезке \([0;3]\) принимает наименьшее значение при \(x = 1 \), равное 4, и наибольшее значение при \(x = 3 \), равное 8.
Поэтому $4(3-0) \leq I \leq 8(3-0), \quad 12 \leq I \leq 24$. ▲

Пример 6. Оценить абсолютную величину интеграла $\int_{10}^{20} \frac{\cos x}{1 + x^6} \, dx$.

\[\Delta \quad \text{Tак как при } x \geq 10 \quad \left| \frac{\cos x}{1 + x^6} \right| \leq 10^{-6}, \quad \text{то} \quad \left| \int_{10}^{20} \frac{\cos x}{1 + x^6} \, dx \right| \leq 10^{-6} (20 - 10) = 10^{-5}. \quad \Delta\]

Пример 7. Найти среднее значение функции $y = |x| - 1$ на отрезке $[-1; 2]$ и все точки, в которых эта функция достигает своего среднего значения. Дать геометрическую интерпретацию.

\[\Delta \quad \frac{1}{2} \int_{-1}^{2} f(x) \, dx = \frac{1}{2} \int_{-1}^{2} |x| - 1 \, dx = S_{ABCDK} = \frac{3}{2} \text{ (рис. 1).} \]

\[\begin{align*}
\text{Так как } f(\xi) &= \frac{1}{2 + 1} \int_{-1}^{2} f(x) \, dx = \frac{3}{2}, \quad \text{следовательно,} \\
|x| - 1 &= \frac{1}{2}, \quad x_1 = -\frac{1}{2}, \quad x_2 = \frac{1}{2}, \quad x_3 = \frac{3}{2}.
\end{align*}\]

Площадь криволинейной трапеции равна площади прямоугольника $AHNK$. ▲

Пример 8. Найти производную от функции $\int_{0}^{\arctg t} t \, dt$.

\[\Delta \quad \text{Представим заданную функцию в виде сложной функции аргумента } x:\]

\[u(t) = x^3, \quad F(u) = \int_{0}^{\arctg t} t \, dt.\]

Сложная функция $F(u(t))$ является дифференцируемой, причем

\[\frac{d}{dx} F(u(t)) = \frac{d}{du} F(u) \bigg|_{u = x^3} \frac{du}{dx} = \frac{d}{dx} x^3.\]
Здесь
\[\frac{d}{du} \int_0^u \arctg t \, dt = \frac{d}{du} \arctg u \mid_{u = x^3} = \arctg x^3, \quad \frac{du}{dx} = 3x^2. \]

Таким образом, \(\frac{d}{dx} \int_0^{x^3} \arctg t \, dt = 3x^2 \cdot \arctg x^3 \). ▲

Пример 9. Найти предел \(\lim_{x \to 0} \frac{\int_0^{x^2} \sin \sqrt{x} \, dx}{x^3}. \)

Очевидно, все условия, обеспечивающие законность применения правила Лопиталя выполняются. Поэтому
\[\lim_{x \to 0} \frac{\int_0^{x^2} \sin \sqrt{x} \, dx}{x^3} = \lim_{x \to 0} \frac{\left(\int_0^{x^2} \sin \sqrt{x} \, dx \right)'}{3x^2} = \lim_{x \to 0} \frac{2x \sin x}{3x^2} = \frac{2}{3}. \] ▲

Пример 10. Вычислить \(\int_0^{\pi/2} \frac{dx}{\cos^2 x}. \)

Так как на рассматриваемом промежутке одной из первообразных для функции \(y = \frac{1}{\cos^2 x} \) является функция \(y = \tan x \), то
\[\int_0^{\pi/2} \frac{dx}{\cos^2 x} = \tan x \bigg|_0^{\pi/4} = \tan \frac{\pi}{4} - \tan 0 = 1. \] ▲

Пример 11. Вычислить \(\int_0^2 |1 - 5x| \, dx. \)

Так как \(|1 - 5x| = \begin{cases} 1 - 5x, & x \leq \frac{1}{5}, \\ 5x - 1, & x \geq \frac{1}{5}, \end{cases} \) то по свойству аддитивности интеграла
\[\int_0^2 |1 - 5x| \, dx = \int_0^{1/5} (1 - 5x) \, dx + \int_{1/5}^{2} (5x - 1) \, dx = \frac{1}{5} x^2 \bigg|_0^{1/5} + 5 \int_{1/5}^{2} x \, dx = \frac{1}{5} \left(\frac{1}{5} \right)^2 + 5 \left(\frac{1}{5} \right) x \bigg|_{1/5}^{2} = \frac{41}{5}. \] ▲
Пример 12. Вычислить \(\int_0^{\pi/2} \sin^3 x \, dx \).

\[
\Delta \int_0^{\pi/2} \sin^3 x \, dx = -\int_0^{\pi/2} \left(1 - \cos^2 x\right) \cos x \, dx = -\cos x\left|_0^{\pi/2}\right. - \frac{1}{3} \cos^3 x\left|_0^{\pi/2}\right. = 1 - \frac{1}{3} = \frac{2}{3}. \quad \square
\]

Пример 13. Вычислить \(\int_0^1 xe^{-x} \, dx \).

\[
\Delta \text{ Положим, } u = x, \ dv = e^{-x} \, dx. \text{ Тогда } du = dx \text{ и } v = -e^{-x}. \text{ Функции } u = x, \ v = -e^{-x} \text{ и их производные являются непрерывными на отрезке } [0;1]. \text{ Можно применить формулу интегрирования определенного интеграла по частям:}
\]

\[
\int_0^1 xe^{-x} \, dx = -xe^{-x}\left|_0^1\right. + \int_0^1 e^{-x} \, dx = -e^{-1} - e^{-x}\left|_0^1\right. = \frac{e-2}{e}. \quad \square
\]

Пример 14. Вычислить \(\int_1^e (1 + \ln x)^2 \, dx \).

\[
\Delta \text{ Применим дважды формулу интегрирования по частям:}
\]

\[
\int_1^e (1 + \ln x)^2 \, dx = \left. u = (1 + \ln x)^2, \ du = \frac{2(1 + \ln x)}{x} \, dx \right|_1^e \cdot x(1 + \ln x)^2\left|_1^e\right. -
\]

\[
-2\int_1^e (1 + \ln x) \, dx = \left. u = 1 + \ln x, \ du = \frac{dx}{x} \right|_1^e \cdot e(1 + \ln e)^2 - (1 + \ln 1)^2 -
\]

\[
-2x(1 + \ln x)\left|_1^e\right. + 2\int_1^e dx = 2e - 1. \quad \square
\]

Пример 15. Вычислить \(\int_0^9 \frac{dx}{2 + \sqrt{x}} \).

\[
\Delta \text{ Сделаем замену } x = t^2. \text{ При } x = 0, \ t = 0, \ \text{а при } x = 9, \ t = 3. \text{ Функция } x = t^2 \text{ непрерывна вместе со своей производной на отрезке } [0;3], \text{ изменение переменной } t, \text{ причем значения } x = t^2 \text{ при изменении } t \text{ от 0 до 3 не выходят за пределы отрезка } [0;3] \text{ изменения переменной } x. \text{ Поэтому}
\]

\[
\int_0^9 \frac{dx}{2 + \sqrt{x}} = \int_0^3 \frac{2t \, dt}{t^2 + 2} = \int_0^3 \frac{2t + 4 - 4}{t^2 + 2} \, dt = \int_0^3 \frac{2t}{t^2 + 2} \, dt - \int_0^3 \frac{4}{t^2 + 2} \, dt =
\]

\[
= 2t\left. \left|_0^3 - 4 \ln (t + 2) \right|_0^3 = 6 - 4 \ln \frac{5}{2}. \quad \square
\]
Пример 16. Вычислить $I = \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{dx}{x\sqrt{1-x^2}}$.

Положим $x = \sin t$. Функция $\sin t$ и ее производная $\cos t$ являются непрерывными функциями. Новые пределы интегрирования α и β определяем из системы

\[
\begin{cases}
\sin \alpha = \frac{1}{2}, \\
\sin \beta = \frac{\sqrt{3}}{2}.
\end{cases}
\]

Множеством всех ее решений является множество пар $(\alpha;\beta)$, где $\alpha = (-1)^k \frac{\pi}{6} + \pi k$ и $\beta = (-1)^m \frac{\pi}{3} + \pi m$, $k, m \in \mathbb{Z}$.

Возьмем из них, например, пару $\left(\frac{\pi}{6}; \frac{\pi}{3}\right)$. На отрезке $\left[\frac{\pi}{6}; \frac{\pi}{3}\right]$ функция $x = \sin t$ является монотонной. Следовательно, $\alpha = \frac{\pi}{6}$ и $\beta = \frac{\pi}{3}$ можно взять за новые пределы интегрирования. На отрезке $\left[\frac{\pi}{6}; \frac{\pi}{3}\right]$ $\sqrt{1-\sin^2 t} = |\cos t| = \cos t$.

Следовательно, имеем

\[I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos t \, dt}{\sin t \cdot \cos t} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dt}{\sin t} = \ln \left(\tan \frac{t}{2}\right) \bigg|_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \ln \frac{2 + \sqrt{3}}{\sqrt{3}}.\]

Можно взять некоторую другую пару, например $\left(\frac{5\pi}{6}; \frac{2\pi}{3}\right)$. На этом отрезке функция $x = \sin t$ является возрастающей, а $\sqrt{1-\sin^2 t} = |\cos t| = -\cos t$.

Следовательно,

\[I = -\int_{\frac{5\pi}{6}}^{\frac{2\pi}{3}} \frac{dt}{\sin t} = -\ln \left(\tan \frac{t}{2}\right) \bigg|_{\frac{5\pi}{6}}^{\frac{2\pi}{3}} = \ln \frac{2 + \sqrt{3}}{\sqrt{3}}.\]

В то же время на отрезке $\left(\frac{\pi}{6}; \frac{2\pi}{3}\right)$ функция $x = \sin t$ не является монотонной. Поэтому $\alpha = \frac{\pi}{6}$ и $\beta = \frac{2\pi}{3}$ не могут быть новыми пределами интегрирования. ▲

Пример 17. Функция $f(x) = 1 + 2x$ задана на отрезке $[0;1]$ и является четной. Вычислить $\int_{-1}^{1} f(x) \, dx$.

Для вычисления $\int_{-1}^{1} f(x) \, dx$ нет необходимости находить аналитическое...
выражение функции на отрезке \([-1;0]\). Ввиду четности функции

\[
\int_{-1}^{1} f(x)\,dx = 2\int_{0}^{1} f(x)\,dx = 2\int_{0}^{1} (1 + 2x)\,dx = 2(x + x^2)\bigg|_{0}^{1} = 4. \quad \blacktriangle
\]

Пример 18. Вычислить \(\int_{-2}^{2} \cos x \ln(x + \sqrt{1 + x^2})\,dx\).

\(\blacktriangle\) Подынтегральная функция является непрерывной на отрезке \([-2;2]\). Поэтому она является интегрируемой. Найдем \(f(-x)\):

\[
f(-x) = \cos(-x) \cdot \ln(x + \sqrt{1 + x^2}) = \cos x \cdot \ln\frac{(x + \sqrt{1 + x^2})(\sqrt{1 + x^2} - x)}{\sqrt{1 + x^2} + x} =
\]

\[
= \cos x \cdot \ln(x + \sqrt{1 + x^2})^{-1} = -\cos x \cdot \ln(x + \sqrt{1 + x^2}) = -f(x).
\]

Подынтегральная функция является нечетной, поэтому

\[
\int_{-2}^{2} \cos x \cdot \ln(x + \sqrt{1 + x^2})\,dx = 0. \quad \blacktriangle
\]

Пример 19. Вычислить \(\int_{0}^{\pi} \sqrt{1 - \cos 2x}\,dx\).

\(\blacktriangle\) Поскольку \(\sqrt{1 - \cos 2x} = \sqrt{2 \sin^2 x} = \sqrt{2} |\sin x|\) и функция \(f(x) = |\sin x|\) имеет период \(T = \pi\), то

\[
\int_{0}^{\pi} \sqrt{1 - \cos 2x}\,dx = 200 \cdot \sqrt{2} \int_{0}^{\pi} \sin x\,dx = -200 \sqrt{2} \cos x\bigg|_{0}^{\pi} = 400 \sqrt{2}. \quad \blacktriangle
\]

Дополнительные задачи

1. Применяя формулу \(\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}\), вычислить по определению \(\int_{0}^{1} x^2\,dx\). Ответ: \(\frac{1}{3}\).

2. Не вычисляя интегралов, выяснить какой из них больше:

a) \(I_1 = \int_{1}^{2} \frac{dx}{\sqrt{1 + x^2}}\) или \(I_2 = \int_{1}^{2} \frac{dx}{x}\);

б) \(I_1 = \int_{0}^{1} e^{-x} \cos^2 x\,dx\) или \(I_2 = \int_{0}^{1} e^{-x} \cos^2 x\,dx\).

Ответ: a) \(I_1 < I_2\); б) \(I_1 < I_2\).
3. Оценить интеграл \(I = \frac{2\pi}{\sqrt{6+4\sin x-3\cos x}} \).

Ответ: \(\frac{2\pi}{\sqrt{11}} < I < 2\pi \).

4. Найти производные следующих функций:
 a) \(\Phi(x) = \int_{1/x}^{x} \sin(t^2) dt \); б) \(\Phi(x) = \int_{x^2}^{\ln t} dt \) (\(x > 0 \)).

Ответ: а) \(\Phi'(x) = \frac{\sin x}{2\sqrt{x}} + \frac{1}{x^2} \sin \frac{1}{x^2} \); б) \(\Phi'(x) = \frac{x^2-x}{\ln x} \).

5. Найти среднее значение функции \(f(x) = \cos x \) на отрезке \([0; \frac{\pi}{2}]\).

Ответ: \(\frac{2}{\pi} \).

6. Используя формулу Ньютона – Лейбница, вычислить интегралы:
 a) \(\int_{1}^{2} e^{x^2} \frac{1}{x^3} dx \); б) \(\int_{-1}^{-2} \frac{x+1}{x^3-x^2} dx \); в) \(\int_{0}^{2\pi} \sqrt{1+\cos \phi} d\phi \).

Ответ: а) \(\frac{1}{2} (e - 4\sqrt{e}) \); б) \(2\ln \frac{4}{3} - \frac{1}{2} \); в) \(4\sqrt{2} \).

7. Вычислить интегралы с помощью замены переменной:
 a) \(\int_{1}^{6} \frac{dx}{1+\sqrt{3x-2}} \); б) \(\int_{-1}^{-2} \frac{x}{\sqrt{5-4x}} dx \); в) \(\int_{-2}^{2} \frac{dx}{(4+x^2)^2} \); г) \(\int_{\sqrt{2}/2}^{1} \frac{1-x^2}{x^2} dx \).

Ответ: а) \(\frac{2}{3} \left(3 + \ln \frac{2}{5} \right) \); б) \(\frac{1}{6} \); в) \(\frac{1}{32} (\pi + 2) \); г) \(1 - \frac{\pi}{4} \).

8. Вычислить интегралы методом интегрирования по частям:
 a) \(\int_{1}^{e} x^2 \ln x dx \); б) \(\int_{0}^{1} \frac{\arcsin x}{\sqrt{1+x}} dx \).

Ответ: а) \(\frac{2e^3}{9} + 1 \); б) \(\pi \sqrt{2} - 4 \).

Занятие 8

Геометрические и физические приложения определенных интегралов

Пример 1. Вычислить площадь фигуры, ограниченной кривыми \(y = x^2 - 2x + 2 \) и \(y = 2 + 4x - x^2 \).
Δ Начертим графики функций и найдем абсциссы их точек пересечения: \(x^2 - 2x + 2 = 2 + 4x - x^2 \). Решая это уравнение, получим \(x_1 = 0 \) и \(x_2 = 3 \) (рис. 2).

![Рис. 2](image)

Искомая площадь равна
\[
S = \int_{0}^{3} \left((2 + 4x - x^2) - (x^2 - 2x + 2) \right) dx = \int_{0}^{3} (6x - 2x^2) dx = \\
= \left[3x^2 - \frac{2}{3} x^3 \right]_0^3 = 9. \
\]

Пример 2. Вычислить площадь фигуры, ограниченной линиями \(y^2 = x + 1 \) и \(x - y = 1 \).

Δ Решая систему уравнений \[
\begin{cases}
 y^2 = x + 1, \\
 x - y = 1,
\end{cases}
\]
находим \(M_1(0; -1) \) и \(M_2(3; 2) \).

Нижняя граница фигуры на разных частях отрезка \([-1; 3]\) задана различными функциями (рис. 3). Поэтому
\[
S = \int_{-1}^{0} \sqrt{1+x} - (-\sqrt{x+1}) \ dx + \int_{0}^{3} (\sqrt{x+1} - (x-1)) \ dx = \\
= 2 \int_{-1}^{0} (x+1)^{\frac{1}{2}} \ dx + \int_{0}^{3} (x+1)^{\frac{1}{2}} \ dx + \int_{0}^{3} \frac{1}{2} d(x+1) - \left(\frac{x^2}{2} - x \right) \Big|_0^3 = \\
= \frac{2}{3} (x+1)^{\frac{3}{2}} \Big|_{-1}^{0} + \left(\frac{2}{3} (x+1)^{\frac{3}{2}} - \frac{x^2}{2} + x \right) \Big|_0^3 = \frac{9}{2}.
\]
Площадь этой фигуры можно найти проще, если принять y за независимую переменную, а x за функцию. Тогда

$$S = \int_{-1}^{2} ((y + 1) - (y^2 - 1))dy = \left(2y + \frac{y^2}{2} - \frac{y^3}{3}\right)_{-1}^{2} = \frac{9}{2}.$$ ▲

Пример 3. Найдите площадь фигуры, ограниченной графиками функций $y = \sin x$, $y = \cos x$, $x = 0$, $x = 2\pi$ (рис. 4).

![Рис. 4](image)

$$\Delta \ S = \int_{0}^{2\pi} |\sin x - \cos x| \,dx = \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \,dx + \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) \,dx +$$

$$+ \int_{\frac{5\pi}{4}}^{\frac{\pi}{4}} (\cos x - \sin x) \,dx = (\sin x + \cos x) \left|_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \right. +$$

$$+ (\sin x + \cos x) \left|_{0}^{\frac{2\pi}{4}} \right. = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - 1\right) + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right) +$$

$$+ (1 + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}) = 4\sqrt{2}. \ ▲$$

Пример 4. Вычислить площадь фигуры, ограниченной эллипсом $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (рис. 5).

$$\Delta \text{ Запишем параметрическое уравнение эллипса:}$$

$$x = a \cos t, \ y = b \sin t \quad (0 \leq t \leq 2\pi).$$

Верхняя половина фигуры является криволинейной трапецией. При возрастании x от $-a$ до a параметр t убывает от π до 0. Поэтому
\[
S = 2 \int_{-a}^{a} y \, dx = \left[x = a \cos t \right]_{y = b \sin t} = 2 \int_{0}^{\frac{\pi}{2}} b \sin t (-a \sin t) \, dt = -ab \int_{0}^{\frac{\pi}{2}} (1 - \cos 2t) \, dt = \\
= -ab \left(t - \sin 2t \right) \bigg|_{0}^{\pi} = \pi ab.
\]

Пример 5. Вычислите площадь фигуры, ограниченной одной аркой циклоиды \(x = a(t - \sin t), \quad y = a(1 - \cos t) \) (0 ≤ \(t ≤ 2\pi \)) и осью \(Ox \) (рис. 6).

\[
\begin{align*}
\Delta \text{ Фигура является криволинейной трапецией. При возрастании } x \text{ от 0 до } 2\pi a \text{ параметр } t \text{ возрастает от 0 до } 2\pi. \text{ Поэтому} \\
S &= \int_{0}^{2\pi} y(t) \cdot x'(t) \, dt = \int_{0}^{2\pi} a(1 - \cos t) \cdot a(1 - \cos t) \, dt = a^2 \int_{0}^{2\pi} \left(1 - 2 \cos t + \cos^2 t \right) \, dt = \\
&= a^2 \left[1 - 2 \cos t + \frac{1 + \cos 2t}{2} \right]_{0}^{2\pi} = a^2 \left[\left(\frac{3}{2} - 2 \cos t + \frac{\cos 2t}{2} \right) \right]_{0}^{2\pi} = 3\pi a^2.
\end{align*}
\]

Пример 6. Вычислить площадь фигуры, ограниченной кардиоидой \(r = 2a (1 + \cos \phi) \) (рис. 7).

\[
\Delta \text{ Фигура является криволинейным сектором, следовательно,} \\
S &= \frac{1}{2} \int_{0}^{2\pi} r^2 \, d\phi = \frac{1}{2} \int_{0}^{2\pi} 4a^2 \left(1 + \cos \phi \right)^2 \, d\phi = \\
&= 2a^2 \int_{0}^{2\pi} \left(1 + 2 \cos \phi + \cos^2 \phi \right) \, d\phi = \\
&= 2a^2 \int_{0}^{2\pi} \left(1 + 2 \cos \phi + \frac{1 + \cos 2\phi}{2} \right) \, d\phi = \\
&= 2a^2 \int_{0}^{2\pi} \frac{3}{2} \, d\phi = 6\pi a^2.
\]
Пример 7. Вычислить площадь фигуры, ограниченной линиями
\[x^2 - 6x + y^2 = 0, \quad y = \frac{x}{\sqrt{3}}, \quad y = \sqrt{3}x. \]

Линия \(x^2 - 6x + y^2 = 0 \sim (x - 3)^2 + y^2 = 3^2 \) является окружностью (рис. 8).

![Рис. 8](image)

Площадь этой фигуры удобно вычислять, используя полярные координаты. В полярной системе координат \(x^2 - 6x + y^2 = 0 \).

\[
\begin{align*}
 x &= r \cos \varphi, \\
 y &= r \sin \varphi,
\end{align*}
\]

таким образом,

\[S = \frac{1}{2} \int_{\pi/6}^{\pi/3} 36 \cos^2 \varphi \, d\varphi = 9 \int (1 + \cos 2\varphi) \, d\varphi = 9 \left(\varphi + \frac{\sin 2\varphi}{2} \right) \bigg|_{\pi/6}^{\pi/3} = \frac{3}{2} \pi. \]

Пример 8. Найти объем тела, ограниченного поверхностями \(x^2 + y^2 = a^2, \quad z = \sqrt{3}y, \quad z = 0 \) (y ≥ 0) (рис. 9).

1-й способ. Рассмотрим сечение этого тела плоскостями \(x = \text{const} \). В сечениях получаются прямоугольные треугольники с площадями

\[
S(x) = \frac{1}{2} y(x) \cdot z(x) = \frac{1}{2} \sqrt{a^2 - x^2} \cdot \sqrt{3} \cdot \sqrt{a^2 - x^2} = \frac{\sqrt{3}}{2} (a^2 - x^2). \]

\[V = \frac{\sqrt{3}}{2} \int_{-a}^{a} (a^2 - x^2) \, dx = \frac{2\sqrt{3}}{3} a^3. \]

2-й способ. Рассекая это же тело плоскостями...
\(y = \text{const} \), в сечениях получим прямоугольники с площадями:

\[
S(y) = 2x(y) \cdot z(y) = 2\sqrt{a^2 - y^2} \cdot \sqrt{3}y.
\]

\[
V = 2\sqrt{3} \int_0^a y\sqrt{a^2 - y^2} dy = \frac{2\sqrt{3}}{3} a^3. \quad \uparrow
\]

Пример 9. Найти объем тела, полученного вращением области, заключенной между линиями \(y = x^2 \) и \(y = x \) вокруг оси абсцисс (рис. 10).

\[\Delta \text{ Линии } y = x^2 \text{ и } y = x \text{ пересекаются в точках с абсциссами 0 и 1. Объем данного тела вращения равен разности объемов двух тел, полученных вращением вокруг оси } Ox \text{ двух криволинейных трапеций, соответствующих функциям } y = x \text{ и } y = x^2. \]

Следовательно,

\[
V = \pi \int_0^1 x^2 dx - \pi \int_0^1 (x^2)^2 dx = \pi \left[\frac{x^3}{3} \right]_0^1 - \pi \left[\frac{x^5}{5} \right]_0^1 = \frac{2}{15} \pi. \quad \uparrow
\]

Пример 10. Найти площадь поверхности, полученной вращением вокруг оси \(Ox \) фигуры, образованной линиями \(y = \sqrt{x} \) и \(y = x \) (рис. 11).

\[\Delta \text{ Площадь }
\]

\[
S_1 = 2\pi \int_0^1 \sqrt{x} \cdot \sqrt{1 + ((\sqrt{x})')^2} dx = 2\pi \int_0^1 \sqrt{x} \cdot \sqrt{1 + \left(\frac{1}{2\sqrt{x}} \right)^2} dx = \pi \int_0^1 \sqrt{1 + 4x} dx = \frac{1}{6} \pi (1 + 4x)^{\frac{3}{2}} \bigg|_0^1 = \frac{1}{6} \pi (5\sqrt{5} - 1).
\]

Площадь \(S_2 \) поверхности, образованной вращением отрезка прямой \(y = x \), равна

\[
S_2 = 2\pi \int_0^1 x \cdot \sqrt{1 + (x')^2} dx = 2\sqrt{2}\pi \int_0^1 x dx = \sqrt{2}\pi.
\]

Таким образом,

\[
S = S_1 + S_2 = \left(\frac{5\sqrt{5}}{6} + \sqrt{2} - \frac{1}{6} \right) \pi. \quad \uparrow
\]

Пример 11. Кривая линия задана уравнением \(y = \ln \sin x \). Найти длину дуги \(AB \) этой кривой от \(x = \frac{\pi}{3} \) до \(x = \frac{\pi}{2} \).
\[\Delta L = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sqrt{1 + (\ln x)^2} \, dx = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sqrt{1 + \frac{\cos^2 x}{\sin^2 x}} \, dx = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{dx}{\sin x} = \ln t \bigg|_{\frac{\pi}{3}}^{\frac{\pi}{2}} = \ln \frac{\pi}{6} = \frac{1}{2} \ln 3. \]

Пример 12. Вычислить длину астроиды \[x^2 + y^2 = a^2 \quad (a > 0) \] (рис. 12).

\[\Delta \text{ Очевидно, что функции} \quad \begin{cases} x = a \cos^3 t, \\ y = a \sin^3 t, \end{cases} \quad (0 \leq t \leq 2\pi) \text{ задают астроиду параметрически. Ввиду симметрии,} \]

\[L = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{x^2(t) + y^2(t)} \, dt = \]

\[= 4 \int_{0}^{\frac{\pi}{2}} \sqrt{(-3a \cos^2 t \sin t)^2 + (3a \sin^2 t \cos t)^2} \, dt = \]

\[= 4 \int_{0}^{\frac{\pi}{2}} \sqrt{9a^2 \sin^2 t \cos^2 t (\sin^2 t + \cos^2 t)} \, dt = \]

\[= 6a \int_{0}^{\frac{\pi}{2}} \sin 2t \, dt = -3a \cos 2t \bigg|_{0}^{\frac{\pi}{2}} = 6a. \]

Пример 13. Найти длину кардиоиды \[r = a(1 + \cos \varphi) \quad (0 \leq \varphi \leq 2\pi) \] (рис. 13).
Ввиду симметрии,

\[L = 2\int_0^\pi \sqrt{r^2(\phi) + (r'(\phi))^2} d\phi = 2\int_0^\pi \sqrt{a^2(1 + 2\cos \phi + \cos^2 \phi) + a^2 \sin^2 \phi} d\phi = \]

\[= 2\int_0^\pi 2a^2(1 + \cos \phi) d\phi = 2\int_0^\pi 4a^2 \cos^2 \phi/2 d\phi = 4a\int_0^\pi \cos \phi/2 d\phi = 8a \sin \phi/2 \bigg|_0^\pi = 8a. \]

Пример 14. Тело движется прямолинейно со скоростью \(v = 12t - t^2 \) (м/с). Найти длину пути, пройденного телом от начала движения до его остановки.

\[\Delta \text{ Найдем промежуток времени движения тела: } 12t - t^2 = 0, t \in [0;12]. \]

\[S(t) = \int_0^{12} (12t - t^2) dt = \left(6t^2 - \frac{t^3}{3} \right) \bigg|_0^{12} = 144(6 - 4) = 288 \text{ м.} \]

Пример 15. Найти величину давления воды на вертикальную стенку в форме полукруга диаметром \(2R \), который находится на поверхности воды (рис. 14).

\[\Delta \text{ Согласно закону Паскаля, давление } \Delta P \text{ жидкости на площадку } \Delta S, \text{ погруженную на глубину } h \text{ равно } \Delta P = \rho gh\Delta S. \]

Дифференциал давления на выделенную элементарную площадку выражается так: \(dP = 2\rho g x \sqrt{R^2 - x^2} dx \). Отсюда

\[P = \int_0^R 2\rho g x \sqrt{R^2 - x^2} dx = -\rho g \int_0^R (R^2 - x^2)^{3/2} d(R^2 - x^2) = -\frac{2}{3} \rho g (R^2 - x^2)^{3/2} \bigg|_0^R = \frac{2}{3} \rho g R^3. \]

Пример 16. Вычислить работу, которую нужно затратить, чтобы растянуть пружину на 10 см, если для удлинения ее на 1 см, необходимо приложить силу 100 Н.

\[\Delta \text{ Согласно закону Гука, сила } F, \text{ растягивающая пружину, равна } F = kx. \]

Так как \(100 = k \cdot 0.01 \), получаем \(k = 10^4 \). Следовательно, искомая работа равна

\[A = \int_a^b F(x) dx = 10^4 \cdot \int_0^{0.1} x dx = 10^4 \cdot \frac{x^2}{2} \bigg|_0^{0.1} = 50 \text{ Дж.} \]

Пример 17. Определить массу шара радиусом \(R \), если плотность в каждой точке его пропорциональна расстоянию точки от центра шара.

\[\Delta \text{ При увеличении радиуса шара } x \text{ на величину } dx, \text{ объем } \Delta v \text{ этого шара увеличивается на величину } \Delta v, \text{ равную разности объемов шаров радиусами } x \text{ и } x + dx: \]

\[\Delta v = \frac{4}{3} \pi ((x + dx)^3 - x^3) = \frac{4}{3} \pi (3x^2 dx + 3x dx^2 + dx^3). \]

Тогда дифференциал объема шара равен \(dv = 4x^2 \pi dx \), а дифференциал массы \(dM = kx \cdot dv = 4k \pi x^3 dx \).
Искомую массу M шара радиусом R получим, интегрируя dM в пределах от $x = 0$ до $x = R$: \[M = 4\pi k \int_0^R x^3 dx = k\pi x^4 \bigg|_0^R = k\pi R^4. \]

Пример 18. Вычислите работу, которую необходимо затратить, чтобы выкачать жидкость из конического сосуда, обращенного вершиной вниз и имеющего радиус основания R и высоту H.

Найдем объем элементарного слоя жидкости, находящегося на глубине x (рис. 15):
\[\frac{R}{H} = \frac{BC}{H - x}; \quad BC = \frac{R(H - x)}{H}; \quad dV = \frac{\pi R^2}{H^2} (H - x)^2 dx. \]

Элементарная работа, совершаемая для поднятия этого слоя на высоту x, равна \[dA = \frac{\rho g \pi R^2}{H^2} (H - x)^2 x dx. \]

Следовательно,
\[A = \int_0^H \left(\frac{\pi \rho g R^2}{H^2} (H - x)^2 x \right) dx = \frac{\rho \pi g R^2}{H^2} \left(\frac{1}{2} H^2 x^2 - \frac{2}{3} Hx^3 + \frac{1}{4} x^4 \right) \bigg|_0^H = \frac{\rho \pi g R^2 H^2}{12}. \]

Пример 19. Определить работу A, необходимую для запуска тела массой m с поверхности Земли вертикально вверх на высоту h.

Обозначим через F силу притяжения тела Землей. Согласно закону Ньютона \[F = G \frac{m \cdot m_s}{x^2}, \] где x – расстояние от центра Земли. Полагая $Gm \cdot m_s = k$, получаем \[F(x) = \frac{k}{x^2}, \quad R \leq x \leq h + R, \] где R – радиус Земли.

При $x = R$ \[F(x) = mg = P, \] т. е. \[\frac{k}{R^2} = P, \] откуда \[k = PR^2 \] и \[F(x) = \frac{PR^2}{x^2}. \]

Таким образом, \[A = \int_R^{R+h} F(x) dx = PR^2 \int_R^{R+h} \frac{dx}{x^2} = -PR^2 \cdot \frac{1}{x} \bigg|_R^{R+h} = \frac{PRh}{R+h}. \]

Дополнительные задачи

1. Вычислить площадь фигуры, ограниченной параболами $x = -2y^2$, $x = 1 - 3y^2$.

Ответ: $\frac{4}{3}$.

47
2. Вычислить площадь фигуры, ограниченной лемнискатой Бернулли
\[r^2 = a^2 \cos 2\phi. \]
Ответ: \[a^2. \]
3. Вычислить объем тела, ограниченного поверхностью, полученной враxением вокруг оси абсцисс дугой кривой линии
\[y = \begin{cases} x^2, & 0 \leq x \leq 1, \\ -x + 2, & 1 \leq x \leq 2. \end{cases} \]
Ответ: \[\frac{8\pi}{15}. \]
4. Найти объем тела, ограниченного параболоидом \[z = 2x^2 + 9y^2 \] и плоскостью \[z = 2. \]
Ответ: \[\frac{\pi \sqrt{2}}{3}. \]
5. Вычислить длину полукубической параболы \[y^2 = x^3, \] заключенной между точками \((0; 0)\) и \((4; 8)\).
Ответ: \[\frac{8}{27}(10\sqrt{10} - 1). \]
6. Вычислить длину первого витка винтовой линии \[x = a \cos t, \quad y = a \sin t, \quad z = ht \quad (0 \leq t \leq 2\pi). \]
Ответ: \[2\pi \sqrt{a^2 + h^2}. \]
7. Скорость прямолинейного движения материальной точки \[v = te^{-0.01t} \text{ м/с.} \]
Найти путь, пройденный точкой от начала движения до полной остановки.
Ответ: \[10^4 \text{ м.} \]
8. Найти силу давления жидкости, заполняющей круговой цилиндр, на боковые стенки цилиндра, если радиус основания \(R \), высота \(H \).
Ответ: \[\rho g \pi R H^2. \]
9. Вычислить работу, которую нужно затратить на выкачивание жидкости из котла, имеющего форму полушара радиусом \(R \).
Ответ: \[\frac{\pi \rho g R}{4}. \]

Занятия 9–10

Несобственные интегралы. Самостоятельная работа

Пример 1. Вычислить следующие несобственные интегралы первого рода или установить их расходимость, основываясь на определении этих интегралов:

а) \[\int_1^{+\infty} \frac{dx}{x^2}, \]
б) \[\int_0^{+\infty} \frac{2xdx}{1 + x^2}, \]
в) \[\int_{-\infty}^{+\infty} e^x dx; \]
г) \[\int_0^{+\infty} x \sin x dx. \]
\[\int_{1}^{+\infty} \frac{dx}{x^3} = \lim_{A \to +\infty} \int_{1}^{A} x^{-3} \, dx = \frac{1}{2} \left(-\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2}. \]

\[\int_{0}^{+\infty} \frac{2 \, dx}{1 + x^2} = \lim_{A \to +\infty} \int_{0}^{A} \frac{2 \, dx}{1 + x^2} = \lim_{A \to +\infty} \int_{0}^{A} d(1 + x^2) = \lim_{A \to +\infty} \ln(1 + x^2) \bigg|_{0}^{A} = \ln(1 + A^2) - 0 = +\infty. \]

Интеграл расходится.

в) \[\int e^{x} \, dx = \int e^{x} \, dx + \int e^{x} \, dx. \]

Для того чтобы \(\int e^{x} \, dx \) сходился, необходимо и достаточно, чтобы сходились независимо один от другого оба несобственных интеграла \(\int_{0}^{+\infty} e^{x} \, dx \) и \(\int_{-\infty}^{0} e^{x} \, dx \).

Для этого влагаем

\[\int_{0}^{+\infty} e^{x} \, dx = \lim_{A \to +\infty} \int_{0}^{A} e^{x} \, dx = \lim_{A \to +\infty} e^{x} \bigg|_{0}^{A} = \lim_{A \to +\infty} (1 - e^{A}) = 1. \]

\[\int_{-\infty}^{+\infty} e^{x} \, dx = \lim_{A \to +\infty} \int_{-\infty}^{0} e^{x} \, dx = \lim_{A \to +\infty} e^{x} \bigg|_{0}^{A} = \lim_{A \to +\infty} (e^{A} - 1) = +\infty. \]

Интеграл расходится.

г) \[\int x \sin x \, dx = \lim_{A \to +\infty} \int x \sin x \, dx = \lim_{A \to +\infty} \int x d(-\cos x) = \lim_{A \to +\infty} \left(-x \cos x \right) \bigg|_{0}^{A} + \cos x \bigg|_{0}^{A} = \lim_{A \to +\infty} (\cos x - A \cos A + \sin A). \]

Поскольку предел полученного выражения при \(A \to +\infty \) не существует, то рассматриваемый несобственный интеграл расходится. ▲

Пример 2. Вычислить следующие несобственные интегралы с помощью обобщенных формул Ньютона – Лейбница:

а) \[\int_{2}^{+\infty} \frac{x \, dx}{\sqrt{(x^2 - 3)^3}}; \]

б) \[\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5}; \]

в) \[\int_{-\infty}^{+\infty} \frac{dx}{x^2(1 + x)}. \]

Да) Функция \(f(x) = \frac{x}{\sqrt{(x^2 - 3)^3}} \) имеется первообразную на \([2; +\infty]\) и интегрируема на любом конечном отрезке \([2; b]\). Тогда

\[\int_{2}^{+\infty} f(x) \, dx = F(+\infty) - F(2) = F(x) \bigg|_{2}^{+\infty}, \]

где \(F(x) \) – любая первообразная.
\begin{align*}
\int \frac{xdx}{\sqrt{(x^2 - 3)^3}} &= \frac{1}{2} \int (x^2 - 3)^{3/2} d(x^2 - 3) = -\frac{1}{\sqrt{x^2 - 3}}; \\
- \frac{1}{\sqrt{x^2 - 3}} \bigg|_{-\infty}^{\infty} &= -(0 - 1) = 1. \\
\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5} &= \int_{-\infty}^{+\infty} \frac{d(x + 1)}{(x + 1)^2 + 4} = \frac{1}{2} \arctg \frac{x + 1}{2} \bigg|_{-\infty}^{+\infty} = \frac{1}{2} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) = \frac{\pi}{2}. \\
\int_{-\infty}^{-2} \frac{dx}{x^2 (1 + x)}.
\end{align*}

Разложим дробь $\frac{1}{x^2 (1 + x)}$ на простейшие дроби:

\[
\frac{1}{x^2 (1 + x)} = \frac{A}{x} + \frac{B}{x^2} + \frac{D}{1 + x}. \quad Ax(1 + x) + B(1 + x) + Dx^2 = 1.
\]

Отсюда находим $A = -1, B = 1, D = 1$.

Таким образом,

\[
\int_{-\infty}^{-2} \frac{dx}{x^2 (1 + x)} = \int_{-\infty}^{-2} \left(-\frac{1}{x} + \frac{1}{x^2} + \frac{1}{1 + x} \right) dx = \left[-\ln |x| - \frac{1}{x} + \ln |1 + x| \right]_{-\infty}^{-2} = \left(\ln \left| \frac{1 + x}{x} \right| - \frac{1}{x} \right)_{-\infty}^{-2} = \frac{1}{2} - \ln 2. \quad \Delta
\]

Пример 3. Исследуйте на сходимость несобственные интегралы:

а) \[\int_{1}^{+\infty} \frac{\sin^2 x}{x^2 + 2x + 3} dx; \]

б) \[\int_{1}^{+\infty} \frac{dx}{\sqrt{x + \cos^2 x}}.\]

\[\Delta \]

а) Функция $f(x) = \frac{\sin^2 x}{x^2 + 2x + 3}$ интегрируема на любом конечном промежутке $[1; b] \subset [1; +\infty]$. Так как $0 \leq f(x) \leq \frac{1}{x^2}$ ($S = 2$), то $\int_{1}^{+\infty} \frac{\sin^2 x}{x^2 + 2x + 3} dx$ является сходящимся.

б) $f(x)$ непрерывна и $\frac{1}{\sqrt{x + \cos^2 x}} \geq \frac{1}{\sqrt{x + 1}} \geq \frac{1}{2\sqrt{x}}$ ($S = \frac{1}{2}$) $\forall x \in [1; +\infty]$, то $\int_{1}^{+\infty} \frac{dx}{\sqrt{x + \cos^2 x}}$ является расходящимся. \[\Delta \]

Пример 4. Исследовать на сходимость интегралы:
а) \[
\int_{1}^{\infty} \frac{2x + 3\sqrt[4]{x^4} + 1}{x^2 + 3\sqrt[5]{x^5} + 2} \, dx;
\]
б) \[
\int_{2}^{\infty} \frac{(2x^4 - 7)\sin\left(\frac{1}{x^2}\right)}{\sqrt[9]{x^9} + 3x - 2} \, dx;
\]
в) \[
\int_{1}^{\infty} \frac{4\sqrt{x} + 1\arctg x}{\sqrt[4]{x^4} + 2} \, dx.
\]

\[
\Delta \quad a) \quad \frac{2x + 3\sqrt[4]{x^4} + 1}{x^2 + 3\sqrt[5]{x^5} + 2} = \frac{2x + 3\sqrt[4]{x^4} + 1}{x^2 + 3\sqrt[5]{x^5} + 2} \sim \frac{1}{3x^6}, \quad x \to +\infty.
\]

\[
\int_{1}^{\infty} \frac{2x + 3\sqrt[4]{x^4} + 1}{x^2 + 3\sqrt[5]{x^5} + 2} \, dx - \text{сходится}.
\]

\[
\int_{2}^{\infty} \frac{(2x^4 - 7)\sin\left(\frac{1}{x^2}\right)}{\sqrt[9]{x^9} + 3x - 2} \, dx - \text{расходится}.
\]

\[
\int_{1}^{\infty} \frac{4\sqrt{x} + 1\arctg x}{\sqrt[4]{x^4} + 2} \, dx - \text{сходится}.
\]

Пример 5. Исследовать сходимость интеграла \[
\int_{1}^{\infty} \frac{5\sin 3x - 1}{x^2 + \sqrt{x}} \, dx.
\]

\[
\Delta \quad \frac{|5\sin 3x - 1|}{x^2 + \sqrt{x}} \leq \frac{6}{x^2 + \sqrt{x}} \sim \frac{6}{x^2}, \quad x \to +\infty.
\]

\[
\int_{1}^{\infty} \frac{5\sin 3x - 1}{x^2 + \sqrt{x}} \, dx - \text{сходится абсолютно}.
\]

Пример 6. Доказать, что \[
\int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x} \, dx \text{ сходится условно}.
\]

\[
\Delta \quad \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x} \, dx = \int_{\frac{\pi}{2}}^{\infty} d\sin x = \frac{1}{x} \sin x \bigg|_{\frac{\pi}{2}}^{\infty} + \int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x^2} \, dx = -\frac{2}{\pi} + \int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x^2} \, dx.
\]
Так как \(\left| \sin \frac{x}{x^2} \right| \leq \frac{1}{x} \), то \(\int_{\pi/2}^{+\infty} \frac{\sin x}{x^2} \, dx \) сходится абсолютно, а значит, \(\int_{\pi/2}^{+\infty} \frac{\cos x}{x} \, dx \) является сходящимся.

Рассмотрим \(\int_{\pi/2}^{+\infty} \frac{\cos x}{x} \, dx \). \(\left| \cos \frac{x}{x} \right| \geq \frac{\cos^2 x}{x} = \frac{1 + \cos 2x}{2x} \).

\[
\int_{\pi/2}^{+\infty} \frac{1 + \cos 2x}{2x} \, dx = \int_{\pi/2}^{+\infty} \frac{dx}{2x} + \int_{\pi/2}^{+\infty} \frac{\cos 2x}{2x} \, dx = \frac{\ln x}{2} \bigg|_{\pi/2}^{+\infty} + \frac{1}{2} \int_{\pi}^{+\infty} \cos t \, dt.
\]

Так как \(\int_{\pi}^{+\infty} \frac{\cos t}{t} \, dt \) сходится, а \(\ln (+\infty) = +\infty \), то \(\int_{\pi/2}^{+\infty} \frac{\cos x}{x} \, dx \) является расходящимся. Таким образом, \(\int_{\pi/2}^{+\infty} \frac{\cos x}{x} \, dx \) сходится условно. ▲

Пример 7. Найти V.P. \(\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5} \).

А ранее было установлено, что \(\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5} = \frac{\pi}{2} \). Следовательно, V.P. \(\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5} = \frac{\pi}{2} \). ▲

Пример 8. Найти V.P. \(\int_{-\infty}^{+\infty} \sqrt{x^2 + 5 \, \text{sh} \, x} \, dx \).

А функция \(f(x) = \sqrt{x^2 + 5 \, \text{sh} \, x} \) является нечетной и интегрируема на любом конечном отрезке. Поэтому V.P. \(\int_{-\infty}^{+\infty} \sqrt{x^2 + 5 \, \text{sh} \, x} \, dx = 0 \). ▲

Пример 9. Исходя из определения, вычислить несобственные интегралы второго рода или доказать их расходимость:
\[a) \int_{1}^{e} \frac{dx}{x^{3/\ln x}}; \quad b) \int_{0}^{\pi/2} \frac{dx}{\cos x}. \]

\[\Delta \] а) Подынтегральная функция \(f(x) = \frac{1}{x^{3/\ln x}} \) неограничена в окрестности точки \(x = 1 \). На любом отрезке \([1 + \varepsilon; e]\) она интегрируема. Поэтому

\[\int_{1}^{e} \frac{dx}{x^{3/\ln x}} = \lim_{\varepsilon \rightarrow +0} \int_{1+\varepsilon}^{e} \frac{dx}{x^{3/\ln x}} = \lim_{\varepsilon \rightarrow +0} \left(\frac{3}{2} \ln^{2} x \right)^{\pi/2}_{1+\varepsilon} = 3/2. \]

б) \(\int_{0}^{\pi/2} \frac{dx}{\cos x} = \lim_{\varepsilon \rightarrow +0} \int_{0}^{\pi/2-\varepsilon} \frac{dx}{\cos x} = \lim_{\varepsilon \rightarrow +0} \ln\tan \left(\frac{x + \pi}{4} \right)^{\pi/2}_{0} = \lim_{\varepsilon \rightarrow +0} \ln \left(\frac{\pi/2 - \varepsilon}{\pi/2} \right) = +\infty. \]

Следовательно, данный интеграл расходится. \(\Delta \)

Пример 10. Вычислить несобственный интеграл \(\int_{0}^{2} \frac{dx}{\sqrt{4 - x^2}} \) с помощью обобщенной формулы Ньютона – Лейбница.

\(\Delta \) Функция \(F(x) = \arcsin \frac{x}{2} \) является обобщенной первообразной для \(f(x) = \frac{1}{\sqrt{4 - x^2}} \) на \([0; 2]\). Поэтому \(\int_{0}^{2} \frac{dx}{\sqrt{4 - x^2}} = \arcsin \frac{x}{2}\bigg|_{0}^{2} = \frac{\pi}{2}. \)

\[\Delta \]

Пример 11. Исследовать на сходимость несобственные интегралы:

а) \(\int_{1}^{3} \frac{dx}{\sqrt{6x - x^2 - 5}}; \quad b) \int_{1}^{3} \frac{dx}{(5 - x)(x - 2)^{5}}; \quad \text{в) } \int_{0}^{2} \frac{dx}{\sqrt[3]{16 - x^4}}; \]

г) \(\int_{0}^{\arcsin \sqrt[3]{x}} \frac{dx}{\ln (1 + \sqrt[3]{x})}. \)

\[\Delta \] а) Функция \(\frac{1}{\sqrt{6x - x^2 - 5}} \) интегрируема на любом отрезке \([\varepsilon; 2] \subset (1; 2]\).

При всех \(x \in (1; 2] \) \(0 < \frac{1}{\sqrt{6x - x^2 - 5}} = \frac{1}{\sqrt{5 - x}(x - 1)} \leq \frac{1}{\sqrt{3}} \cdot \frac{1}{(x - 1)^{1/2}}. \)

\(\int_{1}^{2} \frac{1}{\sqrt[3]{16 - x^4}} \) сходится, так как \(S = \frac{1}{2} < 1 \). Тогда в силу теоремы сравнения рассматриваемый несобственный интеграл тоже сходится.

б) Особая точка \(x = 2 \).
\[
\int \frac{3}{(5-x)(x-2)^5} \, dx = \int \frac{2}{(3-x)(x-2)^5} \, dx + \int \frac{3}{2(3-x)(x-2)^5} \, dx.
\]

Для сходимости \(\int \frac{3}{(5-x)(x-2)^5} \, dx \) необходимо и достаточно, чтобы сходились независимо один от другого оба несобственные интеграла
\[
\int \frac{2}{(3-x)(x-2)^5} \, dx \quad \text{и} \quad \int \frac{3}{2(3-x)(x-2)^5} \, dx.
\]

Рассмотрим \(\int \frac{2}{(3-x)(x-2)^5} \, dx \).

Функция \(f(x) = \frac{1}{(3-x)(x-2)^5} \geq \frac{1}{3} \cdot \frac{1}{(x-2)^5} \) для \(x \in (1; 2) \). Так как \(\int \frac{1}{3} \cdot \frac{1}{(x-2)^5} \, dx \) расходится \((S = \frac{5}{3} > 1) \), то и \(\int \frac{3}{2(3-x)(x-2)^5} \, dx \) тоже расходится.

в) \(\sqrt{x^2+1} = \sqrt{\frac{x^2+1}{\frac{3}{4}+x^2} \cdot \frac{3}{2}+x} \cdot \frac{1}{(2-x)^{\frac{1}{3}}} \cdot \frac{1}{(2-x)^{\frac{1}{3}}} \), \(x \to 2 \).

На основании предельного признака сходимости \(\int \frac{2}{\sqrt{x^2+1}} \, dx \) сходится.

g) \(\frac{x}{x^3} = 1 \), \(x \to +0 \).

На основании предельного признака сходимости \(\int \frac{\arcsin \sqrt{x}}{\ln (1+\sqrt{x^3})} \, dx \) расходится.

Пример 12. Найти \(V.P. \int_{-2}^{4} \frac{dx}{x} \).

А) Особая точка \(x = 0 \).

\[
V.P. \int_{-2}^{4} \frac{dx}{x} = \lim_{\varepsilon \to +0} \left(\int_{-2}^{-\varepsilon} \frac{dx}{x} + \int_{\varepsilon}^{4} \frac{dx}{x} \right) = \lim_{\varepsilon \to +0} \left(\ln |x|_{-\varepsilon}^{-2} + \ln |x|_{\varepsilon}^{4} \right) = \\
= \lim_{\varepsilon \to +0} (\ln \varepsilon - \ln 2 + \ln 4 - \ln \varepsilon) = \ln 2.
\]

Пример 13. Исследовать на сходимость \(\int_{1}^{\infty} \frac{\arctg x}{x^n+1} \, dx \), \(n > 0 \).
Функция \(f(x) = \frac{x^n \arctg x}{x^n + 1} \) интегрируема на любом отрезке \([1;b]\).

При \(x \to +\infty \) \(f(x) = \frac{x^n \arctg x}{x^n + 1} \approx \frac{\pi}{2} \cdot \frac{1}{x^{n-m}} \).

\[\int \frac{x^n \arctg x}{x^n + 1} \, dx \] является сходящимся при \(n - m > 1 \). ▲

Пример 14. Исследовать на сходимость \(I = \int_0^{\infty} \frac{dx}{x^p + x^q} \).

Этот интеграл может быть несобственным интегралом смешанного типа (от неограниченной функции и по бесконечному промежутку). Представим исследуемый интеграл \(I \) в виде

\[I = \frac{\int_0^a}{dx} + \frac{\int_a^{\infty}}{dx} = I_1 + I_2. \]

Если \(p = q = S \), то \(I_1 \) является сходящимся при \(S < 1 \), а \(I_2 \) является сходящимся при \(S > 1 \), т. е. \(I \) расходится.

Пусть \(p \neq q \) (для определенности \(p < q \)).

Тогда \(f(x) = \frac{1}{x^p + x^q} \sim \frac{1}{x^p} \), \(x \to 0 \); \(f(x) = \frac{1}{x^p + x^q} \sim \frac{1}{x^q} \), \(q \to \infty \).

\(I_1 \) является сходящимся при \(p < 1 \), \(I_2 \) является сходящимся при \(q > 1 \). В итоге получаем, что интеграл \(I \) является сходящимся, если одновременно \(\min \{p, q\} < 1 \) и \(\max \{p, q\} > 1 \), и расходится в остальных случаях. ▲

Пример 15. Доказать, что интегралы Френеля \(\int_0^{\infty} \sin (x^2) \, dx \) и \(\int_0^{\infty} \cos (x^2) \, dx \) являются сходящимися.

\[I = \int_0^{\infty} \sin (x^2) \, dx = \left. \frac{x = \sqrt{t}}{dx} = \frac{1}{2\sqrt{t}} \right| = \frac{1}{2} \int_0^{\infty} \frac{\sin t}{\sqrt{t}} \, dt. \]

\[\int_0^{\infty} \frac{\sin t}{\sqrt{t}} \, dt = \int_0^{\pi/2} \frac{\sin t}{\sqrt{t}} \, dt + \int_{\pi/2}^{\infty} \frac{\sin t}{\sqrt{t}} \, dt = I_1 + I_2. \]

Интеграл \(I_1 = \int_0^{\pi/2} \frac{\sin t}{\sqrt{t}} \, dt \) является сходящимся, так как \(\lim_{t \to 0} \frac{\sin t}{\sqrt{t}} = 0 \).
\[
I_2 = \int_\frac{\pi}{2}^{+\infty} \frac{\sin t}{\sqrt{t}} \, dt = \left| \frac{1}{\sqrt{t}} = u, \, du = -\frac{1}{2} t^{-\frac{3}{2}} \, dt \right| = -\cos t \left| \int_\frac{\pi}{2}^{+\infty} \frac{1}{\sqrt{t}} \, dt - \frac{1}{2} \int_\frac{\pi}{2}^{+\infty} \cos t \, t^{\frac{1}{2}} \, dt \right|
\]

\[
= -\frac{1}{2} \int_\frac{\pi}{2}^{+\infty} \frac{\cos t}{t^{\frac{3}{2}}} \, dt.
\]

\[
\int_\frac{\pi}{2}^{+\infty} \frac{\cos t}{t^{\frac{3}{2}}} \, dt \text{ сходится абсолютно, так как } \left| \cos t \right| \leq 1, \frac{3}{2} t^{\frac{1}{2}}, \text{ и } \int_\frac{\pi}{2}^{+\infty} \cos t \, t^{\frac{1}{2}} \, dt \text{ сходится.}
\]

Аналогично доказывается сходимость \[
\int_0^{+\infty} \cos (x^2) \, dx.
\]

Интегралы Френеля показывают, что несобственный интеграл первого рода может сходиться и в том случае, когда подынтегральная функция не стремится к нулю при \(x \to \infty. \)

Дополнительные задачи

1. Вычислить следующие несобственные интегралы первого рода или установить их расходимость, основываясь на определении этих интегралов:

 a) \[
 \int_2^{+\infty} \frac{x \, dx}{\sqrt{(x^2 + 5)^3}};
 \]
 b) \[
 \int_0^{+\infty} \frac{dx}{e^{x^2 \ln x}};
 \]
 c) \[
 \int_0^{+\infty} e^{-x^2} \, dx;
 \]
 d) \[
 \int_0^{+\infty} x \cos x \, dx.
 \]

 Ответ: a) \(\frac{1}{3} \); b) расходится; c) \(\frac{1}{2} \); d) расходится.

2. Исследовать на сходимость несобственные интегралы:

 a) \[
 \int_0^{+\infty} \frac{dx}{\sqrt{(x+1)(x+2)(x+3)(x+4)}};
 \]
 b) \[
 \int_1^{+\infty} \frac{7/2 + 3x^2}{\sqrt{x^2 + 3x}} \, dx;
 \]
 c) \[
 \int_0^{+\infty} \cos (x^2) \, dx.
 \]

 Ответ: a) сходится; b) расходится; c) сходится.

3. Вычислить следующие несобственные интегралы второго рода или установить их расходимость, основываясь на определении этих интегралов:

 a) \[
 \int_1^{+\infty} \frac{dx}{\sqrt{4x - x^2 - 3}};
 \]
 b) \[
 \int_0^{+\infty} \frac{dx}{x^2 - 4x + 3};
 \]
 c) \[
 \int_1^{+\infty} \frac{e^x \, dx}{x \sqrt{\ln x}};
 \]
 d) \[
 \int_0^{+\infty} \cos \frac{1}{x^2} \cdot \frac{dx}{x^3}.
 \]

 Ответ: a) \(\frac{\pi}{2} \); b) расходится; c) \(2\sqrt{2} \); d) расходится.

4. Исследовать на сходимость несобственные интегралы:

 a) \[
 \int_0^{+\infty} \frac{e^x \, dx}{\sqrt{1 - x^3}};
 \]
 b) \[
 \int_0^{+\infty} \frac{dx}{x \cdot \sin x};
 \]
 c) \[
 \int_0^{+\infty} \frac{\ln (1 + \sqrt{x})}{e^{\sqrt{x}} - 1} \, dx.
 \]

56
Ответ: а) сходится; б) расходится; в) сходится.
5. Найти главные значения несобственных интегралов:
 а) \(\int_{-\infty}^{\infty} \frac{1 + x}{1 + x^2} \, dx \); б) \(\int_{\frac{1}{2}}^{\infty} \frac{dx}{x \ln x} \).
Ответ: а) \(\pi \); б) 0.
6. Найти при каких значениях \(p \) интеграл
 \(\int_{0}^{\infty} \frac{\arctg x}{x^p} \, dx \) является сходящимся.
Ответ: \(1 < p < 2 \).

Самостоятельная работа

Вариант 1

1. Вычислить \(\int_{0}^{4} \frac{dx}{1 + \sqrt{2x + 1}} \).
Ответ: \(2 - \ln 2 \).
2. Вычислить площадь фигуры, ограниченной линиями \(xy = 6 \) и \(x + y - 7 = 0 \).
Ответ: \(\frac{35}{2} - 6 \ln 6 \).

Найти объем тела, ограниченного поверхностями \(x^2 + \frac{y^2}{4} - z^2 = 1 \), \(z = 0 \), \(z = 2 \).
Ответ: \(\frac{28}{3} \pi \).
4. Пластина, имеющая форму равнобедренного треугольника с основанием \(a \) и высотой \(b \), вертикально погружена в жидкость плотностью \(\rho \). Вершина треугольника находится на поверхности жидкости, основание — параллельно этой поверхности. Найти силу давления жидкости на пластину.
Ответ: \(\frac{1}{3} \rho gab^2 \).
5. Найти работу, затрачиваемую на выкачивание жидкости из корыта, имеющего форму полуцилиндра, длина которого \(a \), радиус \(r \). Плотность жидкости равна \(\rho \).
Ответ: \(\rho gar^2 \).
6. Исследуйте сходимость интеграла
 \(\int_{0}^{\infty} \frac{\sqrt[3]{1 + 2x^3}}{\sqrt[3]{3 + 4x^3}} \, dx \).
Ответ: расходится.

7. Исследовать сходимость интеграла \(\int_{0}^{\infty} \frac{1}{\sqrt[3]{x + 2x^2}} \, dx \).

Ответ: сходится.

Вариант 2

1. Вычислить \(\int_{1}^{9} x^{3/2} - x \, dx \).

Ответ: \(-\frac{468}{7}\).

2. Вычислить площадь фигуры, ограниченной линиями \(xy = 1 \) и \(3x + 4y = 7 \).

Ответ: \(\frac{7}{24} - \ln \frac{4}{3} \).

3. Вычислить объем шарового слоя, вырезанного из шара \(x^2 + y^2 + z^2 = 16 \) плоскостями \(x = 2 \) и \(x = 3 \).

Ответ: \(\frac{29}{3} \pi \).

4. Пластина в форме прямоугольника с катетами \(a \) и \(b \) опущена вертикально в жидкость плотностью \(\rho \) так, что катет \(a \) находится на поверхности жидкости. Найти силу давления жидкости на пластину.

Ответ: \(\frac{\rho gab^2}{6} \).

5. Вычислить работу, которую надо затратить при постройке пирамиды с квадратным основанием, если высота пирамиды \(H \), сторона основания \(a \), плотность материала \(\rho \).

Ответ: \(\frac{1}{12} \rho ga^2 H \).

6. Исследовать сходимость интеграла \(\int_{0}^{\infty} \frac{3\sqrt{1 + 5x^2}}{5\sqrt[9]{3x^4} + 4} \, dx \).

Ответ: сходится.

7. Исследовать сходимость интеграла \(\int_{0}^{\infty} \frac{\ln(1 + \sqrt[5]{x^3})}{\sqrt[5]{x^5} + x^7} \, dx \).

Ответ: расходится.
Занятие 11

Основные понятия функции нескольких переменных.
Частные производные, дифференциал

Пример 1. Найти и изобразить область определения функции:

а) \(z = \ln (2x - y) \);

б) \(z = y\sqrt{\sin x} \);

c) \(z = \sqrt{1-x^2} + \sqrt{y^2-1} \);

d) \(z = \arccos\frac{1}{x+y} \);

e) \(z = \arcsin\frac{x}{y^2} + \arccos(1-y) \).

\[\Delta \]

а) Область определения функции описывается неравенством \(y < 2x \) (рис. 16).

б) Областью определения функции является множество точек, координаты которых удовлетворяют неравенству \(\sin x \geq 0 \). Это неравенство эквивалентно совокупности неравенств \(2k\pi \leq x \leq \pi + 2k\pi, \ k = 0, \pm 1, \pm 2, \ldots \) (рис. 17).
в) \[|y| \leq 1, \quad |y| \geq 1 \] (рис. 18).

г) \[\begin{cases} y + x \geq 1, \\ y + x \leq -1 \end{cases} \sim \begin{cases} y \geq 1 - x, \\ y \leq -1 - x \end{cases} \] (рис. 19).
Пример 2. Найти линии уровня функции:

а) \(z = x^2 + y^2; \)
б) \(z = x^2 - y^2; \)
в) \(z = \ln (x^2 + y); \)
г) \(z = \sqrt{xy}; \)
д) \(z = (x + y)^2. \)

Ответ: а) концентрические окружности \(x^2 + y^2 = c, \ c \geq 0; \)
б) семейство равносторонних гипербол \(x^2 - y^2 = c, \ c \neq 0; \) при \(c = 0 \) – пара прямых \(y = \pm x; \)
в) параболы \(y = c - x^2, \ c > 0; \)
г) семейство равносторонних гипербол \(xy = c, \ c > 0; \) при \(c = 0 \) – ось координат;
д) параллельные прямые \(y = c - x, \ c \geq 0. \)

Пример 3. Найти поверхности уровня следующих функций:

а) \(u = x + y + z; \)
б) \(u = x^2 + y^2 - z^2. \)

Ответ: а) плоскости \(x + y + z = c, \)
б) однополостные гиперболоиды \(x^2 + y^2 - z^2 = c, \ c > 0; \)
двуполостные гиперболоиды при \(c < 0, \) конус при \(c = 0. \)

Пример 4. Показать, что следующие пределы

а) \(\lim_{x \to 0} \frac{2xy}{x^2 + y^2} \)

б) \(\lim_{x \to 0} \frac{x^2 y}{x^4 + y^2} \)

не существуют.

\(\Delta \) а) Исследуем предел этой функции по различным направлениям в точке \((0; 0): \)
\[
\lim_{x \to 0} \frac{2xy}{x^2 + y^2} = \lim_{x \to 0} \frac{2kx^2}{x^2 + k^2x^2} = \frac{2k}{1 + k^2}.
\]

Полученное значение зависит от \(k\). Следовательно, указанный предел не существует.

б) Поступим аналогичным способом:

\[
\lim_{x \to 0} \frac{x^2y}{x^4 + y^2} = \lim_{x \to 0} \frac{kx^3}{x^4 + k^2x^2} = 0.
\]

В то же время \[
\lim_{x \to 0} \frac{x^2y}{x^4 + y^2} = \lim_{x \to 0} \frac{x^4}{x^4 + y^4} = \frac{1}{2}.
\]

Таким образом, для рассмотренной функции существует один и тот же предел по любому направлению, а предел по указанной параболе хотя и существует, но отличен от общего значения пределов по направлениям. Тем самым мы показали, что предел в точке \((0; 0)\) не существует. ▲

Пример 5. Вычислить следующие пределы:

а) \[
\lim_{x \to \pi, y \to \pi} \frac{\sin x - \sin y}{x - y};
\]

б) \[
\lim_{x \to \infty, y \to \infty} \frac{x^2 + y^2}{x^4 + y^4};
\]

в) \[
\lim_{x \to \infty, y \to a} \frac{1 + \frac{1}{x}}{x + y}.
\]

\[\Delta \quad \text{а)} \quad \lim_{x \to \pi, y \to \pi} \frac{\sin x - \sin y}{x - y} = \lim_{x \to \pi, y \to \pi} \frac{2\sin \frac{x-y}{2} \cos \frac{x+y}{2}}{2} = \lim_{x \to \pi, y \to \pi} \cos \frac{x+y}{2} = -1.
\]

б) Пусть \(x \neq 0, y \neq 0\), тогда

\[
0 < \frac{x^2 + y^2}{x^4 + y^4} = \frac{x^2}{x^4 + y^4} + \frac{y^2}{x^4 + y^4} < \frac{x^2}{x^4} + \frac{y^2}{y^4} = \frac{1}{x^2} + \frac{1}{y^2}.
\]

Поскольку \[
\lim_{x \to \infty, y \to \infty} \frac{1}{x^2} = 0,
\]
то и \[
\lim_{x \to \infty, y \to \infty} \frac{x^2 + y^2}{x^4 + y^4} = 0.
\]

в) Имеем \[
\lim_{x \to \infty, y \to a} \frac{1 + \frac{1}{x}}{x + y} = \lim_{x \to \infty, y \to a} \left(1 + \frac{1}{x}\right)^{x} \lim_{x \to \infty, y \to a} \frac{x}{x + y} = e. ▲
\]

Пример 6. Исследовать функцию \(z = \frac{\ln (xy + y^2)}{\sqrt{x}}\) на непрерывность.

\[\Delta \quad \text{Область определения частного двух функций есть пересечение областей определения делимого и делителя, из которого удалены точки, в которых делитель обращается в нуль. В данном случае область определения описывается системой неравенств:}
\]

\[
\begin{cases}
xy + y > 0, \\
x > 0
\end{cases}
\quad \begin{cases}
x > 0, \\
y > 0.
\end{cases}
\quad ▲
\]
Пример 7. Исследовать функцию \(z = \frac{x + y}{x^3 + y^3} \) на непрерывность. Найти предел функции в точках разрыва.

Поскольку числитель и знаменатель – непрерывные функции, то функция имеет разрыв лишь в точках, где знаменатель \(x^3 + y^3 \) обращается в нуль, т. е. на прямой \(y = -x \).

Пусть \(x_0 \neq 0, \ y_0 \neq 0, \ x_0 + y_0 = 0, \) тогда

\[
\lim_{x \to x_0, y \to y_0} \frac{x + y}{x^3 + y^3} = \lim_{x \to x_0, y \to y_0} \frac{x + y}{(x + y)(x^2 - xy + y^2)} = \frac{1}{x_0^2 - x_0 y_0 + y_0^2}.
\]

Значит, точки прямой \(y = -x, \ (x \neq 0) \) – точки устранимого разрыва функции \(z \). Из соотношения \(\lim_{x \to x_0, y \to y_0} \frac{x + y}{x^3 + y^3} = \lim_{x \to x_0, y \to y_0} \frac{1}{x_0^2 - x_0 y_0 + y_0^2} = +\infty \) следует, что точка \(O (0; 0) \) – точка бесконечного разрыва. ▲

Пример 8. Пользуясь определением частных производных, найти \(\frac{\partial z}{\partial x} \) и \(\frac{\partial z}{\partial y} \), если \(z = xy^2 \).

\[
\Delta \frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{z(x + \Delta x; y) - z(x; y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)y^2 - xy^2}{\Delta x} = y^2.
\]

\[
\Delta \frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{z(x; y + \Delta y) - z(x; y)}{\Delta y} = \lim_{\Delta y \to 0} \frac{x(y + \Delta y^2) - xy^2}{\Delta y} = 2xy.
\]

Пример 9. Найти частные производные следующих функций:

а) \(z = x^2 + y^3 + 3x^2y^3; \) \hspace{0.5cm} б) \(z = \arctg \frac{y}{1 + x^2}; \) \hspace{0.5cm} в) \(u = e^x + e^{-\frac{y}{z}}; \)

g) \(z = \tan (x + 2y) \cdot e^y; \) \hspace{0.5cm} д) \(u = \left(\frac{y}{x} \right)^z. \)

\[
\Delta \text{а)} \frac{\partial z}{\partial x} = 2x + 6xy^3, \quad \frac{\partial z}{\partial y} = 3y^2 + 9x^2y^2; \]

\[
\text{б)} \frac{\partial z}{\partial x} = \frac{1}{1 + \frac{y^2}{(1 + x^2)^2}} \cdot y(-1)(1 + x^2)^{-2} \cdot 2x = \frac{-2xy}{x^4 + 2x^2 + 1 + y^2},
\]
\[
\frac{\partial z}{\partial y} = \frac{1}{1 + x^2} \left(1 + \frac{1}{y^2} \right) = \frac{x^2 + 1}{1 + x^2};
\]

в) \(\frac{\partial u}{\partial x} = e^y \cdot \frac{x}{y}, \quad \frac{\partial u}{\partial y} = -e^y \cdot \frac{x}{y^2} + e^y \left(-\frac{1}{z} \right), \quad \frac{\partial u}{\partial z} = e^y \cdot \frac{y}{z}; \)

g) \(\frac{\partial z}{\partial x} = \frac{1}{\cos^2(x + 2y)} \cdot e^y + \tan(x + 2y) \cdot e^y \cdot \frac{1}{y}; \)

д) \(\frac{\partial u}{\partial x} = z \cdot \left(\frac{y}{x} \right)^{z-1} \cdot \left(-\frac{y}{x^2} \right), \quad \frac{\partial u}{\partial y} = z \cdot \left(\frac{y}{x} \right)^{z-1} \cdot \frac{1}{x}, \quad \frac{\partial u}{\partial z} = \left(\frac{y}{x} \right)^z \cdot \ln \left(\frac{y}{x} \right). \)

Пример 10. Найти полные дифференциалы следующих функций:

а) \(z = \ln \frac{y}{x}; \) б) \(z = e^x (\cos y + x \sin y). \)

Да) Найдем частные производные:

а) \(\frac{\partial z}{\partial x} = \frac{1}{\tan \frac{y}{x}} \cdot \frac{2y}{x^2 \sin^2 \frac{y}{x}} = \frac{2y}{x^2 \sin^2 \frac{y}{x}}; \quad \frac{\partial z}{\partial y} = \frac{1}{\tan \frac{y}{x}} \cdot \frac{1}{x} \cdot \frac{1}{x} = \frac{2}{x \sin \frac{2y}{x}}. \)

Следовательно, \(dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = \frac{2}{x \sin \frac{2y}{x}} \left(dy - \frac{y}{x} dx \right). \)

б) \(\frac{\partial z}{\partial x} = e^x (\cos y + x \sin y) + e^x \sin y, \quad \frac{\partial z}{\partial y} = e^x (\cos y + x \sin y), \quad \frac{\partial z}{\partial x} = e^x (-\sin y + x \cos y), \quad dz = e^x (x \cos y - \sin y) dy + (\sin y + \cos y + x \sin y) dx. \)

Дополнительные задачи

1. Определить область определения функций:

а) \(z = \sqrt{x + y + \sqrt{x - y}}; \) б) \(z = \sqrt{\sin(x^2 + y^2)}. \)

Ответ: а) замкнутый угол, ограниченный лучами \(y = x, \ x \geq 0 \) и \(y = -x, \ x \geq 0; \) б) семейство концентрических колец \(2\pi k \leq x^2 + y^2 \leq \pi(2k + 1) \) \((k = 0, 1, 2, \ldots). \)

2. Найти множество значений функции \(z = x^2 - 2xy + y^2 + 2x - 2y - 3. \)

Ответ: \([-4; +\infty)]. \)

3. Вычислить пределы:
a) \(\lim_\sub{x\to0\atop y\to a} \frac{\sin xy}{y}\); б) \(\lim_\sub{x\to\infty\atop y\to\infty} (x + y)e^{-(x^2+y^2)}\); в) \(\lim_\sub{x\to0\atop y\to0} \left(\cos \sqrt{x^2 + y^2} \right) - \frac{1}{x^2+y^2}\).

Ответ: а) \(a\); б) 0; в) \(\sqrt{e}\).

4. Доказать, что \(\lim_\sub{x\to0\atop y\to0} \frac{x^2 + xy + y^2}{x^2 - xy + y^2}\) не существует.

5. Доказать, что функция
\[
\begin{cases}
\cos(x - y) - \cos(x + y) \\ 2xy \\
1, \ xy = 0
\end{cases}, \ \text{ху} \neq 0,
\]
является непрерывной в точке \(O(0; 0)\).

6. Найти точки разрыва функции \(z = \frac{1}{\sin x \cdot \sin y}\).

Ответ: \(x = k\pi, \ y = m\pi, \ k, m \in \mathbb{Z}\).

7. Найти частные производные следующих функций:

а) \(z = xy + \frac{x}{y}\); б) \(z = x\sin (x + y)\); в) \(u = x^2\); г) \(u = \arctg \frac{y}{x}\).

Ответ: а) \(\frac{\partial z}{\partial x} = y + \frac{1}{y}, \ \frac{\partial z}{\partial y} = x - \frac{x}{y^2}\); б) \(\frac{\partial z}{\partial x} = \sin (x + y) + x\cos (x + y), \ \frac{\partial z}{\partial y} = x\cos (x + y)\);

в) \(\frac{\partial u}{\partial x} = \frac{yu}{xz}, \ \frac{\partial u}{\partial y} = \frac{u \ln x}{z}, \ \frac{\partial u}{\partial z} = -\frac{yu}{z^2}\ln z\); г) \(\frac{\partial z}{\partial x} = -\frac{y}{x^2 + y^2}, \ \frac{\partial z}{\partial y} = \frac{x}{x^2 + y^2}\).

8. Найти дифференциалы функций:

а) \(z = \ln \tg \frac{y}{x}\); б) \(z = \arctg \frac{xy}{z^2}\) в точке \(M (3; 2; 1)\).

Ответ: а) \(\frac{2}{x \sin 2y} \left(dy - \frac{y}{x} \, dx \right)\); б) \(\frac{2\, dx + 3\, dy - 12\, dz}{37}\).

Занятие 12

Применение дифференциала. Производная сложной функции. Производная по направлению

Пример 1. Предполагая, что \(x\) и \(y\) малы по абсолютной величине, вывести
формулу \((1 + x)^m \cdot (1 + y)^n \approx 1 + mx + ny\).

Рассмотрим функцию \(z = (1 + x)^m \cdot (1 + y)^n\). При \(x_0 = y_0 = 0\) имеем \(z_0 = 1\). Находим полный дифференциал функции \(z = (1 + x)^m \cdot (1 + y)^n\) в любой точке:

\[
dz = m(1 + x)^{m-1} \cdot (1 + y)^n \Delta x + n(1 + y)^{n-1} (1 + x)^m \Delta y.
\]

Так как \(z_0 = 1\), \(\Delta x = x - x_0 = x\), \(\Delta y = y - y_0 = y\), окончательно получаем

\[
(1 + x)^m \cdot (1 + y)^n \approx z_0 + dz \bigg|_{y = 0} \approx 1 + mx + ny. \quad \star
\]

Пример 2. Заменив приращение функции дифференциалом, приближенно вычислить \(\sqrt{1,02^3 + 1,97^5}\).

При \(x_0 = 0\), \(y_0 = 0\) имеем \(z_0 = 3\). Находим полный дифференциал функции:

\[
dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = \frac{1}{2} ((1 + x)^3 + (2 + y)^3)^{-\frac{1}{2}} \cdot 3(1 + x)^2 dx +
\]

\[
+ \frac{1}{2} ((1 + x)^3 + (2 + y)^3)^{-\frac{1}{2}} \cdot 3(2 + y)^2 dy.
\]

В нашем случае \(x_0 = 0\), \(y_0 = 0\), \(z_0 = 3\), \(\Delta x = dx = 0,02\), \(\Delta y = dy = -0,03\).

Таким образом, \(\sqrt{1,02^3 + 1,97^5} \approx z_0 + \frac{\Delta x}{2} - 2\Delta y = 3 + 0,01 - 0,06 = 2,95. \quad \star\)

Пример 3. Закрытый ящик, имеющий наружные размеры \(x = 10\) см, \(y = 8\) см, \(z = 6\) см, сделан из фанеры толщиной 0,2 см. Определить приближенно объем затраченного на ящик материала.

Найдем объем ящика \(V = xyz\). Объем, затраченного на ящик материал, приближенно равен \(|dV|\).

\[
dV = \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy + \frac{\partial V}{\partial z} dz = yzdx + xzdy + yxdz.
\]

Так как \(dx = dy = dz = -0,4\), окончательно получим

\[
dV = -8 \cdot 6 \cdot 0,4 - 10 \cdot 6 \cdot 0,4 - 10 \cdot 8 \cdot 0,4 \approx -75.
\]

Таким образом, внутренний объем ящика меньше внешнего объема на 75 см³, т. е. объем затраченного на ящик материала приближенно равен 75 см³. \quad \star

Пример 4. Найти \(\frac{dz}{dt}\), если \(z = \frac{x}{y}\), где \(x = e^t\), \(y = \ln t\).

\[
\Delta \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} = \frac{1}{y} e^t - \frac{x}{y^2} \cdot \frac{1}{t} = \frac{1}{\ln t} e^t - \frac{e^t}{\ln^2 t} \cdot \frac{1}{t} = \frac{e^t(t \ln t - 1)}{t \ln^2 t}. \quad \star
\]

Пример 5. Найти \(\frac{du}{dt}\), если \(u = xyz\), где \(x = t^2 + 1\), \(y = \ln t\), \(z = \tan t\).
\[\Delta \frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial u}{\partial z} \cdot \frac{dz}{dt} = yz \cdot 2t + xz \cdot \frac{1}{t} + xy \cdot \frac{1}{\cos^2 t} = 2t \ln t \cdot \tan t + \frac{(t^2 + 1) \tan t}{t} + \frac{(t^2 + 1) \ln t}{\cos^2 t}. \]

Пример 6. Найти \(\frac{\partial z}{\partial x} \) и \(\frac{\partial z}{\partial y} \), если \(z = \arctg \frac{y}{x}, \quad y = x^2 \).

\[\Delta \frac{\partial z}{\partial x} = \frac{1}{1 + y^2} \left(-\frac{y}{x^2} \right) = -\frac{y}{x^2 + y^2}; \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx} = -\frac{y}{x^2 + y^2} + \frac{1}{x(1 + \frac{y^2}{x^2})} \cdot 2x = -\frac{x^2}{x^2 + x^4} + \frac{2x^2}{x^2 + x^4} = \frac{1}{1 + x^2}. \]

Пример 7. Найти \(\frac{\partial z}{\partial x} \) и \(\frac{\partial z}{\partial y} \), если \(z = u^2 \ln v, \quad u = \frac{x}{y}, \quad v = 3x - 2y \).

\[\Delta \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx} = 2u \cdot \ln v \cdot \frac{1}{y} + u^2 \cdot \frac{1}{v} \cdot 3 = 2 \cdot \frac{x}{y} \cdot \ln (3x - 2y) \cdot \frac{1}{y} + \frac{x^2 \cdot 3}{y^2 (3x - 2y)} = \frac{2 \cdot \frac{x}{y} \cdot \ln (3x - 2y) \left(-\frac{x}{y^2} \right) + \frac{x^2}{y^2 (3x - 2y)} \cdot (-2) = -2 \frac{x^2}{y^3 (3x - 2y)} - \frac{2x^2}{y^2 (3x - 2y)}. \]

Пример 8. Найти \(\frac{\partial u}{\partial \xi} \) и \(\frac{\partial u}{\partial \eta} \), если \(u = \ln (x^2 + y^2), \quad x = \xi \eta, \quad y = \xi \eta \).

\[\Delta \frac{\partial u}{\partial \xi} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial \xi} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dx} = \frac{2x}{x^2 + y^2} \cdot \eta + \frac{2y}{x^2 + y^2} \cdot \frac{1}{\eta} = \frac{2 \xi \eta^2}{\xi^2 \eta^2 + \frac{\xi^2}{\eta^2}} + \frac{2 \xi \eta^4 + 2 \xi}{\xi^2 \eta^4 + \xi^2} = \frac{2 \xi}{\eta} \cdot \frac{1}{\xi^2 \eta^2 + \frac{\xi^2}{\eta^2}} \cdot \frac{2 \xi \eta^4 + 2 \xi}{\xi^2 \eta^4 + \xi^2} \cdot \left(-\frac{\xi}{\eta^2} \right) = \frac{2 \xi^2 \eta}{\xi^2 \eta^2 + \frac{\xi^2}{\eta^2}} - \frac{2 \xi \eta}{\xi^2 \eta^2 + \frac{\xi^2}{\eta^2}}. \]
Пример 9. Показать, что функция \(z = y\varphi(x^2 - y^2) \) удовлетворяет уравнению
\[
\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{z}{y^2}.
\]
\[\nabla\]

Пусть \(x^2 - y^2 = t \) является промежуточным аргументом. Тогда
\[
\frac{\partial z}{\partial x} = y\varphi'(t) \cdot 2x, \quad \frac{\partial z}{\partial y} = \varphi(t) + y \cdot \varphi'(t)(-2y).
\]

Подставляя частные производные в левую часть уравнения будем иметь
\[
\frac{1}{x} \cdot \frac{\partial z}{\partial x} + \frac{1}{y} \cdot \frac{\partial z}{\partial y} = \frac{1}{x} \cdot y\varphi'(t) \cdot 2x + \frac{1}{y} (\varphi(t) - 2y^2 \varphi'(t)) = 2y\varphi'(t) + \frac{1}{y} \varphi(t) - 2y\varphi'(t) = z \cdot \frac{1}{y^2}.
\]

Пример 10. Найти производную функции \(u = x^2yz \) в точке \(M_0(2; -3; 1) \) по направлению \(\vec{l} = 4\vec{i} - 3\vec{j} + 12\vec{k} \).

\[\nabla\]

Находим частные производные функции \(u \) в точке \(M_0 \):
\[
\left. \frac{\partial u}{\partial x} \right|_{M_0} = 2xyz = -12; \quad \left. \frac{\partial u}{\partial y} \right|_{M_0} = x^2z = 4; \quad \left. \frac{\partial u}{\partial z} \right|_{M_0} = x^2y = -12.
\]

Определим направляющие косинусы вектора \(\vec{e} \):
\[
\cos \alpha = \frac{4}{\sqrt{4^2 + 3^2 + 12^2}} = \frac{4}{13}; \quad \cos \beta = -\frac{3}{13}; \quad \cos \gamma = \frac{12}{13}.
\]

\[\nabla\]

Точке \(M_0(2; -3; 1) \) соответствует значение параметра \(t = \frac{\pi}{2} \). Тогда
Отсюда следует, что направляющие косинусы касательной к окружности в точке M_0 равны $\cos \alpha = -1$, $\cos \beta = 0$, $\cos \gamma = 0$.

Найдем значения частных производных в точке M_0:

$$\left. \frac{\partial u}{\partial x} \right|_{M_0} = \frac{y + z}{xy + yz + xz} = 2, \quad \left. \frac{\partial u}{\partial y} \right|_{M_0} = \frac{x + z}{xy + yz + xz} = 1,$$

$$\left. \frac{\partial u}{\partial z} \right|_{M_0} = \frac{y + x}{xy + yz + xz} = 1, \quad \left. \frac{\partial u}{\partial e} \right|_{M_0} = 2 \cdot (-1) + 1 \cdot 0 + 1 \cdot 0 = -2. \quad \blacktriangle$$

Пример 12. Определить угол между градиентами функции $u = x^2 + y^2 + z^2$ в точках $A(a; 0; 0)$ и $B(0; b; 0)$, ($ab \neq 0$).

Δ Имеем:

$$\text{grad } u(A) = \left(\frac{\partial u(A)}{\partial x}; \frac{\partial u(A)}{\partial y}; \frac{\partial u(A)}{\partial z} \right) = (2a; 0; 0);$$

$$\text{grad } u(B) = \left(\frac{\partial u(B)}{\partial x}; \frac{\partial u(B)}{\partial y}; \frac{\partial u(B)}{\partial z} \right) = (0; 2b; 0).$$

Так как скалярное произведение этих ненулевых векторов равно нулю, получаем, что $\cos \varphi = 0$ т. е. $\varphi = \frac{\pi}{2}$. \blacktriangle

Пример 13. Найти в точке $M_0(2; 1)$ наибольшую скорость роста функции $z = x^2 y - 2y^3$.

Δ Поскольку функция дифференцируема в точке M_0, то наибольшая скорость ее роста в этой точке равна модулю ее градиента в этой точке. Находим градиент данной функции в произвольной точке: $\text{grad } z = (2xy; x^2 - 6y^2)$.

Выпишем значение градиента в заданной точке $M_0(2; 1)$:

$$\text{grad } z(2; 1) = (4; -2).$$

Находим искомую скорость: $|\text{grad } z(2; 1)| = \sqrt{4^2 + (-2)^2} = 2\sqrt{5}$. \blacktriangle

Дополнительные задачи

1. Заменяя приращение функции дифференциалом, приближенно вычислить $(1,02)^3 \cdot (0,97)^3$.

Ответ: $0,97$.

2. Заменяя приращение функции дифференциалом, приближенно вычислить, на сколько изменится диагональ прямоугольника со сторонами 6 м и 8 м, если его первая сторона увеличится на 2 мм, а вторая сторона уменьшится на 5 мм.
Ответ: уменьшится на 3мм.

3. Найти \(\frac{dz}{dt} \), если \(z = \frac{x}{y} \), где \(x = e^t \), \(y = \ln t \).

Ответ: \(\frac{dz}{dt} = \frac{e^t(t \ln t - 1)}{t \ln^2 t} \).

4. Найти \(\frac{dz}{dt} \), если \(z = x^2 - y^2 \), где \(x = \sin t \), \(y = \cos t \).

Ответ: \(\frac{dz}{dt} = 2\cos 2t \).

5. Найти \(\frac{dz}{dx} \) и \(\frac{dz}{dy} \), если \(z = u^2v - uv^2 \), где \(u = x + 2y \), \(v = x - 2y \).

Ответ: \(\frac{dz}{dx} = 8xy \), \(\frac{dz}{dy} = 4(x^2 - 12y^2) \).

6. Найти полный дифференциал функции \(z = x^2 - y^2 \), где \(x = u \cos v \), \(y = u \sin v \).

Ответ: \(dz = 2u(\cos 2vdu - u \sin 2v dv) \).

7. Показать, что функция \(z = \varphi(x^2 + y^2) \) удовлетворяет уравнению

\[y \frac{dz}{dx} - x \frac{dz}{dy} = 0. \]

8. Найти производную функции \(u = xy + yz + zx \) в точке \(M(2; 1; 3) \) в направлении к точке \(N(5; 5; 15) \).

Ответ: \(68 \frac{13}{13} \).

9. Найти производную от функции \(z = 2x^2 - 3y^2 \) в точке \(P(1; 1) \) в направлении градиента.

Ответ: \(2\sqrt{13} \).

Занятие 13

Касательная плоскость и нормаль.
Производные и дифференциалы высших порядков

Пример 1. Найти уравнение касательной плоскости и нормали к поверхности \(z = \frac{x^2 - y^2}{2} \) в точке \(M_0(3; 1; 4) \).

Поверхность \(S \) запишем в виде \(F(x; y; z) = \frac{x^2 - y^2}{2} - z = 0 \). Построим
плоскость, проходящую через точку $M_0(3; 1; 4)$ и имеющую нормальный вектор $\nabla F(3; 1; 4)$:

$$\nabla F(3; 1; 4) = \frac{\partial F}{\partial x} \bigg|_{M_0} \begin{pmatrix} i \\ m_0 \\ 0 \end{pmatrix} + \frac{\partial F}{\partial y} \bigg|_{M_0} \begin{pmatrix} j \\ m_0 \\ 0 \end{pmatrix} + \frac{\partial F}{\partial z} \bigg|_{M_0} \begin{pmatrix} k \\ m_0 \\ 0 \end{pmatrix} = x \begin{pmatrix} i \\ m_0 \\ 0 \end{pmatrix} + y \begin{pmatrix} i \\ m_0 \\ 0 \end{pmatrix} - 1 \begin{pmatrix} k \\ m_0 \\ 0 \end{pmatrix} = 3i - j - k.
$$

Запишем уравнение касательной плоскости:

$$3(x - 3) - (y - 1) - (z - 4) = 0, \quad 3x - y - z - 4 = 0.
$$

Запишем уравнение нормали: $\frac{x - 3}{3} = \frac{y - 1}{-1} = \frac{z - 4}{-1}$. ▲

Пример 2. Найти уравнение касательной плоскости и нормали к поверхности $\ln(e^{xy} + z) = 0$ в точке $M_0(0; 4; 0)$.

Δ Найдем нормальный вектор плоскости в точке $M_0(0; 4; 0)$:

$$\nabla F(0; 4; 0) = \left. \frac{\partial F}{\partial x} \right|_{M_0} \begin{pmatrix} i \\ m_0 \\ 0 \end{pmatrix} + \left. \frac{\partial F}{\partial y} \right|_{M_0} \begin{pmatrix} j \\ m_0 \\ 0 \end{pmatrix} + \left. \frac{\partial F}{\partial z} \right|_{M_0} \begin{pmatrix} k \\ m_0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ e^{xy} + z \\ m_0 \end{pmatrix} \cdot \begin{pmatrix} i \\ m_0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ e^{xy} + z \\ m_0 \end{pmatrix} \cdot \begin{pmatrix} j \\ m_0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ e^{xy} + z \\ m_0 \end{pmatrix} \cdot \begin{pmatrix} k \\ m_0 \\ 0 \end{pmatrix} = 4i + 0j + k.
$$

Уравнение касательной плоскости: $4(x - 0) + 0(y - 4) + 1(z - 0) = 0, \; 4x + z = 0$.

Уравнение нормали:

$$\frac{x}{4} = \frac{y - 4}{0} = \frac{z}{1}. \quad \blacktriangleleft$$

Пример 3. Найти точку на поверхности $z = \frac{x^2}{2} + \frac{y^2}{4}$, нормаль к которой параллельна прямой $\frac{x - 2}{1} = \frac{y}{-1} = \frac{z + 1}{1}$, и записать уравнение касательной плоскости к поверхности в этой точке.

Δ Направляющий вектор нормали к поверхности в произвольной точке $(x; y; z)$ имеет вид $\left< \frac{x^2}{2} + \frac{y^2}{4}; \frac{x^2}{2} + \frac{y^2}{4}; -1 \right>$.

Po условию нормаль в искомой точке параллельна заданной прямой. Записывая критерий коллинеарности двух векторов, получаем соотношения:

$$\frac{x}{1} = \frac{y}{-1} = \frac{z + 1}{1}. \quad \text{Из этих соотношений находим координаты точки } M_0, \text{ в которой нормаль параллельна заданной прямой: } x = -1, \; y = 2, \; z = \frac{x^2}{2} + \frac{y^2}{4} = \frac{3}{2}.$$

Запишем уравнение касательной плоскости:

$$(x + 1) - (y - 2) + \left(z - \frac{3}{2} \right) = 0, \quad \text{или } 2x - 2y + 2z + 3 = 0. \quad \blacktriangleleft$$
Пример 4. Найти частные производные второго порядка функции \(z = x^{y^2} \).

\(\Delta \) Сначала находим частные производные первого порядка:
\[
\frac{\partial z}{\partial x} = y^2 \cdot x^{y^2-1}, \quad \frac{\partial z}{\partial y} = x^{y^2} \ln x \cdot 2y.
\]

Вычисляя частные производные от частных производных первого порядка, получаем частные производные второго порядка данной функции:
\[
\frac{\partial^2 z}{\partial x^2} = y^2 \cdot (y^2 - 1)x^{y^2-2};
\]
\[
\frac{\partial^2 z}{\partial x \partial y} = 2yx^{y^2-1} + y^2x^{y^2-1} \ln x \cdot 2y = 2yx^{y^2-1}(1 + y^2 \ln x);
\]
\[
\frac{\partial^2 z}{\partial y \partial x} = 2y^{y^2} \cdot x^{y^2-1} \ln x + 2yx^{y^2} \cdot \frac{1}{x} = 2yx^{y^2-1}(1 + y^2 \ln x);
\]
\[
\frac{\partial^2 z}{\partial y^2} = x^{y^2} \ln x \cdot 2y \cdot \ln x \cdot 2y + 2x^{y^2} \ln x = 2x^{y^2} \ln x(1 + 2y^2 \ln x). \quad \Delta
\]

Замечание. Так как \(\frac{\partial^2 z}{\partial x \partial y} \) и \(\frac{\partial^2 z}{\partial y \partial x} \) являются непрерывными функциями, то они равны.

Пример 5. Показать, что функция \(z = \arctg \frac{y}{x} \) удовлетворяет уравнению Лапласа.

Лапласа \(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0. \)

\[
\Delta \frac{\partial z}{\partial x} = \frac{1}{1 + \frac{y^2}{x^2}} \left(- \frac{y}{x^2} \right) = \frac{-y}{x^2 + y^2}; \quad \frac{\partial^2 z}{\partial x^2} = \frac{2yx}{(x^2 + y^2)^2};
\]
\[
\frac{\partial z}{\partial y} = \frac{1}{1 + \frac{y^2}{x^2}} \cdot \frac{1}{x} = \frac{x}{x^2 + y^2}; \quad \frac{\partial^2 z}{\partial y^2} = -x(x^2 + y^2)^{-2} \cdot 2y = \frac{-2xy}{(x^2 + y^2)^2}, \quad \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0. \quad \Delta
\]

Пример 6. Показать, что функция \(u = \varphi(x - \alpha t) + \psi(x + \alpha t) \) удовлетворяет уравнению \(\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}. \)

\(\Delta \) Введем обозначения: \(x - \alpha t = \xi, \quad x + \alpha t = \eta. \)

Тогда \(\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial \varphi}{\partial \xi} \cdot 1 + \frac{\partial \psi}{\partial \eta} \cdot 1; \quad \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 \varphi}{\partial \xi^2} + \frac{\partial^2 \psi}{\partial \eta^2}; \)
\[
\frac{\partial u}{\partial t} = \frac{\partial u}{\partial \xi} \cdot \frac{\partial \xi}{\partial t} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial t} = \frac{\partial \varphi}{\partial \xi} (-\alpha) + \frac{\partial \psi}{\partial \eta} \cdot \alpha; \quad \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 \varphi}{\partial \xi^2} \cdot \alpha^2 + \frac{\partial^2 \psi}{\partial \eta^2} \cdot \alpha^2.
\]
Следовательно, \(\frac{\partial^2 \Phi}{\partial t^2} = a^2 \frac{\partial^2 \Phi}{\partial x^2} \). ▲

Пример 7. Найти \(\frac{\partial^{10} u}{\partial x^2 \partial y^8} \), если \(u = e^{xy} \).

\(\Delta \) Указанная частная производная не зависит от порядка дифференцирования. Очевидно, \(\frac{\partial^8 u}{\partial y^8} = x^8 e^{xy} \). Вычисляя теперь по формуле Лейбница вторую производную по \(x \) от \(\frac{\partial^8 u}{\partial y^8} \), получаем

\[
\frac{\partial^2}{\partial x^2} \left(\frac{\partial^8 \Phi}{\partial y^8} \right) = \frac{\partial^{10} u}{\partial x^2 \partial y^8} = (x^8)'' e^{xy} + 2(x^8)'(e^{xy})' + x^8(e^{xy})'' = \\
= 56x^6e^{xy} + 16x^7ye^{xy} + x^8y^2e^{xy}. ▲
\]

Пример 8. Найти дифференциал второго порядка функции \(z = e^{x-y^2} + \cos x \).

\(\Delta \) Воспользуемся формулой \(d^2z = z_{xx} dx^2 + 2z_{xy} dxdy + z_{yy} dy^2 \).

Находим частные производные:

\[
\frac{\partial z}{\partial x} = e^{x-y^2} - \sin x; \quad \frac{\partial z}{\partial y} = -2ye^{x-y^2}; \quad \frac{\partial^2 z}{\partial x^2} = e^{x-y^2} - \cos x;
\]

\[
\frac{\partial^2 z}{\partial x \partial y} = -2ye^{x-y^2}; \quad \frac{\partial^2 z}{\partial y^2} = -2e^{x-y^2}(1 - 2y^2).
\]

В результате получаем

\[
d^2z = (e^{x-y^2} - \cos x)dx^2 - 4ye^{x-y^2}dxdy + 2e^{x-y^2}(2y^2 - 1)dy^2. ▲
\]

Пример 9. Найти \(d^3z \) функции \(z = x^3y \) в точке \(M_0(1; 1) \).

\(\Delta \) Найдем \(d^3z \) с помощью оператора:

\[
d^3z = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy \right)^3 z = \frac{\partial^3 z}{\partial x^3} dx^3 + 3 \frac{\partial^3 z}{\partial x^2 \partial y} dx^2 dy + 3 \frac{\partial^3 z}{\partial x \partial y^2} dxdy + \frac{\partial^3 z}{\partial y^3} dy^3.
\]

Найдем частные производные третьего порядка в точке \(M_0 \):

\[
\frac{\partial z}{\partial x} = 3x^2y; \quad \frac{\partial z}{\partial y} = x^3; \quad \frac{\partial^2 z}{\partial x^2} = 6xy; \quad \frac{\partial^2 z}{\partial x \partial y} = 3x^2; \quad \frac{\partial^2 z}{\partial y^2} = 0; \quad \frac{\partial^3 z}{\partial x^3} = 6y;
\]

\[
\frac{\partial^3 z}{\partial x^2 \partial y} = 6x; \quad \frac{\partial^3 z}{\partial x \partial y^2} = 0; \quad \frac{\partial^3 z}{\partial y^3} = 0; \quad \frac{\partial^3 z}{\partial x^3} \bigg|_{M_0} = 6; \quad \frac{\partial^3 z}{\partial x^2 \partial y} \bigg|_{M_0} = 6.
\]

В результате получаем \(d^3z \bigg|_{M_0} = 6dx^3 + 18dx^2 dy. ▲ \)
Пример 10. Найти второй дифференциал сложной функции \(z = e^u + u \), \(u = x^2 + y^2 \) в точке \(M_0(0; 0) \).

Пусть первый дифференциал этой функции можно найти используя инвариантность формы записи дифференциала. Имеем \(dz = d(e^u + u) = (e^u + 1) \, du \), где \(du = d(x^2 + y^2) = 2xdx + 2ydy \).

Дальнейшее дифференцирование даёт
\[
\begin{align*}
\frac{d^2 z}{dM_0^2} &= 4dx^2 + 4dy^2. \\
\end{align*}
\]

Дополнительные задачи

1. Найти уравнение касательной плоскости и нормали к поверхности в заданной точке:
 а) \(z = (x - y)^2 - x + 2y, \quad M_0(1; 1; 1); \) б) \(xy^2 + z^3 = 12, \quad M_0(1; 2; 2). \)

Ответ: а) \(x - 2y + z = 0, \quad x - 1 = \frac{y-1}{-2} = z - 1; \) б) \(x + y + 3z = 9, \quad x - 1 = y - 2 = z - \frac{2}{3}. \)

2. Показать, что эллипсоид \(4x^2 + (y - 2)^2 + z^2 = 5 \) и гиперболоид \(x^2 - y^2 + z^2 = 3 \) в точке \(M_0(0; 1; 2) \) касаются друг друга, т.е. обе поверхности проходят через эту точку и имеют в ней общую касательную плоскость.

3. Для указанных функций найти частные производные второго порядка:
 а) \(z = \frac{x^2 + y^2}{xy}; \) б) \(z = \sin^2(ax + by). \)

Ответ: а) \(z_{xx} = \frac{2y}{x^3}, \quad z_{xy} = \frac{x^2 + y^2}{x^2 y^2}, \quad z_{yy} = \frac{2x}{y^3}; \)
 б) \(z_{xx} = 2a^2 \cos 2(ax + by), \quad z_{xy} = 2b^2 \cos 2(ax + by). \)

4. Вычислить частные производные второго порядка функции \(z = f(x; y) \), в указанных точках:
 а) \(z = \frac{x}{x + y}, \quad M_0(1; 0); \) б) \(z = \ln(x^2 + y), \quad M_0(0; 1). \)

Ответ: а) \(z_{xx}(M_0) = 0, \quad z_{xy}(M_0) = 1, \quad z_{yy}(M_0) = 2; \)
6) \(z''_{xx}(M_0) = 2, \quad z''_{xy}(M_0) = 0, \quad z''_{yy}(M_0) = -1. \)

5. Найти \(\frac{\partial^2 u}{\partial x^2} \) для сложной функции \(u = f(x^2 + y^2 + z^2). \)

Ответ: \(\frac{\partial^2 u}{\partial x^2} = 2f'(x^2 + y^2 + z^2) + 4x^2 f''(x^2 + y^2 + z^2). \)

6. Найти \(\frac{\partial^2 z}{\partial x \partial y} \), если \(z = f(u; v), \) где \(u = x^2 + y^2, \ v = xy. \)

Ответ: \(\frac{\partial^2 z}{\partial x \partial y} = f'(u; v) + 4xy f''_{uu}(u; v) + 2(x^2 + y^2) f''_{uv}(u; v) + xy f''_{vv}(u; v). \)

7. Найти \(\frac{\partial^3 u}{\partial x \partial y \partial z} \) для функции \(u = e^{xyz}. \)

Ответ: \(\frac{\partial^3 u}{\partial x \partial y \partial z} = e^{xyz}(1 + 3xyz + x^2 y^2 z^2). \)

8. Найти \(\partial^3 z \) в точке \(M_0(0; 1) \) для функции \(z = e^{x^2 y}. \)

Ответ: \(\partial^3 z (M_0) = 6dx^2 \cdot dy. \)

9. Докажите, что функция \(u = x \varphi(x + y) + y \cdot \psi(x + y) \) удовлетворяет уравнению \(\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0. \)

Занятие 14

Дифференцирование неявных функций. Формула Тейлора

Пример 1. Найти производные \(f'(x) \) и \(f''(x) \) неявной функции \(y = f(x), \) заданной уравнением \(x^2 + xy + y^2 - 3 = 0 \) и удовлетворяющей условию \(f(1) = 1. \)

Функция \(F(x, y) = x^2 + xy + y^2 - 3 \) дифференцируема в любой окрестности точки \((1; 1). \) Производная \(F'_y = x + 2y \) непрерывна в точке \((1; 1). \) Наконец, \(F(1; 1) = 0, \ F'_y(l; 1) = 3 \neq 0, \) т. е. выполнены все условия существования неявной функции в некоторой окрестности точки \((1; 1). \) Уравнение \(x^2 + xy + y^2 - 3 = 0 \) определяет единственную дифференцируемую неявную функцию \(y = f(x), \) причем \(f(1) = 1. \) Так как \(F(x; y) \) дважды дифференцируема, то и \(y = f(x) \) также дважды дифференцируема.

Пользуясь формулой \(\frac{dy}{dx} = -\frac{F'_y}{F'_x}, \) получаем \(\frac{dy}{dx} = -\frac{2x + y}{x + 2y}, \) \((x \neq -2y), \)
\[\frac{d^2y}{dx^2} = \frac{(x+2y)(2+y') - 2(x+y)(1+2y')}{(x+2y)^2} = -\frac{18}{(x+2y)^2}, \quad (x \neq -2y). \]

Подставляя в эти равенства \(x = 0, \ y = 1 \), получаем \(y'(1) = -1, \ y''(1) = -2. \] ▲

Пример 2. Найти \(y', y'', y''' \) при \(x = 0, \ y = 1 \), если \(x^2 - xy + 2y^2 + x - y - 1 = 0 \).

\[2x - y - xy' + 4yy' + 1 - y' = 0, \ 2 - 2y - xy'' + 4y'^2 + 4yy'' - y'' = 0, \]
\[-3y'' - xy''' + 12y'y'' + 4yy''' - y''' = 0 \]
и подставляя в результаты значения \(x = 0, \ y = 1 \), получаем систему уравнений:
\[3y' = 0, \]
\[2 + 3y'' = 0, \]
\[2 + 3y''' = 0, \]
из которой находим \(y' = 0, \ y'' = \frac{2}{3}, \ y''' = -\frac{2}{3}. \)] ▲

Пример 3. Доказать, что уравнение \(z^3 - xyz + y^2 - 16 = 0 \) определяет в некоторой окрестности точки \((1; 4; 2)\) единственную неявную функцию вида \(z = f(x; y) \). Найти ее частные производные \(\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y} (1; 4), \frac{\partial^2 z}{\partial y^2} (1; 4) \).

Функция \(F(x; y; z) = z^3 - xyz + y^2 - 16 \) дифференцируема в любой окрестности точки \(M_0(1; 4; 2) \). Производная \(F'_z = 3z^2 - xy \) непрерывна в точке \(M_0 \). Наконец, \(F(1; 4; 2) = 0, \ F'(1; 4; 2) = 8 \neq 0 \). Поэтому в некоторой окрестности точки \(M_0 \) уравнение \(z^3 - xyz + y^2 - 16 = 0 \) определяет единственную дифференцируемую неявную функцию \(z = f(x; y) \), причем \(f(1; 4) = 2 \).

Для нахождения \(\frac{\partial z}{\partial x} \) воспользуемся формулой \(\frac{\partial z}{\partial x} = -\frac{F'_x}{F'_z} = \frac{yz}{3z^2 - xy} \).

Дифференцируя это равенство по \(x \), получим
\[\frac{\partial^2 z}{\partial x^2} \]
\[= \frac{yz(3z^2 - xy) - yz(6zz' - y)}{(3z^2 - xy)^2} \]
\[= \frac{y \frac{y^2}{3z^2 - xy}(3z^2 - xy) - yz \left(6z - \frac{yz}{3z^2 - xy} - y \right)}{(3z^2 - xy)^2} \]
\[= -\frac{2xy^3 z}{(3z^2 - xy)^3} \].

Если в полученных равенствах положить \(x = 1, y = 4, z = 2 \), то получим \(z'_x (1; 4) = 1, \ z''_x (1; 4) = 0.5 \).

Рассмотрим другой способ решения задачи. Предполагая, что функция
\[z = f(x; y) \] подставлена в уравнение \(z^3 - xyz + y^2 - 16 = 0 \), продифференцируем дважды полученное тождество по \(x \):
\[
3z^2 z'_x - yz - xyz'_x = 0,
\]
\[
6z^2 z'_x + 3z^2 z''_x - 2yz - xyz''_x = 0.
\]
Решая эту систему, находим:
\[
z'_x = \frac{yz}{3z^2 - xy}; \quad z''_x = -\frac{2xyz}{(3z^2 - xy)^3}.
\]

Пример 4. Найти \(dz \), если \[
\frac{x}{z} - \ln \frac{z}{y} - 1 = 0.
\]

\[dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy. \]

Найдем частные производные неявно заданной функции:
\[
\frac{\partial z}{\partial x} = -\frac{F'_x}{F_z} = -\frac{1}{z} \left(-\frac{x}{z^2} - \frac{y}{z} \right) = \frac{z}{x+z}; \quad \frac{\partial z}{\partial y} = -\frac{F'_y}{F_z} = -\frac{1}{y} \left(-\frac{x}{z^2} - \frac{y}{z} \right) = \frac{z^2}{y(x+z)}.
\]
Отсюда \[dz = \frac{z}{x+z} dx + \frac{z^2}{y(x+z)} dy. \]

Рассмотрим другой способ решения задачи. Считая, что \(z = z(x, y) \), в результате дифференцирования получаем
\[
\frac{zdx - xdz}{z^2} - \frac{y}{z}, \frac{ydz - zdy}{y^2} = 0, \quad yzdx -xydz - yzdz + z^2 dy = 0.
\]
Отсюда \[dz = \frac{z}{x+z} dx + \frac{z^2}{y(x+z)} dy. \]

Пример 5. Функцию \[f(x; y) = -x^2 + 2xy + 3y^2 - 6x - 2y - 4 \] разложить по формуле Тейлора в окрестности точки \((-2; 1)\).

\[\Delta \] Данная функция имеет непрерывные частные производные любого порядка. Поскольку все частные производные порядка выше второго равны нулю, то остаточный член \(R_n \) при \(n \geq 2 \) обращается в нуль и формула Тейлора принимает следующий вид:
\[
f(x; y) = f(-2; 1) + \frac{\partial f}{\partial x}(-2; 1)(x + 2) + \frac{\partial f}{\partial y}(-2; 1)(y - 1) + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(-2; 1)(x + 2)^2 + 2 \frac{\partial^2 f}{\partial x \partial y}(-2; 1)(x + 2)(y - 1) + \frac{\partial^2 f}{\partial y^2}(-2; 1)(y - 1)^2 \right).
\]

Находим значение функции и ее частные производные в точке \(M_0(-2; 1) \):
\[f(-2; 1) = 1; \quad \frac{\partial f}{\partial x} \bigg|_{M_0} = -2x + 2y - 6 \bigg|_{M_0} = 0; \]
\[\frac{\partial f}{\partial y} \bigg|_{M_0} = 2x + 6y - 2 \bigg|_{M_0} = 0; \quad \frac{\partial^2 f}{\partial x^2} \bigg|_{M_0} = -2; \]
\[\frac{\partial f}{\partial x \partial y} \bigg|_{M_0} = 2; \quad \frac{\partial^2 f}{\partial y^2} \bigg|_{M_0} = 6; \]

Получаем \[f(x; y) = 1 - (x + 2)^2 + 2(x + 2)(y - 1) + 3(y - 1)^2. \]

Пример 6. Разложить функцию \(f(x; y) = e^{\frac{x}{y}} \) по формуле Тейлора в окрестности точки \(M_0(0; 1) \) до членов второго порядка включительно. Записать остаточный член формулы Тейлора в форме Пеано.

Д Найдем значение функции и ее частные производные до второго порядка включительно в точке \(M_0(0; 1) \):

\[f(M_0) = 1; \quad \frac{\partial f}{\partial x} \bigg|_{M_0} = e^{\frac{x}{y}} \cdot \frac{1}{y} \bigg|_{M_0} = 1; \]
\[\frac{\partial f}{\partial y} \bigg|_{M_0} = e^{\frac{x}{y}} \left(-\frac{x}{y^2} \right) \bigg|_{M_0} = 0; \quad \frac{\partial^2 f}{\partial x^2} \bigg|_{M_0} = e^{\frac{x}{y}} \cdot \frac{1}{y^2} \bigg|_{M_0} = 1; \]
\[\frac{\partial^2 f}{\partial x \partial y} \bigg|_{M_0} = \left(e^{\frac{x}{y}} \cdot \left(-\frac{x}{y^3} \right) + e^{\frac{x}{y}} \left(-\frac{1}{y^2} \right) \right) \bigg|_{M_0} = -1; \]
\[\frac{\partial^2 f}{\partial y^2} \bigg|_{M_0} = \left(e^{\frac{x}{y}} \cdot \frac{x^2}{y^4} + e^{\frac{x}{y}} \cdot \frac{2x}{y^3} \right) \bigg|_{M_0} = 0. \]

Подставляя эти значения в формулу Тейлора, получаем

\[e^{\frac{x}{y}} = 1 + x + \frac{1}{2} x^2 - x(y - 1) + R_2. \]

В форме Пеано: \(R_2 = o(x^2 + (y - 1)^2) \).

Пример 7. Пусть \(z \) - та неявная функция от \(x \) и \(y \), определяемая уравнением \(z^3 - 2xz + y = 0 \), которая при \(x = 1 \) и \(y = 1 \) принимает значение \(z = 1 \). Разложить эту функцию в окрестности точки \(M_0(1; 1) \) по формуле Тейлора до членов второго порядка включительно.

Д Находим частные производные функции в точке \(M_0(1; 1) \):

\[\frac{\partial F}{\partial x} = -2z; \quad \frac{\partial F}{\partial y} = 1; \quad \frac{\partial F}{\partial z} = 3z^2 - 2x; \quad \frac{\partial z}{\partial x} \bigg|_{M_0} = \frac{2z}{3z^2 - 2x} \bigg|_{M_0} = 2; \]
\[
\frac{\partial z}{\partial y} \bigg|_{M_0} = -\frac{1}{3z^2 - 2x} |_{M_0} = -1; \quad \frac{\partial^2 z}{\partial x^2} \bigg|_{M_0} = \frac{2z_x'(3z^2 - 2x) - 2z(6z \cdot z'_x - 2)}{(3z^2 - 2x)^2} |_{M_0} = -16;
\]
\[
\frac{\partial^2 z}{\partial y^2} \bigg|_{M_0} = (3z^2 - 2x)^{-2} \cdot 6z \cdot z'_y \bigg|_{M_0} = -6; \quad \frac{\partial^2 z}{\partial y \partial x} \bigg|_{M_0} = (3z^2 - 2x)^{-2} (6z \cdot z'_x - 2) \bigg|_{M_0} = 10;
\]

Подставляя эти значения в формулу Тейлора, получаем
\[
f(x; y) = 1 + 2(x - 1) - (y - 1) - 8(x - 1)^2 + 10(x - 1)(y - 1) - 3(y - 1)^2 + \ldots. \ ▲
\]

Дополнительные задачи

1. Найти производные \(f'(0) \) и \(f''(0) \) неявной функции \(y = f(x) \), заданной уравнением \(x^2 - xy + 2y^2 + x - y - 1 = 0 \) и удовлетворяющей условию \(f(0) = 1. \)

Ответ: \(f'(0) = 0, \quad f''(0) = -\frac{2}{3}. \)

2. Найти первую и вторую производные неявной функции вида \(y = f(x) \), заданной уравнением \(\ln \sqrt{x^2 + y^2} = \arctg \frac{y}{x}. \)

Ответ: \(y' = \frac{x + y}{x - y}, \quad y'' = \frac{2(x^2 + y^2)}{(x - y)^3}. \)

3. Найти частные производные первого и второго порядков неявной функции вида \(z = f(x; y) \) заданной уравнением \(x + y + z = e^z. \)

Ответ: \(z'_x = z'_y = \frac{1}{e^z - 1}, \quad z''_{xx} = z''_{yy} = z''_{xy} = -\frac{e^z}{(e^z - 1)^3}. \)

4. Для функции \(z = z(x; y) \) найти частные производные первого и второго порядков, если \(z^4 - 3xyz = a^3. \)

Ответ: \(\frac{\partial z}{\partial x} = \frac{yz}{z^2 - xy}; \quad \frac{\partial z}{\partial y} = \frac{xz}{z^2 - xy}; \quad \frac{\partial^2 z}{\partial x^2} = -\frac{2x^3 z}{(z^2 - xy)^3}; \)
\[
\frac{\partial^2 z}{\partial x \partial y} = \frac{z(z^4 - 2z^2 x y - x^2 y^2)}{(z^2 - xy)^3}; \quad \frac{\partial^2 z}{\partial y^2} = -\frac{2y^3 z}{(z^2 - xy)^3}.
\]

5. Функцию \(f(x; y) = 2x^2 - xy - y^2 - 6x - 3y + 5 \) разложить по формуле Тейлора в окрестности точки \(A(1; -2). \)

Ответ: \(f(x; y) = 5 + 2(x - 1)^2 - (x - 1)(y + 2) - (y + 2)^2. \)

6. Разложить функцию \(z = \ln (1 + x + y) \) с центром разложения в точке \(M_0(0; 0) \) до членов третьего порядка.

79
Ответ: \(\ln (1 + x + y) = x + y - \frac{1}{2}(x + y)^2 + \frac{1}{3}(x + y)^3 + 0((x^2 + y^2)^3). \)

7. Разложить по формуле Тейлора в окрестности точки \((1; 1)\) до членов второго порядка включительно неявную функцию \(z(x, y)\), определяемую уравнением \(z^3 + 3yz - 4x = 0\), если \(z(1; 1) = 1\).

Ответ:
\[z = 1 + \frac{2}{3}(x-1) - \frac{1}{2}(y-1) - \frac{2}{9}(x-1)^2 - \frac{1}{8}(y-1)^2 + \ldots. \]

Занятия 15–16

Локальный экстремум функции нескольких переменных. Условный экстремум

Пример 1. Исследовать по определению на экстремум функции:

а) \(z = (x + 4)^6 - (y - 2)^8, \ M_0(-4; 2);\)

б) \(z = (x - 3)^4 + (y + 5)^6, \ M_0(3; -5).\)

\(\Delta\)

а) Пусть \(x + 4 = X, \ y - 2 = Y, \ z = Z\). Имеем \(z = X^6 - Y^8, \ M_0(0; 0),\)

Находим \(\Delta Z = Z(X; Y) - Z(0; 0) = X^6 - Y^8.\) Далее при \(X \neq 0 \ Y = 0, \Delta Z > 0,\) а при \(X = 0 \ Y \neq 0, \Delta Z < 0.\) Следовательно, функция \(z = (x + 4)^6 - (y - 2)^8\) в точке \(M_0(-4; 2)\) не имеет экстремума.

б) Пусть \(x - 3 = X, \ y + 5 = Y, \ z = Z.\) Имеем \(z = X^4 + Y^6, \ M_0(0; 0).\)

Находим \(\Delta Z = Z(X; Y) - Z(0; 0) = X^4 + Y^6.\) Так как \(\Delta Z > 0,\) то точка \(M_0(3; -5)\) является точкой локального минимума. ▲

Пример 2. Найти точки локального экстремума функции

\(z = x^2 - 2xy + 4y^3.\)

\(\Delta\)

Вычисляем частные производные функции и приравниваем их нулю:

\[
\begin{align*}
\frac{\partial z}{\partial x} &= 2x - 2y = 0, \\
\frac{\partial z}{\partial y} &= -2x + 12y^2 = 0.
\end{align*}
\]

Решая эту систему уравнений, получаем две точки возможного экстремума \(M_1(0; 0)\) и \(M_2\left(\frac{1}{6}; \frac{1}{6}\right).\)

Далее находим производные второго порядка:
\[
\frac{\partial^2 z}{\partial x^2} = 2; \quad \frac{\partial^2 z}{\partial x \partial y} = -2; \quad \frac{\partial^2 z}{\partial y^2} = 24y.
\]

В точке \(M_1 \) \(a_{11} = 2, \ a_{12} = -2, \ a_{22} = 0, \ D = a_{11}a_{22} - a_{12}^2 = -4 < 0 \) и экстремум нет.

В точке \(M_2 \) \(a_{11} = 2a_{12} = -2, \ a_{22} = 4, \ D = 24 - (2)^2 = 4 > 0 \) и так как \(a_{11} = 2 > 0 \), то в точке \(M_2 \) функция имеет локальный минимум. ▲

Пример 3. Найти точки локального экстремума функции
\[
z = 3x^2y - x^3 - y^4.
\]
Δ Вычисляем частные производные функции и приравниваем их нулю:
\[
\begin{align*}
\frac{\partial z}{\partial x} &= -3x^2 + 6xy = 0, \\
\frac{\partial z}{\partial y} &= 3x^2 - 4y^3 = 0.
\end{align*}
\]

Решая эту систему, находим две точки возможного экстремума \(M_1(0; 0) \) и \(M_2(6; 3) \). Вычисляем частные производные второго порядка данной функции:
\[
\begin{align*}
\frac{\partial^2 z}{\partial x^2} &= -6x + 6y, \\
\frac{\partial^2 z}{\partial x \partial y} &= 6x, \\
\frac{\partial^2 z}{\partial y^2} &= -12y^2.
\end{align*}
\]

В точке \(M_1 \) \(a_{11} = 0a_{12} = 0, a_{22} = 0 \). Точка \(M_1(0; 0) \) требует дополнительного исследования. Находим \(z(0; 0) = 0 \).

Далее при \(x < 0, y = 0 \) имеем \(z(x; y) > 0 \), а при \(x = 0, y \neq 0 \) \(z(x; y) = -y^4 < 0 \). Следовательно, в любой окрестности точки \(M_1(0; 0) \) функция \(z(x; y) \) принимает значения как больше \(z(0; 0) \), так и меньше \(z(0; 0) \). Следовательно, в точке \(M_1(0; 0) \) функция \(z(x, y) \) не имеет локального экстремума.

В точке \(M_2 \) \(a_{11} = -18, \ a_{12} = 36, \ a_{22} = -108 \) и, значит, \(D = 648 > 0 \). Так как \(a_{11} < 0 \), то в точке \(M_2 \) функция имеет локальный максимум. ▲

Пример 4. Исследовать на экстремум функцию
\[
z = 1 - \sqrt{x^2 + y^2}.
\]
Δ Вычисляем частные производные функции и приравниваем их нулю:
\[
\begin{align*}
\frac{\partial z}{\partial x} &= \frac{x}{\sqrt{x^2 + y^2}} = 0, \\
\frac{\partial z}{\partial y} &= \frac{y}{\sqrt{x^2 + y^2}} = 0.
\end{align*}
\]

На всей плоскости, за исключением точки \(O(0; 0) \), частные производные непрерывны и отличны от нуля.

81
\[\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{z(\Delta x; 0) - z(0; 0)}{\Delta x} = -\lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}. \]

Этот предел не существует. Аналогично не существует \(\frac{\partial z}{\partial y} \).

Точка \(O(0; 0) \) является критической, а значит, подозрительной на экстремум. Значение \(z(0; 0) = 1; \ z(x; y) - z(0; 0) = -\sqrt{x^2 + y^2} < 0 \). Точка \(O(0; 0) \) является точкой максимума \(z_{\text{max}} = 1 \). ▲

Пример 5. Исследовать на локальный экстремум функцию \(u = x^2 + y^2 + z^2 + 2x + 4y - 6z \).

\[
\begin{align*}
\frac{\partial u}{\partial x} &= 2x + 2 = 0, \\
\frac{\partial u}{\partial y} &= 2y + 4 = 0, \\
\frac{\partial u}{\partial z} &= 2z - 6 = 0
\end{align*}
\]

Из системы \(\begin{cases}
\frac{\partial u}{\partial x} = 2x + 2 = 0, \\
\frac{\partial u}{\partial y} = 2y + 4 = 0, \\
\frac{\partial u}{\partial z} = 2z - 6 = 0
\end{cases} \)

определен стационарную точку \(M(-1; -2; 3) \). Находим вторые частные производные:

\[
\begin{align*}
\frac{\partial^2 u}{\partial x^2} &= 2, \\
\frac{\partial^2 u}{\partial y^2} &= 2, \\
\frac{\partial^2 u}{\partial z^2} &= 2, \\
\frac{\partial^2 u}{\partial x \partial y} &= \frac{\partial^2 u}{\partial x \partial z} = \frac{\partial^2 u}{\partial y \partial z} = 0.
\end{align*}
\]

Таким образом, \(\Delta_1 = 2 > 0, \Delta_2 = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 4 > 0, \Delta_3 = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8 > 0. \)

Второй дифференциал \(d^2 u \), согласно критерию Сильвестра, представляет собой положительно определенную квадратичную форму. Следовательно, в точке \((-1; -2; 3) \) функция имеет минимум \(u_{\text{min}} = -14 \).

Эту задачу можно решить методом выделения полных квадратов:

\[
u = x^2 + y^2 + z^2 + 2x + 4y - 6z = (x + 1)^2 + (y + 2)^2 + (z - 3)^2 - 14.
\]

Точка \(M(-1; -2; 3) \) является точкой минимума \(u_{\text{min}} = -14 \). ▲

Пример 6. Исследовать на экстремум функцию \(u = 2x^2 + y^2 + 2z - xy - xz \).

\[
\begin{align*}
\frac{\partial u}{\partial x} &= 4x - y - z = 0, \\
\frac{\partial u}{\partial y} &= 2y - x = 0, \\
\frac{\partial u}{\partial z} &= 2 - x = 0.
\end{align*}
\]
Решив эту систему, находим единственную стационарную точку $M_0(2;1;7)$. Эта точка является точкой возможного экстремума. Проверим выполнение достаточных условий экстремума. Находим частные производные второго порядка в точке $M_0(2;1;7)$:

$$\frac{\partial^2 u}{\partial x^2} \bigg|_{M_0} = 4, \quad \frac{\partial^2 u}{\partial y^2} \bigg|_{M_0} = 2, \quad \frac{\partial^2 u}{\partial z^2} \bigg|_{M_0} = 0, \quad \frac{\partial^2 u}{\partial x\partial y} \bigg|_{M_0} = -1, \quad \frac{\partial^2 u}{\partial x\partial z} \bigg|_{M_0} = -1, \quad \frac{\partial^2 u}{\partial y\partial z} \bigg|_{M_0} = 0.$$

Второй дифференциал функции $d^2 u \bigg|_{M_0} = 4dx^2 + 2dy^2 - 2dx dy - 2dx dz$.

Нетрудно видеть, что эта квадратичная форма — знакопеременная.

Действительно, если положить $dy = dz = 0, dx \neq 0$, то получим $d^2 u \bigg|_{M_0} = 4dx^2 > 0$, а если положить $dy = 0, dx \neq 0$ и $dz = 3dx$, то получим $d^2 z \bigg|_{M_0} = -2dx^2 < 0$.

Следовательно, в точке M_0 функция $u(x;y;z)$ не имеет локального экстремума. ▲

Пример 7. Найти точки локального экстремума функции

$$u = 2x^2 - xy + 2xz - y + y^3 + z^2.$$

Δ Вычисляем частные производные функции и приравниваем их нулю:

$$\begin{cases} \frac{\partial u}{\partial x} = 4x - y + 2z = 0, \\ \frac{\partial u}{\partial y} = -x - 1 + 3y^2 = 0, \\ \frac{\partial u}{\partial z} = 2x + 2z = 0. \end{cases}$$

Решая эту систему, находим две точки возможного экстремума: $M_1\left(\frac{1}{3};\frac{2}{3};-\frac{1}{3}\right)$ и $M_2\left(-\frac{1}{4};-\frac{1}{2};\frac{1}{4}\right)$.

Далее воспользуемся достаточными условиями экстремума. Для этого вычислим частные производные второго порядка данной функции:

$$\frac{\partial^2 u}{\partial x^2} = 4, \quad \frac{\partial^2 u}{\partial x\partial y} = -1, \quad \frac{\partial^2 u}{\partial x\partial z} = 2, \quad \frac{\partial^2 u}{\partial y^2} = 6y, \quad \frac{\partial^2 u}{\partial y\partial z} = 0, \quad \frac{\partial^2 u}{\partial z^2} = 2.$$

Матрица квадратичной формы $d^2 u \bigg|_{M_1}$ имеет вид

$$A = \begin{pmatrix} 4 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 2 \end{pmatrix}.$$
Выделяя главные миноры матрицы A, получаем:

$$\Delta_1 = 4 > 0, \quad \Delta_2 = \begin{vmatrix} 4 & -1 \\ -1 & 4 \end{vmatrix} = 15 > 0, \quad \Delta_3 = \begin{vmatrix} 4 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 2 \end{vmatrix} = 14 > 0.$$

Согласно критерию Сильвестра, $d^2u \bigg|_{M_1}$ является положительно определенной квадратичной формой от переменных dx, dy, dz. Следовательно, в точке M_1 функция имеет локальный минимум.

Исследуем точку M_2. Матрица квадратичной формы $d^2u \bigg|_{M_2}$ имеет вид

$$A = \begin{pmatrix} 4 & -1 & 2 \\ -1 & -3 & 0 \\ 2 & 0 & 2 \end{pmatrix}.$$

Отсюда получаем: $\Delta_1 = 4 > 0, \quad \Delta_2 = -13 < 0, \quad \Delta_3 = -14 < 0$.

Следовательно, $d^2u \bigg|_{M_2}$ не является знакопределенной квадратичной формой от dx, dy, dz. Покажем, что эта квадратичная форма знакопеременная:

$$d^2u \bigg|_{M_2} = 4dx^2 - 2dxdy + 4dxdz - 3dy^2 + 2dz^2.$$

Если положить $dx \neq 0, dy = dz = 0$, то получим $d^2u \bigg|_{M_2} = 4dx^2 > 0$, а если положить $dx = dz = 0, dy \neq 0$, то получим $d^2u \bigg|_{M_2} = -3dy^2 < 0$.

Следовательно, в точке M_2 функция не имеет локального экстремума.

Пример 8. Найти экстремум функции $z = x^2 + xy + y^2$ при условии $x + 2y = 1$.

Из уравнения связи $x + 2y = 1$ выразим x через y и подставим в выражение для данной функции:

$$x = 1 - 2y, \quad z = (1 - 2y)^2 + (1 - 2y)y + y^2 = 1 - 4y + 4y^2 + y - 2y^2 + y^2 = 3y^2 - 3y + 1.$$

Функция $z = 3y^2 - 3y + 1$ достигает локального минимума в точке $y = \frac{b}{2a} = \frac{1}{2}$, $x = 0$. Тогда условный минимум равен

$$\ldots$$
\[z_{\text{мн}} = 3 \cdot \frac{1}{4} - \frac{3}{2} + 1 = \frac{3}{4} - \frac{6}{4} + \frac{4}{4} = \frac{1}{4}. \]

Таким образом, в точке \(M\left(0; \frac{1}{2}\right) \) функция \(z = x^2 + xy + y^2 \) имеет условный минимум, равный \(\frac{1}{4} \). ▲

Пример 9. На сфере \(x^2 + y^2 + z^2 = 1 \) найти точки \(M_3 \) и \(M_4 \), сумма квадратов расстояний от которых до заданных точек \(M_1(-6; 4; 17) \) и \(M_2(-2; -4; 15) \) была соответственно наименьшей и наибольшей.

Δ По условию задачи требуется найти точки, для которых функция \(u = (x + 6)^2 + (y - 4)^2 + (z - 17)^2 + (x + 2)^2 + (y + 4)^2 + (z - 15)^2 \) при ограничении \(x^2 + y^2 + z^2 = 1 \) имеет экстремум.

1. Составляем функцию Лагранжа:
\[L(x; y; z; \lambda) = (x + 6)^2 + (y - 4)^2 + (z - 17)^2 + (x + 2)^2 + (y + 4)^2 + (z - 15)^2 + \lambda (x^2 + y^2 + z^2 - 1). \]

2. Находим стационарные точки функции Лагранжа, т. е. решаем систему уравнений:
\[L'_x = 4x + 16 + 2\lambda x = 0 \implies x = -\frac{8}{\lambda + 2}; \]
\[L'_y = 4y + 2\lambda y = 0 \implies y = 0; \]
\[L'_z = 4z - 64 + 2\lambda z = 0 \implies z = \frac{32}{\lambda + 2}; \]
\[L'_\lambda = x^2 + y^2 + z^2 - 1 = 0 \implies \lambda = -2 \pm 8\sqrt{17}. \]

Имеем две стационарные точки \(M_3\left(-\frac{1}{\sqrt{17}}; 0; \frac{4}{\sqrt{17}}\right) \) и \(M_4\left(\frac{1}{\sqrt{17}}; 0; -\frac{4}{\sqrt{17}}\right) \).

Из геометрического смысла задачи следует, что она имеет хотя бы одно решение. Следовательно, эти точки будут искомыми. Очевидно, что \[|M_1M_3|^2 + |M_2M_3|^2 < |M_1M_4|^2 + |M_2M_4|^2. \]

Таким образом, наименьшее значение функции \(u \) достигается в точке \(M_3\left(-\frac{1}{\sqrt{17}}; 0; \frac{4}{\sqrt{17}}\right) \), а наибольшее – в точке \(M_4\left(\frac{1}{\sqrt{17}}; 0; -\frac{4}{\sqrt{17}}\right) \) ▲

Пример 10. Найти условный экстремум функции \(z = x + 2y \) при \(x^2 + y^2 = 5 \).

Δ Составим функцию Лагранжа \(F(x; y; \lambda) = x + 2y + \lambda(x^2 + y^2 - 5) \) и
рассмотрим систему уравнений

\[
\begin{align*}
\frac{\partial F}{\partial x} &= 1 + 2\lambda x = 0, \\
\frac{\partial F}{\partial y} &= 2 + 2\lambda y = 0, \\
\frac{\partial F}{\partial \lambda} &= x^2 + y^2 - 5 = 0.
\end{align*}
\]

Она имеет два решения: \((1; 2; -\frac{1}{2})\) и \((-1; -2; \frac{1}{2})\).

Следовательно, функция \(z = x + 2y\) имеет две критические точки \(P_1(1; 2)\) при \(\lambda_1 = -\frac{1}{2}\) и \(P_2(-1; -2)\) при \(\lambda_1 = \frac{1}{2}\).

Найдем знак \(d^2F\) в каждой точке при соответствующем ей значении \(\lambda\):

\[d^2F = \frac{\partial^2 F}{\partial x^2} dx^2 + 2 \frac{\partial^2 F}{\partial x \partial y} dx dy + \frac{\partial^2 F}{\partial y^2} dy^2.\]

Так как \(\frac{\partial^2 F}{\partial x^2} = 2\lambda, \frac{\partial^2 F}{\partial x \partial y} = 0, \frac{\partial^2 F}{\partial y^2} = 2\lambda,\) то \(d^2F = 2\lambda (dx^2 + dy^2)\).

При \(x_1 = 1, y_1 = 2, \lambda_1 = -\frac{1}{2}\) \(d^2F < 0\), следовательно, в точке \(P_1\) функция \(z\) имеет максимум \(z_{\text{max}} = 5\).

При \(x_1 = -1, y_1 = -2, \lambda_1 = \frac{1}{2}\) \(d^2F > 0\), следовательно, в точке \(P_2\) функция \(z\) имеет минимум \(z_{\text{min}} = -5\). ▲

Пример 11. Найти экстремальные значения функции \(u = x^2 + y^2 + z^2 + t^2\) при наличии связи \(x + y + z + t + 1 = 0\).

Составим функцию Лагранжа: \(F = x^2 + y^2 + z^2 + t^2 + \lambda (x + y + z + t + 1)\).

\[
\begin{align*}
\frac{\partial F}{\partial x} &= 2x + \lambda = 0, \\
\frac{\partial F}{\partial y} &= 2y + \lambda = 0, \\
\frac{\partial F}{\partial z} &= 2z + \lambda = 0, \\
\frac{\partial F}{\partial t} &= 2t + \lambda = 0, \\
\frac{\partial F}{\partial \lambda} &= x + y + z + t + 1 = 0.
\end{align*}
\]

Функция \(u = x^2 + y^2 + z^2 + t^2\) имеет единственную критическую точку

\[
\begin{align*}
x &= -\frac{\lambda}{2}, \\
y &= -\frac{\lambda}{2}, \\
\lambda &= \frac{1}{2}, \\
x &= y = z = t = -\frac{1}{4}.
\end{align*}
\]

\[
-2\lambda + 1 = 0
\]
При \(\lambda = \frac{1}{2} \).

Поскольку второй дифференциал функции Лагранжа, равный \(d^2 F = 2(dx^2 + dy^2 + dz^2 + dt^2) \), всегда положительно определен, то функция \(u = x^2 + y^2 + z^2 + t^2 \) при наличии связи \(x + y + z + t + 1 = 0 \) имеет в точке \(P\left(-\frac{1}{4}; -\frac{1}{4}; -\frac{1}{4}; -\frac{1}{4}\right) \) условный минимум. Подставляя координаты точки \(P \) в функцию \(u \), мы получим \(u_{\text{мин}} = \frac{1}{4} \). ▲

Пример 12. Найти наибольшее и наименьшее значения функции \(z = x^2 + y^2 - 12x + 16y \), если \(x^2 + y^2 \leq 25 \).

\(\Delta \) Функция \(z \) непрерывна в замкнутой ограниченной области. Поэтому, согласно теореме Вейерштрасса, она в этой области достигает наибольшее и наименьшее значения.

Найдем критические точки функции \(z \), принадлежащие области \(x^2 + y^2 < 25 \). Поскольку система уравнений

\[
\begin{align*}
x' &= 2x - 12 = 0, \\
y' &= 2y + 16 = 0
\end{align*}
\]

в указанной области не имеет решений, то своего наибольшего и наименьшего значений функция \(z \) достигает на окружности \(x^2 + y^2 = 25 = 0 \).

Составляя функцию Лагранжа \(F = x^2 + y^2 - 12x + 16y + \lambda (x^2 + y^2 - 25) = 0 \) и решая систему

\[
\begin{align*}
F'_x &= 2x - 12 + 2\lambda x = 0, \\
F'_y &= 2y + 16 + 2\lambda y = 0, \\
F'_\lambda &= x^2 + y^2 - 25 = 0,
\end{align*}
\]

находим две точки возможного условного экстремума \(M_1(3; -4) \) и \(M_2(-3; 4) \).

Вычисляя значения функции \(z \) в этих точках \(z(M_1) = -75 \), \(z(M_2) = 125 \), заключаем, что \(z_{\text{наиб}} = 125 \), \(z_{\text{наим}} = -75 \). ▲

Пример 13. При каких значениях радиуса основания \(R \) и высоты \(H \) цилиндрическая банка, объем которой равен \(54\pi \), имеет наименьшую поверхность?

\(\Delta \) Требуется исследовать на экстремум функцию \(S = 2\pi R^2 + 2\pi RH \) при наличии связи \(\pi R^2 H = 54\pi \).

Составим функцию Лагранжа \(F = 2\pi R^2 + 2\pi RH + \lambda (R^2 H - 54) \) и рассмотрим систему уравнений
\[
\begin{aligned}
\frac{\partial F}{\partial R} &= 4\pi R + 2\pi H + 2RH\lambda = 0, \\
\frac{\partial F}{\partial H} &= 2\pi R + \lambda R^2 = 0, \\
\frac{\partial F}{\partial \lambda} &= R^2 H - 54 = 0. \\
\end{aligned}
\]

Так как \(R \neq 0 \), система имеет единственное решение \(R = 3, H = 6 \) при \(\lambda = -\frac{2\pi}{3} \).

Из геометрического смысла задачи следует, что она имеет хотя бы одно решение. Поэтому решение \(R = 3, H = 6 \) является искомым. ▲

Пример 14. Найти наибольшее и наименьшее значения функции
\[z = 2x^3 + 4x^2 + y^2 - 2xy \] в замкнутой области, ограниченной линиями \(y = x^2 \) и \(y = 4 \).

\[\Delta \] Найдем критические точки функции \(z \), лежащие внутри заданной области:
\[
\begin{aligned}
&z_x' = 6x^2 + 8x - 2y = 0, \\
&z_y' = 2y - 2x = 0. \\
\end{aligned}
\]

Решая эту систему, найдем две критические точки \(O(0;0) \) и \(M(-1; -1) \), из которых ни одна не лежит внутри заданной области (рис. 21). Найдем \(z(A) \) и \(z(B) \):
\[z(A) = -16 + 16 + 16 + 16 = 32, \quad z(B) = 16 + 16 + 16 - 16 = 32. \]

Найдем критические точки, принадлежащие параболе \(AOB \). Имеем:
\[y = x^2, \quad z_1(x) = x^4 + 4x^2, \quad x \in (-2; 2); \quad z_1' = 4x^3 + 8x; \quad z_1' = 0 \quad \text{при} \quad x = 0; \]
\[z_1(0) = z(0;0) = 0. \]

На промежутке \(AB \) имеем
\[y = 4, \quad z_2(x) = 2x^3 + 4x^2 - 8x + 16, \quad x \in (2;2). \]

Найдем критические точки, принадлежащие этому участку: \(z_2'(x) = 6x^2 + 8x - 8 \). Внутри данного отрезка имеется одна критическая точка \(x = \frac{2}{3}, \quad y = 4 \) (точка \(C \)):
\[z_2\left(\frac{2}{3}\right) = z\left(\frac{2}{3};4\right) = 16 \frac{22}{27}. \]

Таким образом, наибольшее значение функции \(z \) равно 32 и достигается оно в точках \(A(-2;4) \) и \(B(2;4) \), а наименьшее значение равно нулю в точке \(O(0;0) \). ▲
Дополнительные задачи

1. Исследовать по определению на экстремум функцию
\[z = 3 + (4x - x^2 - 4)^7 + (\cos y - 1)^5 \] в точке \(M_0 (2; 0) \).

Ответ: точка \(M_0 (2; 0) \) является точкой локального максимума, \(z_{\text{макс}} = z(2; 0) = 3 \).

2. Исследовать на локальный экстремум функцию
\[z = x^3 + 3xy^2 - 15x - 12y. \]

Ответ: \(z_{\text{мин}} = z(2; 1) = -28, \ z_{\text{макс}} = z(-2; -1) = 28 \).

3. С помощью критерия Сильвестра исследовать на экстремум функцию
\[u = 8 - 6x + 4y - 2z - x^2 - y^2 - z^2. \]

Ответ: \(z_{\text{макс}} = z(-3; 2; -1) = 22 \).

4. Для функции \(z = 3x^2y - x^3 - y^4 \) проверить выполнение достаточных условий локального экстремума на экстремум функции \(u = 8 - 6x + 4y - 2z - x^2 - y^2 - z^2 \).

Ответ: в точке \(M_1 (6; 3) \) функция \(z(x; y) \) имеет локальный максимум, в точке \(M_2 (0; 0) \) функция \(z(x; y) \) не имеет локального экстремума.

5. Методом исключения части переменных найти экстремум функции \(u = x + y + z^2 \) при условиях связи
\[\begin{align*}
 z - x &= 1, \\
 y - xz &= 1.
\end{align*} \]

Ответ: \(u_{\text{мин}} = u(-1; 1; 0) = 0 \).

6. Найти условный экстремум функции \(z = 6 - 4x - 3y \) при \(x^2 + y^2 = 1 \).

Ответ: \(z_{\text{мин}} = z \left(\frac{4}{5}; \frac{3}{5} \right) = 1; \ z_{\text{макс}} = z \left(-\frac{4}{5}; -\frac{3}{5} \right) = 11. \)

7. Найти условный экстремум функции \(u = x - 2y + 2z \) при \(x^2 + y^2 + z^2 = 9. \)

Ответ: \(u_{\text{мин}} = u(-2; -2) = -9; \ u_{\text{макс}} = u(1; -2; 2) = 9. \)

8. При каких размерах открытая цилиндрическая ванна с полукруглым поперечным сечением, поверхность которой равна \(3\pi \text{ м}^2 \) имеет наибольшую вместимость.

Ответ: \(V = \pi \text{ м}^3, \ R = 1 \text{ м}, \ l = 2 \text{ м}. \)

9. На заданной плоскости \(3x - 2y = 0 \). Найти точку, сумма квадратов расстояний которой до точек \(A(0; 2) \) и \(B(7; 2; 1) \) наименьшая.

Ответ: \(M (2; 3; 3). \)

10. Найти наибольшее и наименьшее значения функции \(z = -x^3 + y^3 + 3xy + 2 \) в треугольнике с вершинами \(A(0; 0) \), \(B(-3; 0) \), \(C(0; 3) \).

Ответ: \(z_{\text{макс}} = z(0; 3) = z(-3; 0) = 29; \ z_{\text{мин}} = z(-1; 1) = 1. \)
Занятие 17

Контрольная работа. Функции
нескольких переменных

Вариант 1

1. Вычислить \(\lim_{x \to 0, y \to 0} \frac{xy}{1 - \sqrt[3]{1 + xy}} \).

Ответ: \(-3\).

2. Вычислить \(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \), если \(f = \frac{x}{\sqrt{x^2 + y^2}} \).

Ответ: 0.

3. Найти дифференциал функции \(f(x; y; z) \), если \(f = (xy)^z \).

Ответ: \((xy)^{z-1}(yzdx + xzdy + xy\ln(xy)dz)\).

4. Найти производную функции \(f \) в точке \(M_0 \) по направлению вектора \(\overrightarrow{M_0M} \), если \(f = 5x + 10x^2y + y^5 \), \(M_0(1; 2) \), \(M(5; -1) \).

Ответ: \(-18\).

5. Найти второй дифференциал функции \(f(x; y) = \frac{x}{y}e^{x^2} \) в точке (0; 1).

Ответ: \(-2dxdy\).

6. Для функции \(u(x; y) \), заданной неявно уравнением \(2x^2 + 2y^2 + u^2 - 8xu - u + 8 = 0 \), найти \(\frac{\partial^2 u}{\partial x \partial y} \) в точке \(M(2; 0; 1) \).

Ответ: 0.

7. Разложить в ряд Тейлора в окрестности точки \(M(-2; 1) \) функцию \(f(x; y) = -x^2 + 2xy + 3y^2 - 6x - 2y - 4 \).

Ответ: \(1 - (x + 2)^2 + 2(x + 2)(y - 1) + 3(y - 1)^2 \).

8. Исследовать на экстремум функцию \(u(x; y) = x^2 + xy + y^2 - 12x - 3y \).

Ответ: \(u_{\text{мин}} = u(7; -2) = -39 \).

9. Методом Лагранжа определить локальный экстремум функции \(z = x^2 + xy + y^2 \) при условии \(x + 2y = 1 \).

Ответ: \(z_{\text{мин}} = \frac{1}{4} \).
Вариант 2

1. Вычислить \(\lim_{x \to 0, y \to 0} \frac{x^2 + y}{\sqrt{x^2 + y} + 9 - 3} \).

Ответ: 6.

2. Вычислить \(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \), если \(f = \ln (x^2 + xy + y^2) \).

Ответ: 2.

3. Найти дифференциал функции \(f(x; y; z) \), если \(f = x^z \).

Ответ: \(\frac{1}{z} x^z \left(\frac{ydz}{x} + \ln xdy - \frac{y\ln xdz}{z} \right) \).

4. Найти единичный вектор \(\overrightarrow{e^0} \), по направлению которого \(\frac{\partial f}{\partial e^0} \) в точке \(M \) достигает наибольшего значения, если \(f = x^2 - xy + y^2 \), \(M(-1; 2) \).

Ответ: \(\frac{-4i + 5j}{\sqrt{41}} \).

5. Найти второй дифференциал функции \(f(x; y) = e^{\frac{x^2}{y}} \) в точке \((1; 1) \).

Ответ: \(e \left(6dx^2 - 8dx dy + 3dy^2 \right) \).

6. Для функции \(z(x; y) \), заданной неявно уравнением \(x^2 + 2y^2 + 3z^2 + xy - z - 9 = 0 \), найти \(\frac{\partial^2 z}{\partial x \partial y} \) в точке \(M(1; -2; 1) \).

Ответ: \(-\frac{1}{5} \).

7. Разложить в ряд Тейлора в окрестности точки \(M(1;-2) \) функцию \(f(x; y) = 2x^2 - xy - y^2 - 6x - 3y \).

Ответ: \(2(x-1)^2 - (x-1)(y+2) - (y+2)^2 \).

8. Исследовать на экстремум функцию \(u(x; y) = 3 + 2x - y - x^2 + xy - y^2 \).

Ответ: \(u_{\text{max}} = u(1;0) = 4 \).

9. Методом Лагранжа определить локальный экстремум функции \(z = -x^2 + xy + y^2 \) при условии \(2x + y = 1 \).

Ответ: \(z_{\text{min}} = -\frac{5}{4} \).
Занятие 18

Основные понятия теории дифференциальных уравнений.
Уравнения с разделяющимися переменными

Пример 1. Показать, что данная функция является решением (интегралом) заданного дифференциального уравнения:

а) \(y = 3\sin x - 4\cos x \), \(y'' + y = 0 \);

б) \(y = x \left(1 + \int e^x \frac{1}{x} \, dx \right), \quad x \frac{dy}{dx} - y = xe^x \);

в) \(y = \arctg(x + y), \quad (x + y)^2 \frac{dy}{dx} = 1 \);

г) \(x = a\sin t, \quad y = b\cos t, \quad y' + \frac{b^2}{a^2} x = 0 \).

А) Последовательно находим:

\(y' = 3\cos x + 4\sin x \),

\(y'' = -3\sin x + 4\cos x \).

Подставляя в заданное уравнение \(y \) и \(y' \), получим

\(-3\sin x + 4\cos x + 3\sin x - 4\cos x = 0 \).

Таким образом, эта функция обращает заданное уравнение в тождество, т. е. является его решением.

б) Вычислим производную данной функции:

\[
\frac{dy}{dx} = 1 + \int e^x \frac{1}{x} \, dx + x \cdot e^x = 1 + e^x + \int e^x \, dx.
\]

Имеем \(x \frac{dy}{dx} - y = x \left(1 + e^x + \int e^x \, dx \right) - x \left(1 + \int e^x \, dx \right) = xe^x \).

Данная функция обращает исходное уравнение в тождество и, следовательно, является решением этого уравнения.

в) Применяя к данному соотношению правило дифференцирования неявной функции, имеем \(\frac{dy}{dx} = \frac{1 + \frac{dy}{dx}}{1 + (x + y)^2} \). Отсюда \(\frac{dy}{dx} = \frac{1}{(x + y)^2} \).

Подставляя найденное значение \(\frac{dy}{dx} \) в данное дифференциальное уравнение, получим тождество \((x + y)^2 \cdot \frac{1}{(x + y)^2} = 1 \).

г) Предполагаемое решение задано параметрическими уравнениями. По правилу дифференцирования функции, заданной параметрически, получим
Подставляя в исходное уравнение x, y, y', получим

$$-\frac{b}{a}\tan t + \frac{b^2a\sin t}{a^2b\cos t} \equiv 0. \quad \blacktriangle$$

Пример 2. Составить дифференциальные уравнения семейства кривых:

a) $x^2 + y^2 - cx = 0$;

б) $y = \sin x + c\cos x$.

Δ а) Рассматривая в данном соотношении y как неявную функцию от x и дифференцируя по x, имеем $2x + 2y \frac{dy}{dx} - c = 0$. Отсюда $c = 2x + 2y \frac{dy}{dx}$.

Подставляя в исходное соотношение вместо c последнее выражение, получим $2xy \frac{dy}{dx} + x^2 - y^2 = 0$.

б) Дифференцируя данное равенство по x, имеем $\frac{dy}{dx} = \cos x - c\sin x$. Умножим обе части исходного уравнения на $\sin x$, а последнего — на $\cos x$ и, сложив почленно, получим $\frac{dy}{dx}\cos x + y\sin x - 1 = 0. \quad \blacktriangle$

Пример 3. С помощью изоклин построить приближенно интегральные кривые уравнения $x\frac{dy}{dx} = 2y$.

Δ Очевидно, ось абсцисс является интегральной кривой данного уравнения. Интегральные кривые расположены симметрично относительно оси абсцисс и относительно оси ординат (при замене x на $-x$ или y на $-y$ уравнение не изменяется). Поэтому исследуем поведение интегральных кривых только в I четверти.

Семейство изоклин определяется уравнением $k = \frac{2y}{x}, \quad y = \frac{k}{2}x$. Для любого $k > 0$ касательные к интегральным кривым данному уравнению, проведенные в точках прямой $y = \frac{k}{2}x$, образуют с осью абсцисс угол, равный $\arctg k$. Нарисовав несколько изоклин и поле направлений, строим приближенно интегральные кривые уравнения (рис. 22).
Пример 4. Решить уравнение \(ydx - x^2dy = 0 \).

\(\Delta \) Очевидно, что функции \(x = 0 \) и \(y = 0 \) являются решениями уравнения. Остальные решения найдем, разделив переменные в уравнении и проинтегрировав его:

\[
\frac{dy}{y} = \frac{dx}{x^2}, \quad \ln|y| = -\frac{1}{x} + \ln|c|, \quad (c \neq 0), \quad y = ce^{-\frac{1}{x}}.
\]

Решение \(y = 0 \) можно получить из последнего соотношения при \(c = 0 \). Таким образом, \(y = 0 \) является частным решением.

Решение \(x = 0 \) не может быть получено из общего решения. Это особое решение.

Ответ: \(y = ce^{-\frac{1}{x}}, \quad (c \in R), \quad x = 0. \)

Пример 5. Решить уравнение \(\frac{dy}{dx} = xy^2 + 2xy \).

\(\Delta \) Перепишем уравнение в виде \(\frac{dy}{dx} = xy(y + 2) \).

Функции \(y = 0 \) и \(y = -2 \) являются решениями уравнения. Остальные решения найдем, разделив переменные и проинтегрировав его:

\[
\left(\frac{dy}{y(y + 2)} - \frac{dx}{y + 2} \right) = 0, \quad \frac{1}{2}\left(\frac{1}{y} - \frac{1}{y + 2} \right)dy - \frac{1}{2}xdx = 0,
\]

\[
\ln|y| - \ln|y + 2| - x^2 = \ln c_1, \quad \frac{|y|}{y + 2} = c_1e^{x^2}, \quad c_1 > 0,
\]

\[
\frac{y}{y + 2} = ce^{x^2}, \quad (c \in R) \text{ или } y = \frac{2ce^{x^2}}{1 - ce^{x^2}}.
\]

Решение \(y = 0 \) может быть получено из общего решения при \(c = 0 \). Решение \(y = -2 \) не входит в формулу общего решения ни при каком конечном значении константы \(c \).

Ответ: \(y = \frac{2ce^{x^2}}{1 - ce^{x^2}}, \quad y = -2. \)

Пример 6. Решить уравнение \(\frac{dy}{dx} = k\frac{y}{x} \) и построить интегральные кривые этого уравнения.

\(\Delta \) Правая часть заданного уравнения определена во всей плоскости \(xOy \), за исключением точек прямой \(x = 0 \). Очевидно, функция \(y = 0 \) при \(x < 0 \) и при \(x > 0 \) является решением данного уравнения. Остальные решения определим из соотношения \(\int \frac{dy}{y} = k\int \frac{dx}{x} \). Отсюда \(\ln|y| = k\ln|x| + \ln c_1, \quad |y| = c_1|x|^k, \quad c_1 > 0. \)
Присоединяя к этим функциям решение $y = 0$, все решения можно записать формулой $y = c|x|^k$, $c \in R$. Интегральные кривые в зависимости от параметра k изображены на рис. 23.

![Изображение графиков](image1.png)

Рис. 23

Пример 7. Решить задачу Коши $\frac{dy}{dx} + y = 2x + 1$, $y(0) = 0$.

Приравнивая данное уравнение приводится к уравнению с разделяющимися переменными, если положить $y - 2x - 1 = z$.

Имеем $\frac{dy}{dx} = \frac{dz}{dx}$, $\frac{dz}{dx} = -z - 2$, $z \neq -2$, так как $y(0) = 0$.

Разделив переменные, интегрируем уравнение:

$$\frac{dz}{z + 2} = -dx, \quad \ln|z + 2| = -x + \ln c, \quad |z + 2| = ce^{-x}, \quad z = -2 + ce^{-x}, \quad c \in R$$

или $y = 2x - 1 + ce^{-x}$.

Подставив в последнее соотношение $x = 0$, $y = 0$, получим $c = 1$.

Ответ: $y = 2x - 1 + e^{-x}$. ▲
Дополнительные задачи

1. Показать, что для данных дифференциальных уравнений указанные соотношения являются интегралами:
 а) \((x - 2y)y' = 2x - y, \quad x^2 - xy + y^2 = c^2;\)
 б) \((x - y + 1)y' = 1, \quad y = x + ce^y.\)

2. Составить дифференциальное уравнение семейства окружностей с общим центром \(A(0;1).\)
 \textbf{Ответ:} \((y - 1)\frac{dy}{dx} + x = 0.\)

3. Составить дифференциальное уравнение семейства парабол, которые проходят через начало координат и для которых ось абсцисс является осью симметрии.
 \textbf{Ответ:} \(2x\frac{dy}{dx} - y = 0.\)

4. Решить задачу Коши: \((y - 4)dx - (x + 1)dy = 0, \quad y(1) = 10.\)
 \textbf{Ответ:} \(y = 3x + 7.\)

5. Решить уравнение: \(y\cos\sqrt{x}dx - \sqrt{x}dy = 0.\)
 \textbf{Ответ:} \(y = Ce^{2\sin\sqrt{x}}, \quad x = 0.\)

6. Решить уравнение: \(ye^{2x}dx + (1 + e^{2x})dy = 0.\)
 \textbf{Ответ:} \(y^2(e^{2x} + 1) = C.\)

7. Решить уравнение: \(y' = \frac{2x + y - 1}{4x + 2y + 3}.\)
 \textbf{Ответ:} \(\ln|2x + y + 1| = x - 2y + C, \quad y = -2x - 1.\)

8. Решить уравнение: \(y' = \sin^2(x - y + 5).\)
 \textbf{Ответ:} \(\tg(x - y + 5) = x + C, \quad x - y + 5 = \frac{\pi}{2} + \pi k, \quad k \in \mathbb{Z}.\)

9. Решить уравнение \((xy - x)dx + (xy + x - y - 1)dy = 0.\)
 \textbf{Ответ:} \(x + \ln|x - 1| + y + 2\ln|y - 1| = c.\)

10. Решить задачу Коши \((1 + e^x)yy' = e^x, \quad y(0) = 1.\)
 \textbf{Ответ:} \(2e^{\frac{y^2}{2}} = \sqrt{e}(1 + e^x).\)

11. Решить уравнение \((2x + 3y - 1)dx + (4x + 6y - 5)dy = 0.\)
 \textbf{Ответ:} \(x + 2y + 3\ln|2x + 3y - 7| = c.\)
Занятия 19–20

Дифференциальные уравнения первого порядка

Пример 1. Решить уравнение \(\frac{dy}{dx} = \frac{x^2 + y^2}{2xy} \).

\(\Delta \) Правая часть уравнения — однородная функция нулевой степени, поэтому данное уравнение однородное.

Положим \(y = ux \). Тогда \(\frac{dy}{dx} = u + x \frac{du}{dx} \) и после подстановки данное уравнение преобразуется в уравнение с разделяющимися переменными:

\[
\frac{u + x \frac{du}{dx}}{x} = \frac{1 + u^2}{2u} \quad \text{или} \quad x \frac{du}{dx} = \frac{1 - u^2}{2u} \ dx.
\]

Функции \(u = \pm 1 \) являются решениями. Пусть \(u \neq \pm 1 \). Разделим переменные \(\frac{2udu}{1 - u^2} = \frac{dx}{x} \). Интегрируя, найдем \(-\ln|1-u^2| = \ln|x| - \ln|c| \) или \(x(1-u^2) = c, \ c \in \mathbb{R} \). Так как у \(y = \frac{y}{x} \), окончательно получаем \(y^2 = x^2 - cx \).

Решения \(u = \pm 1 \), т. е. \(y = \pm x \) являются частными решениями. \(\Delta \)

Пример 2. Решить уравнение \(\frac{dy}{dx} = \frac{y + \sqrt{x^2 - y^2}}{x} \).

\(\Delta \) Это однородное уравнение. Положим \(y = ux \). Тогда \(\frac{du}{dx} = \frac{u + x \frac{du}{dx}}{x} \) и после подстановки получим \(x \frac{du}{dx} = \text{sign} x \sqrt{1-u^2}, \ x \neq 0 \).

Очевидно, функции \(u = \pm 1 \) или \(y = \pm x \) являются решениями полученного уравнения. Другие решения найдем, разделяя переменные. Имеем \(\frac{du}{\sqrt{1-u^2}} = \frac{\text{sign} x}{x} \ dx, \ \arcsin u = \text{sign} x \ln|x| + c \). Заменяя \(u \) на \(\frac{y}{x} \), получим

\[\arcsin \frac{y}{x} = \text{sign} x \ln|x| + c, \ y = x, \ y = -x. \quad \Delta \]

Пример 3. Решить уравнение \((2x - y + 1) \frac{dx}{dy} + (2y - x - 1) \frac{dy}{dx} = 0 \).

Из всех решений выделите то, которое удовлетворяет условию \(y(1) = 1 \).

\(\Delta \) Данное уравнение приводится к однородному. Произведем замену переменных \(x = t + \alpha, \ y = s + \beta \). Получим

\((2t + 2\alpha - s - \beta + 1)dt + (2s + 2\beta - t - \alpha - 1)ds = 0. \)
Из системы уравнений
\[
\begin{align*}
2\alpha - \beta + 1 &= 0, \\
-\alpha + 2\beta - 1 &= 0
\end{align*}
\]
находим \(\alpha = -\frac{1}{3}, \quad \beta = \frac{1}{3} \), получим однородное уравнение
\[
(2t-s) \, dt + (2s-t) \, ds = 0.
\]
В последнем уравнении положим \(s = ut \).
Имеем \((2t-ut) \, dt + (2ut-t)(u \, dt + t \, du) \, du = 0, \)
\[
(2t-ut + 2u^2 \, t - ut) \, dt + (2ut^2 - t^2) \, du = 0, \quad (2u^2 - 2u + 2) \, dt + (2u - 1) \, t \, dt,
\]
или
\[
\frac{1}{2} \cdot \frac{2u-1}{u^2-u+1} \, du = -\frac{dt}{t}, \quad \ln(u^2-u+1) + \ln t^2 = \ln c, \quad \left(\frac{s^2}{t^2} - \frac{s}{t} + 1 \right) \, t^2 = c,
\]
\[
s^2 - st + t^2 = c.
\]
Возвращаясь к переменным \(x \) и \(y \), получим
\[
\left(y - \frac{1}{3}\right)^2 - \left(y - \frac{1}{3}\right)\left(x + \frac{1}{3}\right) + \left(x + \frac{1}{3}\right)^2 = c, \quad x^2 + y^2 - xy + x - y = c_1.
\]
Это общий интеграл уравнения. Положив \(x = 1, \quad y = 1 \), находим \(c_1 = 1 \).

Ответ: \(x^2 + y^2 - xy + x - y = 1. \) ▲

Пример 4. Решить уравнение \(\frac{dy}{dx} + y \cos x = e^{-\sin x}. \)

\(\Delta \) Это линейное уравнение. Найдем его общее решение методом вариации произвольной постоянной (методом Лагранжа).
1) Решим соответствующее линейное однородное уравнение
\[
\frac{dy}{dx} + y \cos x = 0.
\]
Функция \(y = 0 \) является решением этого уравнения. Другие его решения найдем, разделяя переменные:
\[
\frac{dy}{y} = -\cos x, \quad \ln |y| = -\sin x + \ln |c|, \quad y = ce^{-\sin x}, \quad c \neq 0.
\]
Решение \(y = 0 \) можно получить из последней формулы при \(c = 0 \), поэтому все решения однородного уравнения выражаются формулой
\[
y = c \cdot e^{-\sin x}, \quad c \in \mathbb{R}.
\]
2) Решение исходного уравнения ищем в виде \(y = c(x) \cdot e^{-\sin x}. \) Подставив это выражение в заданное уравнение, получим
\[
\frac{de(x)}{dx} e^{-\sin x} - \cos x \, e^{-\sin x} \cdot c(x) + c(x) \cdot e^{-\sin x} \cos x = e^{-\sin x},
\]
\[
\frac{de(x)}{dx} = 1, \quad c(x) = x + c.
\]
Ответ: \(y = (x + c) e^{-\sin x}. \) ▲
Пример 5. Проинтегрировать уравнение \(y' + \frac{3}{x} y = \frac{2}{x^3} \) методом Бернулли, решить задачу Коши при начальном условии \(y(1) = 1 \).

\[\Delta \text{ Это линейное уравнение. Сделав подстановку Бернулли } u = xv, \text{ получим } u'v + uv' + \frac{3}{x} uv = \frac{2}{x^3}, \text{ откуда } u'v + \left(v' + \frac{3}{x} v \right) = \frac{2}{x^3}. \]

Находим частное решение уравнения \(v' + \frac{3}{x} v = 0 \) : \(\frac{dv}{v} = -\frac{3}{x} \, dx \), \(\ln|v| = -3 \ln|x| + c \). В качестве частного решения можно взять \(v = \frac{1}{x^3} \). Тогда для отыскания \(u \) получим уравнение \(\frac{u'}{x^3} = \frac{2}{x^3} \). Отсюда находим \(u = 2x + c \).

Общее решение исходного уравнения \(y = (2x + c)\frac{1}{x^3} \). Из него выделяем частное решение, удовлетворяющее условию \(y(1) = 1 \): \(1 = (2 + c) - 1 \), откуда \(c = -1 \). Подставляя \(c = -1 \) в общее решение, получаем частное решение \(y = \frac{2}{x^2} - \frac{1}{x^3} \). ▲

Пример 6. Найти общее решение уравнения \(2ydy + (y^2 - 2x)dy = 0 \).

\[\Delta \text{ Это уравнение приводится к линейному с неизвестной функцией } x = u(\gamma) : \]
\[\frac{dx}{dy} \frac{1}{y} x = - \frac{y}{2}, \ (y \neq 0). \]

Решим его методом подстановки Бернулли \(x(y) = u(\gamma) \cdot v(\gamma) \):

\[u'v + uv' - \frac{1}{y} uv = - \frac{y}{2}, \ u'v + u \left(v' - \frac{1}{y} v \right) = - \frac{y}{2}. \]

Находим частное решение уравнения \(\frac{dv}{v} - \frac{1}{y} v = 0 \). Разделив переменные, получим \(\frac{dv}{v} = \frac{dy}{y} \), \(v = y \).

Для отыскания \(u \) получим уравнение \(\frac{du}{dy} y = \frac{-y}{2} \). Отсюда находим \(u = -\frac{1}{2} y + c \).

Следовательно, общее решение исходного уравнения \(x = cy - \frac{y^2}{2} \). ▲
Пример 7. Решить уравнение Бернулли $y' - 2xy = 2x^3 y^2$, приведя его к линейному уравнению.

Разделим обе части уравнения на y^2: $y^{-2} y' - 2xy^{-1} = 2x^3$. Положим $y^{-1} = z$, тогда $-y^{-2} y' = z'$. Умножив обе части уравнения на (-1) и выполнив указанную подстановку, получим линейное уравнение $z' + 2xz = -2x^3$.

Решим это уравнение методом интегрирующего множителя (методом Эйлера). Находим интегрирующий множитель $\mu(x) = e^{\int p(x)dx} = e^{\int 2x dx} = e^{x^2}$.

Домножив обе части уравнения на e^{x^2}, получим $(ze^{x^2})' = -2x^3 e^{x^2}$.

Тогда $ze^{x^2} = \int (-2x^3 e^{x^2}) dx = e^{x^2} (1 - x^2) + C$. Отсюда находим $z = \frac{e^{x^2} (1 - x^2) + C}{e^{x^2}}$.

Следовательно, общее решение исходного уравнения $y = \frac{e^{x^2}}{e^{x^2} (1 - x^2) + C}$. ▲

Пример 8. Решить уравнение $(2xy + 3y^2)dx + (x^2 + 6xy - 3y^2)dy = 0$.

Для того чтобы уравнение $M(x; y)dx + N(x; y)dy = 0$ было уравнением в полных дифференциалах, необходимо и достаточно, чтобы

$$\frac{\partial M(x; y)}{\partial y} = \frac{\partial N(x; y)}{\partial x}.$$

В данном случае $M(x; y) = 2xy + 3y^2$, $N(x; y) = x^2 + 6xy - 3y^2$;

$$\frac{\partial M}{\partial y} = 2x + 6y, \quad \frac{\partial N}{\partial x} = 2x + 6y.$$

Таким образом, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, т. е. левая часть данного уравнения действительно является полным дифференциалом некоторой функции $u(x; y)$.

Для искомой функции $u(x; y)$ имеем

$$\frac{\partial u}{\partial x} = 2xy + 3y^2, \quad \frac{\partial u}{\partial y} = x^2 + 6xy - 3y^2.$$

Из первого уравнения получаем

$$u(x; y) = \int (2xy + 3y^2) dx = x^2 y + 3xy^2 + \varphi(y).$$

Дифференцируем последнее равенство по y:

$$x^2 + 6xy + \frac{d\varphi}{dy} = x^2 + 6xy - 3y^2, \quad \text{т. е.} \quad \frac{d\varphi}{dy} = -3y^2.$$
Отсюда \(\varphi(y) = -y^3 + c_1 \). Поэтому \(u(x; y) = x^2 y + 3xy^2 - y^3 + c_1 \).

Решение уравнения запишется в виде \(x^2 y + 3xy^2 - y^3 = c. \)

Пример 9. Найти общий интеграл дифференциального уравнения

\[
(e^x + y + \sin y)\,dx + (e^y + x + x\cos y)\,dy = 0.
\]

\(\Delta \) Так как \(\frac{\partial M}{\partial y} = 1 + \cos y, \quad \frac{\partial N}{\partial x} = 1 + \cos y, \) т. е. \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \), то данное уравнение является уравнением в полных дифференциалах.

Общий интеграл уравнения в полных дифференциалах можно найти по одной из формул:

\[
\int M(x; y)\,dx + \int N(x_0; y)\,dy = c, \quad \int M(x; y_0)\,dx + \int N(x; y)\,dy = c.
\]

Подставив во вторую формулу для простоты \(x_0 = y_0 = 0 \), получим

\[
\int_0^x e^x\,dx + \int_0^y (e^y + x + x\cos y)\,dy = c,
\]

\[
e^x - 1 + (e^y + xy + x\sin y)\bigg|_{y=0}^{y=y} = c,
\]

\[
e^x - 1 + e^y + xy + x\sin y - 1 = c, \quad e^x + e^y + xy + x\sin y = c_1. \]

Пример 10. Решить уравнение \((x + y^2)\,dx - 2xy\,dy = 0. \)

\(\Delta \) Если левая часть уравнения \(M(x; y)\,dx + N(x; y)\,dy \) не является полным дифференциалом и выполнены все условия теоремы Коши, то существует такая функция \(\mu(x; y) \), называемая интегральным множителем, что \(\mu(Mdx + Ndy) = du. \)

Интегрирующий множитель легко находится в двух случаях:

1) \(\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = F(x) \), тогда \(\mu = \mu(x); \)

2) \(\frac{1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = F'(y) \), тогда \(\mu = \mu(y). \)

В нашем случае \(\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = 2y + 2y = 4y, \)

\[
\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{4y}{-2xy} = -\frac{2}{x} = F(x).
\]

Следовательно, \(\mu = \mu(x). \)

Так как \(\frac{\partial}{\partial y} (\mu(x)(x + y^2)) = \frac{\partial}{\partial x} (-2\mu(x)xy) \) или
\[\mu(x)2y = -2 \frac{dM}{dx} (xy) - 2\mu(x)y, \quad \text{то} \quad \frac{dM}{\mu} = -\frac{2}{x} \, dx \quad \text{и} \quad \mu = \frac{1}{x^2}. \]

Умножая уравнение на \(\mu = \frac{1}{x^2} \), получим
\[\frac{x + y^2}{x^2} \, dx - \frac{2y}{x} \, dy = 0 \] — уравнение в полных дифференциалах.

Общий интеграл уравнения найдем по формуле
\[\int M(x; y_0) \, dx + \int N(x; y) \, dy = c, \quad (x_0 = 1, \, y_0 = 0), \]
\[\int_1^x \frac{1}{x} \, dx - \int_0^\frac{2y}{x} \, dy = c, \quad \ln|x| - \frac{1}{x} y^2 = c. \]

Дополнительные задачи

1. Решить задачу Коши \(ydx + (\sqrt{xy} - x)dy = 0 \), \(y(1) = 1 \).
 Ответ: \(2 - \ln|y| = 2 \sqrt{\frac{y}{x}} \).

2. Решить уравнение \((2x + y) \, dy - (x + 2y) \, dx = 0 \).
 Ответ: \((y - x)^3 = C^2 (x + y)\).

3. Решить уравнение \(4(xy + x^2) \, dy - 2y^2 \, dx = 0 \).
 Ответ: \(2y^2 + xy - Cx = 0 \).

4. Решить уравнение \((x + \sqrt{x^2 + y^2}) \, dy - y \, dx = 0 \).
 Указание. Используйте замену \(z(y) = \frac{x(y)}{y} \).
 Ответ: \(y^2 - 2Cx = C^2 \).

5. Решить уравнение \(xy' + y \left(\ln \frac{y}{x} - 1 \right) = 0 \).
 Ответ: \(y = xe^\frac{c}{x} \).

6. Решить уравнение \((x - y) \, dx + (2y - x + 1) \, dy = 0 \).
 Ответ: \(\frac{x^2}{2} + y^2 - xy + y = c \).

7. Решить уравнение \(y' = \frac{x - 2y + 3}{2x + y + 1} \).
 Ответ: \((y - 1)^2 + 4(x + 1)(y - 1) - (x + 1)^2 = C \).
8. Решить уравнение \((x - y - 3)dx - (x + y + 1)dy = 0\).
\[\text{Ответ: } (x - 1)^2 - 2(x - 1)(y + 2) - (y + 2)^2 = C.\]
9. Решить задачу Коши \(y' + y \tan x = \frac{1}{\cos x}, \ y(\pi) = 5.\)
\[\text{Ответ: } y = -5 \cos x + \sin x.\]
10. Решить уравнение \(y' - y = e^x.\)
\[\text{Ответ: } y = e^x(x + C).\]
11. Решить уравнение \(xy' - 2y = x^3 + x.\)
\[\text{Ответ: } y = x^3 - x + Cx^2.\]
12. Решить задачу Коши \(y' - 2y = e^{-x}, \ y(0) = -1.\)
\[\text{Ответ: } y = -\frac{1}{3}e^{-x} - \frac{2}{3}e^{2x}.\]
13. Решить задачу Коши \(y' \cos x - y \sin x = -\cos x - x \sin x, \ y(0) = 2.\)
\[\text{Ответ: } y = x - 2\tan x + \frac{2}{\cos x}.\]
14. Решить уравнение \(y^3 dx - (2xy + 3)dy = 0.\)
\[\text{Ответ: } x = cy^2 - \frac{1}{y}.\]
15. Решить уравнение \(y' - xy = x^3 y^2.\)
\[\text{Ответ: } y(Ce^{-\frac{x^2}{2}} - x^2 + 2) = 1, \ y = 0.\]
16. Решить уравнение \(2yy' + y^2 = x.\)
\[\text{Ответ: } y^2 = Ce^{-x} + x - 1.\]
17. Решить уравнение \(xy' + y = y^2 \ln x.\)
\[\text{Ответ: } y(Cx + \ln x + 1) = 1, \ y = 0.\]
18. Решить уравнение \(x^2 y^2 y' + xy^3 = 1.\)
\[\text{Ответ: } y = \sqrt[3]{\frac{3}{2x} + \frac{c}{x^3}}.\]
19. Решить задачу Коши \(y' - \frac{y}{x - 3} = \frac{y^2}{x - 3}, \ y(-1) = -2.\)
\[\text{Ответ: } y = \frac{x - 3}{1 - x}.\]
20. Решить уравнение \((2x - y + 2)dx + (2y - x - 1)dy = 0.\)
\[\text{Ответ: } x^2 - xy + 2x + y^2 - y = C.\]
21. Решить задачу Коши \(e^{-y} dx + (2y - xe^{-y}) dy = 0, \quad y(-3) = 0. \)
Ответ: \(xe^{-y} + y^2 = -3. \)
22. Решить уравнение \(x + ye^x + (y + e^x)y' = 0. \)
Ответ: \(x^2 + 2ye^x + y^2 = C. \)
23. Решить уравнение \((2x + e^y)dx + \left(1 - \frac{x}{y}\right)e^y dy = 0. \)
Ответ: \(x^2 + ye^y = c. \)
24. Решить уравнение \(xdx + ydy = \frac{x dy - y dx}{x^2 + y^2}. \)
Ответ: \(x^2 + y^2 + 2\arctg \frac{x}{y} = c. \)
25. Решить уравнение \(y(1 + xy)dx - xdy = 0, \) если известно, что оно имеет интегрирующий множитель \(\mu = \mu(x) \) или \(\mu = \mu(y) \).
Ответ: \(\frac{x}{y} + \frac{x^2}{2} = c. \)

Занятия 21–22

Уравнения, допускающие понижение порядка.
Задачи, приводящие к дифференциальным уравнениям.
Самостоятельная работа

Пример 1. Доказать существование и единственность решения задачи Коши \(y'''' = y^2 + \frac{y'^2}{2} + 3x, \quad y(0) = 1, \quad y'(0) = 2. \)

\[\Delta \] Правая часть уравнения – функция \(F(x, y, y') = y^2 + \frac{y'^2}{y} + 3x, \) которая непрерывна и имеет непрерывные частные производные \(F'_y = 2y - \frac{y'^2}{y^2}, \quad F''_y = \frac{2y'}{y} \)
в окрестности точки \((0; 1; 2). \) Поэтому, в силу теоремы существования и единственности, искомое решение существует и однозначно. \[\Delta \]

Пример 2. Показать, что функция \(y = y(x), \) неявно заданная уравнением \(x = y^2 + y, \) является решением уравнения \(y'y''' - 3y''^2 = 0. \)
\[\Delta \] Находим \(y', y'', y'''. \) Имеем:
\[
y' = \frac{dy}{dx} = 1; \quad \frac{dx}{dy} = \frac{1}{2y+1}, \text{ так как } \frac{dy}{dx} = 1: \frac{dx}{dy};
\]
\[
y'' = \frac{d}{dx} \left(\frac{1}{2y+1} \right) \frac{dy}{dx} = -\frac{2}{(2y+1)^3};
\]
\[
y''' = \frac{d}{dx} \left(-\frac{2}{(2y+1)^3} \right) \frac{dy}{dx} = \frac{12}{(2y+1)^5}.
\]
Подставив \(y', y'', y''' \) в левую часть уравнения \(y''y''' - 3y''^2 = 0 \), получим
\[
\frac{1}{2y+1} \cdot \frac{12}{(2y+1)^3} - 3\frac{4}{(2y+1)^5} = 0. \quad \blacktriangleleft
\]

Пример 3. Найти общее решение уравнения \(y'' = xe^{-x} \) и выделить решение, удовлетворяющее начальным условиям: \(y = 4, \ y' = 0 \) при \(x = 0 \).

Д Найдем общее решение последовательным интегрированием данного уравнения:
\[
y' = \int xe^{-x} dx = x = u, \ du = dx
\]
\[
e^{-x}dx = dv, \ v = -e^{-x}
\]
\[
y = -\int xe^{-x} dx - \int e^{-x} dx = xe^{-x} - e^{-x} + c_1,
\]
\[
y = xe^{-x} + 2e^{-x} + c_1x + c_2.
\]
Воспользуемся начальными условиями
\[
\begin{cases}
-1 + c_1 = 0, \\
2 + c_2 = 4,
\end{cases}
\]
\[
c_1 = 1, \ c_2 = 2.
\]

Следовательно, частное решение имеет вид \(y = (x + 2)e^{-x} + x + 2. \quad \blacktriangleleft \)

Пример 4. Решить уравнение \((x - 3)y'' + y' = 0 \).

Д Полагая \(y' = z \), получим уравнение первого порядка \((x - 3)\frac{dz}{dx} + z = 0.\)

Разделяя переменные и интегрируя, найдем
\[
\frac{dz}{z} = -\frac{dx}{x-3};
\]
\[
\ln |z| + \ln |x-3| = \ln |c|, \ c \neq 0; \ z(x-3) = c, \ \frac{du}{dx} (x-3) = c; \ y = c \ln |x-3| + c_1.
\]
Функция \(z = 0 \) (\(y = c \)) является решением.

Посмотому \(y = c \ln |x-3| + c_1, \ c, c_1 \in R. \quad \blacktriangleleft \)

Пример 5. Найдите общее решение уравнения \(y'' + 2xy' = 0.\)

Д Полагая \(y' = z \), получим
\[
\frac{dz}{z} = -2x; \quad \frac{dz}{z} = -2xdx; \quad z = c_1e^{-x^2}.
\]
Решение \(z = 0 \) не потеряно. Следовательно, \(y = c_1 \int e^{-x^2} dx + c_2. \quad \blacktriangleleft \)

Пример 6. Решить задачу Коши \(y'' = \frac{y'}{x} \left(1 + \ln \frac{y'}{x} \right), \ y = \frac{1}{2}, \ y' = 1 \) при \(x = 1.\)
\[\Delta \text{ Полагая } y' = z, \text{ получим } \frac{dz}{dx} = \frac{z}{x} \left(1 + \ln \frac{z}{x} \right). \text{ Это однородное уравнение.} \]

Проинтегрируем его с помощью подстановки \(z = ux \). Имеем

\[\frac{du}{dx} x + u = u(1 + \ln u); \quad \frac{du}{u \ln u} = \frac{dx}{x}; \quad \ln|\ln u| = \ln|\ln x|; \quad u = e^{\ln x}; \quad z = xe^{\ln x}. \]

Полагая \(x = 1 \), находим \(c = 0 \). Согласно произведенной замене

\[\frac{dy}{dx} = x, \quad y = \frac{1}{2} x^2 + c_1. \text{ Полагая } x = 0, \text{ находим } c_1 = 0. \text{ Окончательно } y = \frac{1}{2} x^2. \]

Пример 7. Решить уравнение \(2(y')^2 = (y - 1)y'' \).

\[\Delta \text{ Положим } y' = p(y). \text{ Тогда } y'' = p \frac{dp}{dy}. \text{ Уравнение примет вид} \]

\[p \left(2p - (y - 1)\frac{dp}{dy}\right) = 0. \]

Функция \(p = 0 \) (\(y = c \)) является решением.

Пусть \(p \neq 0 \), тогда \(\frac{dp}{2p} = \frac{dy}{y - 1} \) или \(\frac{1}{2} \ln |p| = \ln |y - 1| + \ln |c_1| \), откуда

\[p = c_1^2 (y - 1)^2. \text{ Но } p = \frac{dy}{dx}. \text{ Следовательно, } \frac{dy}{dx} = c_1^2 (y - 1)^2 \text{ или} \]

\[\int \frac{dy}{c_1^2 (y - 1)^2} = \int dx + c_2, \text{ откуда } \frac{-1}{c_1^2} = (x + c_2)(y - 1). \]

Функция \(y = c \) является особым решением.

Пример 8. Найти решение задачи Коши

\[y'' = -\frac{y^2 + y'^4}{2y}, \quad y(0) = 1, \quad y'(0) = 2, \]

предварительно убедившись, что искомое решение существует и единственно.

\[\Delta \text{ Функция } F(x; y; z) = -\frac{y'^2 + y'^4}{2y} \text{ непрерывна и имеет ограниченные частные производные } F_y' = \frac{y'^2 + y'^4}{2y^2}, \quad F_y'' = \frac{(y'^2 + 2y'^3)}{y} \text{ в окрестности точки} \ (0;1;2). \]

Поэтому, в силу теоремы существования и единственности, искомое решение существует и единственно. Положим \(y' = p \), где \(p = p(y) \) – новая неизвестная функция.

Тогда \(y'' = p \frac{dp}{dy} \). Относительно \(p = p(y) \) мы получим уравнение

\[p \frac{dp}{dy} = -\frac{p^2 + p^4}{2y}. \]
Для искомого решения $p \neq 0$. Разделяя переменные, получим

$$-rac{d(p)^2}{p^2(p^2+1)} = \frac{dy}{y} \quad \text{или} \quad \frac{d(p^2+1)}{p^2+1} - \frac{d(p^2)}{p^2} = \frac{dy}{y},$$

откуда

$$\ln \frac{p^2+1}{p^2} = \ln |c|y| \quad (c > 0), \quad \frac{p^2+1}{p^2} = c_1 y \quad (c_1 \neq 0).$$

Используя начальные условия, находим $c_1 = \frac{5}{4}$.

Имеем $\frac{p^2+1}{p^2} = 5y, \quad p^2 + 1 = \frac{5}{4} p^2 y, \quad p = \frac{1}{\sqrt{\frac{5}{4} y - 1}}$.

Согласно произведенной замене, получаем

$$\frac{dy}{dx} = \frac{1}{\frac{5}{4} y - 1}, \quad \sqrt{\frac{5}{4} y - 1} dy = dx, \quad \frac{8}{15} \left(\frac{5}{4} y - 1\right)^{\frac{3}{2}} = x + c_2.$$

Учитывая начальные условия, найдем $c_2 = \frac{1}{15}$.

Поэтому $y = \frac{1}{15} \left(15x + 1\right)^{\frac{3}{2}} + \frac{4}{5}$. ▲

Пример 9. Найти кривую, проходящую через точку $(1; 1)$, у которой отрезок, отсекаемый на оси ординат, равен абсциссе точки касания.

В точке $M(x; y)$ проведем касательную к искомой кривой (рис. 24):

$$Y - y = y'(X - x).$$

Полагая $X = 0$, находим ординату точки A: $y = y - y'x$. Получаем дифференциальное уравнение $y - y'x = x$, или $y' - 1 \frac{1}{x} y = -1$. Это линейное уравнение.

Сделав подстановку Бернулли $y = uv, \quad y' = u'v + uv', \quad$ получим $u''v + u\left(v' - \frac{1}{x} v\right) = -1$.

Нахождим частное решение уравнения $\frac{du}{dx} - \frac{1}{x} v = 0, \quad \frac{dv}{x} = \frac{dx}{x}, \quad \ln v = \ln x, \quad v = x$.

Далее ищем общее решение уравнения $\frac{du}{dx} x = -1$.

107
Имеем \(du = -\frac{dx}{x} \), \(u = \ln c_1 - \ln |x| = \ln \frac{c_1}{|x|} \).

Искомое общее решение принимает вид \(y = x \cdot \ln \frac{c}{x} \).

Используя начальное условие, получим \(1 = \ln c, \quad c = e \).

Уравнение кривой будет \(y = x \ln \frac{e}{x} = x(\ln e - \ln x) = x(1 - \ln x) \). ▲

Пример 10. Согласно закону Ньютона, скорость охлаждения тела пропорциональна разности температур тела и окружающей среды. Температура вынутого из печи хлеба снижается от 100° до 60°C за 20 мин. Температура воздуха 25°C. Через какой промежуток времени (от начала охлаждения) температура хлеба понизится до 30°C?

Дифференциальное уравнение охлаждения хлеба будет
\[\frac{dT}{d\tau} = k(T - t), \]
где \(T \) – температура хлеба; \(t \) – температура окружающего воздуха; \(k \) – коэффициент пропорциональности; \(\frac{dT}{d\tau} \) – скорость охлаждения хлеба.

Пусть \(\tau \) – искомое время охлаждения. Тогда, разделяя переменные, получим
\[\frac{dT}{T - t} = k d\tau. \]

Для условий задачи
\[\frac{dT}{T - 25} = k d\tau. \]
Интегрируя, получаем
\[\int \frac{d(T - 25)}{T - 25} = k \int d\tau, \quad \ln (T - 25) = k\tau + \ln c, \quad T - 25 = ce^{k\tau}. \]

Произвольную постоянную \(c \) определяем из начального условия: при \(\tau = 0 \) \(T = 100 \) °C. Отсюда \(c = 100 - 25 = 75 \). Подставив в полученное уравнение \(T = 60 \) и \(\tau = 20 \), получаем \(e^{k} = \left(\frac{35}{75}\right)^{\frac{1}{20}} = \left(\frac{7}{15}\right)^{\frac{1}{20}} \).

Уравнение охлаждения хлеба примет вид \(T = 75 \cdot \left(\frac{7}{15}\right)^{\frac{\tau}{20}} + 25 \).

Отсюда \(5 = 75 \cdot \left(\frac{7}{15}\right)^{\frac{\tau}{20}} \), или \(\tau = \frac{-20 \ln 15}{\ln 7 - \ln 15} \approx 71 \) мин. ▲

Пример 11. Найти форму зеркала, собирающего все параллельные лучи в одну точку.

Очевидно, что зеркало должно иметь форму поверхности вращения, ось которого параллельна направлению падающих лучей. Примем эту ось за
ось Ox и найдем уравнение кривой, вращением которой образуется искомая поверхность (рис. 25).

Пусть kM – падающий луч, MO – отраженный луч. В точке M проведем касательную TT_1 к искомой кривой. Так как $\angle T_1MK = \angle TMO = \angle MTO$, то треугольник MTO является равнобедренным. Следовательно, $|OM| = |OT|$, но $|OM| = \sqrt{x^2 + y^2}$, а $|OT|$ найдем из уравнения касательной:

$$Y - y = y'(X - x),$$

полагая $Y = 0$, имеем

$$X = x - \frac{y}{y'}.$$

Таким образом получаем дифференциальное уравнение $\sqrt{x^2 + y^2} = -x + \frac{y}{y'}$, или

$$(x + \sqrt{x^2 + y^2})dy - ydx = 0.$$

Это однородное уравнение. Здесь более целесообразно считать x функцией, а y – аргументом. Применим подстановку $\frac{x}{y} = t$. Тогда получим

$$(\sqrt{t^2 y^2 + y'^2 + ty})dy - y(tdy + ydt) = 0,$$

или

$$\sqrt{t^2 + 1}dy - ydt = 0.$$ В разделяем переменные и интегрируем:

$$\frac{dy}{y} = \frac{dt}{\sqrt{1 + t^2}}, \quad \ln y = \ln (t + \sqrt{1 + t^2}) + \ln c_1 \quad (y > 0).$$

Возвращаясь к переменным x и y, имеем

$$x + \sqrt{x^2 + y^2} = \frac{y^2}{c},$$

$$y^2 = 2c \left(x + \frac{c}{2} \right).$$

Искомая кривая является параболой, а зеркало имеет форму параболоида вращения

$$y^2 + z^2 = 2c \left(x + \frac{c}{2} \right).$$

Пример 12. Среднее геометрическое координат точки касания кривой равно отношению отрезка, отсекаемого касательной на оси ординат, к удвоенной ординате точки касания. Найти уравнение кривой, если она проходит через точку $(1; 1)$.

Δ В точке $M(x; y)$ проведем касательную к искомой кривой (рис. 26):

$$Y - y = y'(X - x).$$

Полагая $X = 0$, находим ординату точки A: $Y = y - y'x$.

Получаем дифференциальное уравнение
\[\sqrt{xy} = \frac{y - y'x}{2y}, \text{ или } y' - \frac{1}{x} y = 2x^{-\frac{1}{2}}y^{\frac{3}{2}}. \]

Это уравнение Бернулли.
Сделав подстановку \(y = uv, \ y' = u'v + uv' \), получим
\[u'v + uv' - \frac{1}{x} uv = 2x^{-\frac{1}{2}}u^{\frac{3}{2}}v^{\frac{3}{2}}, \quad u'v + u\left(v' - \frac{1}{x}v \right) = 2x^{-\frac{1}{2}}u^{\frac{3}{2}}v^{\frac{3}{2}}. \]

Находим частное решение уравнения \(v' - \frac{1}{x}v = 0, \ v = x. \)

Находим общее решение уравнения \(u'x = 2x^{-\frac{1}{2}}u^{\frac{3}{2}}v^{\frac{3}{2}}, \)
\[\frac{1}{2}du \cdot u^{-\frac{3}{2}} = dx, \ u = \frac{1}{(x + c)^{2}}. \]

Искомое общее решение принимает вид \(y = uv = \frac{x}{(x + c)^{2}}. \)

Используя начальное условие \(y(1) = 1 \), получаем две интегральные кривые:

\[xy = 1 \text{ и } x - y(x - 2)^2 = 0. \)

Дополнительные задачи

1. Решить уравнение \(y''' = x \ln x. \)
 \[\text{Ответ: } y = \frac{x^4}{24} \ln x - \frac{13}{288} x^4 + C_1 x^2 + C_2 x + C_3. \]

2. Решить уравнение \(y''' = x^2 - \sin x. \)
 \[\text{Ответ: } y = \frac{x^5}{60} - \cos x + C_1 x^2 + C_2 x + C_3. \]

3. Решить задачу Коши \(y'' = \frac{\ln x}{x^2}, \ y(1) = 3, \ y'(1) = 1. \)
 \[\text{Ответ: } y = 2x + 1 - \frac{1}{2} \ln^2 x - \ln x. \]

4. Решить уравнение \(x^3 y'' + x^2 y' = 1. \)
 \[\text{Ответ: } y = C_1 \ln x + \frac{1}{x} + C_2. \]

5. Решить уравнение \(y^{IV} = y''' / x. \)
 \[\text{Ответ: } y = C_1 x^4 + C_2 x^2 + C_3 x + C_4. \]

6. Решить задачу Коши \(xy''' - y'' = x^2 + 1, y(-1) = 0, y'(-1) = 1, y''(-1) = 0. \)
Ответ: \(y = \frac{x^4}{12} - \frac{x^2}{2} + \frac{x}{3} + \frac{3}{4} \).

7. Решить уравнение \(y'' + y'' \tan x = \frac{1}{\cos x} \).
Ответ: \(y = -\sin x - C_1 \cos x + C_2 x + C_3 \).

8. Решить задачу Коши \(y'' = \frac{1}{y^3} \), \(y(0) = 1 \), \(y'(0) = 0 \).
Ответ: \(x = y^2 - 1 \).

9. Решить уравнение \(yy'' = y'^2 \).
Ответ: \(y = C_2 e^{C_1 x} \).

10. Решить задачу Коши \(y'' = e^{2y} \), \(y(0) = 0 \), \(y'(0) = 1 \).
Ответ: \(e^{-y} = -x + 1 \).

11. Записать уравнение линии, проходящей через точку \(A(1; 0) \), если известно, что отрезок, отсекаемый касательной в любой точке этой линии на оси \(Oy \), равен расстоянию от точки касания до начала координат.
Ответ: \(y = \frac{1}{2}(1 - x^2) \).

12. Составить уравнение кривой, проходящей через точку \(A(1; 5) \), если угловой коэффициент касательной в любой ее точке \(M \) в три раза больше углового коэффициента прямой, соединяющей точку \(M \) с началом координат.
Ответ: \(y = 5x^3 \).

Самостоятельная работа

Вариант 1

Решить уравнения:

1. \(y' = \frac{e^{2x}}{\ln y} \).
Ответ: \(y(\ln y - 1) = \frac{1}{2} e^{2x} + c. \)

2. \(y' = \frac{y(x + y)}{x^2} \).
Ответ: \(y = \frac{-x}{\ln|cx|} \).

3. \(y' + \frac{1}{x} y = e^{-x^2} \), \(y(1) = \frac{1}{2e} \).
Ответ: \(y = e^{-x^2} \).

4. \((x^2 + \sin y)dx + (1 + x \cos y)dy = 0. \)
Ответ: \(x^3 + 3y + 3x \sin y = c. \)
5. $y'' + \frac{1}{x} y' = \frac{1}{x^3}$.
Ответ: $y = c_1 \ln x + \frac{1}{x} + c_2$.

Вариант 2

Решить уравнения:

1. $(1 + e^x) y \cdot y' = e^x$.
Ответ: $y^2 = 2 \ln |c(e^x + 1)|$.

2. $y' = \frac{y^2 + 2x^2}{xy}$.
Ответ: $y^2 = 4x^2 \ln |c|$.

3. $y' - 3x^2 y = x^2 e^{x^3}$, $y(0) = 0$.
Ответ: $y = \frac{1}{3}x^3 e^{x^3}$.

4. $(e^x \sin y + x)dx + (e^x \cos y + y)dy = 0$.
Ответ: $x^2 + y^2 + 2e^x \sin y = 0$.

5. $y'' - \frac{1}{x} y' = x$.
Ответ: $y = \frac{x^3}{3} + c_1 \frac{x^2}{2} + c_2$.

Занятия 23–24

Линейные уравнения высших порядков

Пример 1. Найти определитель Вронского систем функций:

а) e^x, xe^x, $x^2 e^x$; $J = (-\infty;+\infty)$;
б) $3 \cos^2 x, \sin^2 x$; $J = (-\infty;+\infty)$;
в) $x^2, x \cdot |x|$; $J = (-\infty;+\infty)$.

Исследовать данные функции на линейную зависимость.

$$
\Delta \quad \text{а)} \quad \text{Находим} \quad W(x) = \begin{vmatrix}
e^x & xe^x & x^2 e^x \\
e^x & (x+1)e^x & (x^2 + 2x)e^x \\
e^x & (x+2)e^x & (x^2 + 4x + 2)e^x
\end{vmatrix} = e^{3x}.
$$

Поскольку $W(x) \neq 0$, данные функции линейно независимы на J.

б) $W(x) = \begin{vmatrix}
3 & \cos^2 x & \sin^2 x \\
0 & -\sin 2x & \sin 2x \\
0 & -2 \cos 2x & 2 \cos 2x
\end{vmatrix} = 0.$
Вывод о линейной зависимости данных функций по их определителю Вронского сделать нельзя. Но так как \(\alpha_1 \cdot 3 + \alpha_2 \cos^2 x + \alpha_3 \sin^2 x = 0 \) при \(\alpha_1 = -\frac{1}{3}, \alpha_2 = \alpha_3 = 1 \), данные функции являются линейно зависимыми на \(J \).

в) Для функции \(f(x) = x \cdot |x| \) при \(x > 0 \) \(f'(x) = 2x = 2|x| \), при \(x < 0 \) \(f'(x) = -2x = 2|x| \), при \(x = 0 \) \(f'(0) = \lim_{x \to 0} \frac{x \cdot |x| - 0}{x} = 0 = 2|x| \).

Таким образом, \((x \cdot |x|)' = 2x, \ x \in J \).

Находим \(W(x) = \begin{vmatrix} x^2 & x \cdot |x| \\ 2x & 2|x| \end{vmatrix} = 0. \)

Вывод о линейной зависимости данных функций по их определителю Вронского сделать нельзя. Данные функции линейно независимы на \(J \), так как тождество \(\alpha_1 x^2 + \alpha_2 x \cdot |x| \equiv 0 \ (x \in J) \) выполняется только при \(\alpha_1 = \alpha_2 = 0 \). Действительно, при \(x = 1 \) получаем \(\alpha_1 + \alpha_2 = 0 \); при \(x = -1 \) имеем \(\alpha_1 - \alpha_2 = 0 \). Эта система имеет решение \(\alpha_1 = \alpha_2 = 0 \). ▲

Пример 2. Показать, что функции \(y_1 = x^2 \) и \(y_2 = x^5 \) образуют фундаментальную систему решений некоторого линейного однородного уравнения второго порядка, и найти решение задачи Коши для этого уравнения с начальными условиями \(y(1) = 1, \ y'(1) = -2 \).

\[\Delta \text{ Находим определитель Вронского } W(y_1; y_2) = \begin{vmatrix} x^2 & x^5 \\ 2x & 5x^4 \end{vmatrix} = 3x^6. \]

Следовательно, функции \(y_1 = x^2 \) и \(y_2 = x^5 \) образуют фундаментальную систему решений некоторого однородного линейного уравнения второго порядка, коэффициенты которого являются непрерывными функциями при \(x \neq 0 \). Общее решение этого уравнения имеет вид \(y = c_1 x^2 + c_2 x^5 \), где \(c_1 \) и \(c_2 \) — произвольные постоянные.

Для решения поставленной задачи Коши необходимо определить значения постоянных \(c_1 \) и \(c_2 \) так, чтобы выполнялись заданные начальные условия.

Имеем \(\begin{cases} c_1 + c_2 = 1, \\ 2c_1 + 5c_2 = -2, \end{cases} \) откуда \(c_1 = \frac{7}{3}, \ c_2 = -\frac{4}{3} \).

Поэтому решение данной задачи Коши имеет вид \(y = \frac{7}{3} x^2 - \frac{4}{3} x^5 \). ▲

Пример 3. Показать, что функции \(y_1 = 1, \ y_2 = x, \ y_3 = e^x \) образуют фундаментальную систему решений некоторого линейного однородного уравнения...
третьего порядка. Составить это уравнение.

Δ Найдем $W(y_1; y_2; y_3)$:

$$W(y_1; y_2; y_3) = \begin{vmatrix} 1 & x & e^x \\ 0 & 1 & e^x \\ 0 & 0 & e^x \end{vmatrix} = e^x \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = e^x \neq 0 \ \forall x \in R.$$

Следовательно, данные функции образуют фундаментальную систему решений некоторого линейного однородного уравнения третьего порядка с коэффициентами, непрерывными на $(-\infty; +\infty)$.

Это уравнение имеет вид $W(y; y_1; y_2; y_3) = 0$.

$$W(y; y_1; y_2; y_3) = \begin{vmatrix} y & 1 & x & e^x \\ y' & 0 & 1 & e^x \\ y'' & 0 & 0 & e^x \\ y''' & 0 & 0 & e^x \end{vmatrix} = -e^x \begin{vmatrix} y' & 1 & 1 \\ y'' & 0 & 1 \\ y''' & 0 & 1 \end{vmatrix} = e^x (y''' - y'') = e^x (y'' - y').$$

Искомое уравнение имеет вид $e^x (y'' - y') = 0$, или $y'' - y' = 0$. ▲

Пример 4. Найти общие решения уравнений:

а) $y'' + 5y' + 6y = 0$; б) $y'' - 6y' = 0$;
в) $y'' + 4y' + 4y = 0$; г) $y'' + 2y' + 7y = 0$.

Δ а) Корни характеристического уравнения $\lambda^2 + 5\lambda + 6 = 0$ – числа $\lambda_1 = -2$, $\lambda_2 = -3$. Фундаментальную систему решений образуют функции e^{-2x}, e^{-3x}.

Общее решение имеет вид $y = c_1 e^{-2x} + c_2 e^{-3x}$.

б) Корни характеристического уравнения $\lambda^2 - 6\lambda = 0$ – числа $\lambda_1 = 0$ и $\lambda_2 = 6$. Фундаментальную систему решений образуют функции 1 и e^{6x}. Общее решение имеет вид $y = c_1 + c_2 e^{6x}$.

в) Корни характеристического уравнения $\lambda^2 + 4\lambda + 4 = 0$ – числа $\lambda_1 = \lambda_2 = -2$. Фундаментальную систему решений образуют функции e^{-2x} и xe^{-2x}. Общее решение имеет вид $y = c_1 e^{-2x} + c_2 xe^{-2x}$.

г) Корни характеристического уравнения $\lambda^2 + 2\lambda + 7 = 0$ – числа $\lambda_1 = -1 \pm i\sqrt{6}$. Фундаментальную систему решений образуют функции $e^{-x} \cos \sqrt{6}x$ и $e^{-x} \sin \sqrt{6}x$. Общее решение имеет вид $y = e^{-x}(c_1 \cos \sqrt{6}x + c_2 \sin \sqrt{6}x)$. ▲
Пример 5. Найти общие решения уравнений:

а) \(y^{(4)} - 6y''' + 11y'' - 6y' = 0; \)

в) \(y^{(5)} - 3y''' + 3y'' - y' = 0; \)

g) \(y^{(4)} + 2y''' + y = 0; \)

d) \(y^{(5)} - y^{(4)} + 4y''' - 4y'' - 4y' - 4y = 0. \)

\[\Delta \ a) \text{Находим корни характеристического уравнения } \lambda^4 - 6\lambda^3 + 11\lambda^2 - 6\lambda = 0. \]

Имеем

\[\lambda(\lambda^3 - 6\lambda^2 + 11\lambda - 6) = \lambda(\lambda^3 - \lambda^2 - 5\lambda^2 + 5\lambda + 6\lambda - 6) = \]

\[= \lambda(\lambda^4 - 4\lambda^2 + 4\lambda - 4) = \lambda(\lambda - 1)^3(\lambda - 2)(\lambda - 3) = 0. \]

Откуда \(\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 2, \lambda_4 = 3. \)

Фундаментальную систему решений образуют функции 1, \(e^x, e^{2x}, e^{3x}. \)

Общее решение имеет вид \(y = c_1 + c_2 e^x + c_3 e^{2x} + c_4 e^{3x}. \)

б) \(y^{(4)} + 8y = 0; \)

g) \(y^{(4)} + 2y''' + y = 0; \)

d) \(y^{(5)} - y^{(4)} + 4y''' - 4y'' - 4y' - 4y = 0. \)

\[\Delta \ a) \text{Находим корни характеристического уравнения } \lambda^4 - 6\lambda^3 + 11\lambda^2 - 6\lambda = 0. \]

Имеем

\[\lambda(\lambda^3 - 6\lambda^2 + 11\lambda - 6) = \lambda(\lambda^3 - \lambda^2 - 5\lambda^2 + 5\lambda + 6\lambda - 6) = \]

\[= \lambda(\lambda^4 - 4\lambda^2 + 4\lambda - 4) = \lambda(\lambda - 1)^3(\lambda - 2)(\lambda - 3) = 0. \]

Откуда \(\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 2, \lambda_4 = 3. \)

Фундаментальную систему решений образуют функции 1, \(e^x, e^{2x}, e^{3x}. \)

Общее решение имеет вид \(y = c_1 + c_2 e^x + c_3 e^{2x} + c_4 e^{3x}. \)

Пример 6. Применяя метод вариации произвольных постоянных, решить
уравнение \(y'' - y = \frac{e^x}{e^x + 1} \).

Решим соответствующее однородное уравнение \(y'' - y = 0 \). Находим корни характеристического уравнения \(\lambda^2 - 1 = 0 \). Откуда \(\lambda_1 = 1, \ \lambda_2 = -1 \). Фундаментальную систему решений образуют функции \(y_1 = e^x \) и \(y_2 = e^{-x} \). Общее решение однородного уравнения имеет вид \(y = c_1 e^x + c_2 e^{-x} \).

Общее решение исходного неоднородного уравнения ищем в виде
\(y = c_1(x) e^x + c_2(x) e^{-x} \).

Составим систему
\[
\begin{align*}
 c_1'(x)e^x + c_2'(x)e^{-x} &= 0, \\
 c_1'(x)e^x - c_2'(x)e^{-x} &= \frac{e^x}{e^x + 1}.
\end{align*}
\]

Решая ее, находим:
\(c_1'(x) = \frac{1}{2} \cdot \frac{1}{e^x + 1}, \ c_2'(x) = -\frac{1}{2} \cdot \frac{e^{2x}}{e^x + 1} \).

Интегрируя, имеем:
\(c_1(x) = \frac{1}{2} \int dx = \frac{1}{2} \int e^x (e^x + 1)dx = e^x = t \)

\(c_2(x) = -\frac{1}{2} \int \frac{e^{2x}}{e^x + 1} dx = -\frac{1}{2} \int \frac{e^{x} + 1 - 1}{e^x + 1} dx = -\frac{1}{2} e^x + \frac{1}{2} \ln(e^x + 1) + c_2 \).

Общее решение имеет вид
\(y = \frac{1}{2} ((x - \ln(e^x + 1))e^x + (-1 + \ln(e^x + 1))e^{-x}) + c_1 e^x + c_2 e^{-x} \). ▲

Пример 7. Указать вид частных решений для данных неоднородных уравнений:

а) \(y'' - 4y = x^2 e^{2x} \);

б) \(y'' - 4y' + 4y = \sin 2x + e^{2x} \);

в) \(y'' + 2y' + 2y = e^x \sin x \);

г) \(y'' - 5y' + 6y = (x^2 + 1)e^x + xe^{2x} \);

д) \(y''' + 6y'' + 10y' = xe^{3x} \cos x + x; \)

е) \(y''' - 4y' = 3 + e^{2x} + e^{2x} \sin 2x \).

\(\Delta \) а) Находим корни характеристического уравнения \(\lambda^2 - 4 = 0 \). Откуда \(\lambda_1 = 2, \ \lambda_2 = -2 \). Частное решение имеет вид \(y^* = x(A_1x^2 + A_2x + A_3)e^{2x} \).

б) Находим корни характеристического уравнения \(\lambda^2 - 4\lambda + 4 = 0 \). Откуда \(\lambda_1 = \lambda_2 = 2 \). Частное решение имеет вид
\(y^* = A_1 \sin 2x + A_2 \cos 2x + A_3x^2 e^{2x} \).

в) Находим корни характеристического уравнения \(\lambda^2 + 2\lambda + 2 = 0 \). Откуда
\[\lambda_{1,2} = -1 \pm i. \] Частное решение имеет вид \[y^* = e^x (A_1 \sin x + A_2 \cos x). \]

г) Находим корни характеристического уравнения \(\lambda^2 - 5\lambda + 6 = 0. \) Откуда \(\lambda_1 = 2, \lambda_2 = 3. \) Частное решение имеет вид

\[y^* = (A_1 x^2 + A_2 x + A_3) e^x + x(A_4 x + A_5) e^{2x}. \]

d) Находим корни характеристического уравнения \(\lambda^3 + 6\lambda^2 + 10\lambda = 0. \) Откуда \(\lambda_1 = 0, \lambda_{2,3} = -3 \pm i. \) Частное решение имеет вид

\[y^* = x e^{-3x} ((A_1 x + A_2) \cos x + (A_3 x + A_4) \sin x) + x(A_5 x + A_6). \]

e) Находим корни характеристического уравнения \(\lambda^3 - 4\lambda = 0. \) Откуда \(\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = -2. \) Частное решение имеет вид

\[y^* = A_1 x + A_2 x e^{2x} + e^{2x} (A_4 \sin 2x + A_5 \cos 2x). \]

Пример 8. Найти общее решение уравнения \(y'' - y'' = 3x^2 - 2x + 5. \)

\(\Delta \) Так как характеристическое уравнение \(\lambda^3 - \lambda^2 = 0 \) имеет корни \(\lambda_{1,2} = 0, \lambda_3 = 1, \) то общим решением соответствующего однородного уравнения \(y'' - y'' = 0 \) является функция \(Y_{o.o} = c_1 + c_2 x + c_3 e^x. \) Частное решение уравнения определяется формулой \(y^* = x^2 (A_1 x^2 + A_2 x + A_3) = A_1 x^4 + A_2 x^3 + A_3 x^2. \)

Находим:
\[y^* = 4A_1 x^3 + 3A_2 x^2 + 2A_3 x; \]
\[y^*'' = 12A_1 x^2 + 6A_2 x + 2A_3; \]
\[y^*''' = 24A_1 x + 6A_2. \]

Подставив эти выражения в исходное уравнение, получим
\[24A_1 x + 6A_2 - 12A_1 x^2 - 6A_2 x - 2A_3 \equiv 3x^2 - 2x + 5 \] или
\[(3 + 12A_1) x^2 + (6A_2 - 24A_1 - 2) x + (5 + 2A_3 - 6A_2) \equiv 0, \] откуда
\[\begin{cases} 3 + 12A_1 = 0, \\ 6A_2 - 24A_1 - 2 = 0, \\ 5 + 2A_3 - 6A_2 = 0. \end{cases} \]

Решая систему, находим: \(A_1 = -\frac{1}{4}, \quad A_2 = -\frac{2}{3}, \quad A_3 = -\frac{9}{2}. \)

Общее решение имеет вид \(Y_{o.o} = c_1 + c_2 x + c_3 e^x - \frac{1}{4} x^4 - \frac{2}{3} x^3 - \frac{9}{2} x^2. \)

Пример 9. Решить уравнение \(y'' - 2y' + 10y = 37 \cos 3x. \)

\(\Delta \) Находим корни характеристического уравнения \(\lambda^2 - 2\lambda + 10 = 0, \) откуда \(\lambda_{1,2} = 1 \pm 3i. \) Общим решением соответствующего однородного уравнения явля-
является функция $Y_{o.o} = e^x(c_1 \cos 3x + c_2 \sin 3x)$. Частное решение уравнения определяется формулой $y^* = A_1 \cos 3x + A_2 \sin 3x$. Подставляя функцию y^* и ее производные $y'^*= -3A_1 \sin 3x + 3A_2 \cos 3x$, $y^{**} = -9A_1 \cos 3x - 9A_2 \sin 3x$ в данное неоднородное уравнение, получим равенство
\[(A_1 - 6A_2) \cos 3x + (6A_1 + A_2) \sin 3x = 37 \cos 3x,
\]
откуда
\[
\begin{aligned}
A_1 - 6A_2 &= 37, \\
6A_1 + A_2 &= 0.
\end{aligned}
\]
Решая систему, находим: $A_1 = 1$, $A_2 = -6$.
Следовательно, $Y_{o.o} = e^x(c_1 \cos 3x + c_2 \sin 3x) + \cos 3x - 6 \sin 3x$. ▲

Пример 10. Решить уравнение $y'' + y = xe^x + 2e^{-x}$.

Δ Характеристическое уравнение $\lambda^2 + 1 = 0$ имеет корни $\lambda = \pm i$, поэтому общее решение однородного уравнения $Y_{o.o} = c_1 \cos x + c_2 \sin x$. Пользуясь принципом суперпозиции (наложения), частное решение исходного уравнения следует искать в виде $y^* = y^*_1 + y^*_2 = (A_1 x + A_2)e^x + A_3 e^{-x}$.

Итак,
\[
\begin{aligned}
y^{*} &= (A_1 x + A_2)e^x + A_3 e^{-x}, \\
y^{*'} &= A_1 e^x + (A_1 x + A_2)e^x - A_3 e^{-x}, \\
y^{*''} &= 2A_1 e^x + (A_1 x + A_2)e^x + A_3 e^{-x},
\end{aligned}
\]
$y^{*''} + y^{*} = 2A_1 xe^x + (2A_1 + 2A_2)e^x + 2A_3 e^{-x} \equiv xe^x + 2e^{-x}$.

Отсюда
\[
\begin{aligned}
2A_1 &= 1, \\
2A_1 + 2A_2 &= 0, \\
A_1 &= \frac{1}{2}, \\
A_2 &= -\frac{1}{2}, \\
A_3 &= 2.
\end{aligned}
\]
Следовательно, общее решение исходного уравнения
\[
Y_{o.h} = c_1 \cos x + c_2 \sin x + \frac{1}{2} (x - 1)e^x + e^{-x}. \ ▲
\]

Пример 11. Решить уравнение $y'' - 4y' + 4y = xe^{2x}$.

Δ Характеристическое уравнение $\lambda^2 - 4\lambda + 4 = 0$ имеет корни $\lambda_1 = \lambda_2 = 2$, поэтому общее решение однородного уравнения $Y_{o.o} = c_1 e^{2x} + c_2 xe^{2x}$. Так как число 2 является двукратным корнем характеристического уравнения, частное решение неоднородного уравнения следует искать в виде
\[
y^{*} = x^2 (A_1 x + A_2)e^x = (A_1 x^3 + A_2 x^2)e^{2x}.
\]
Находим:
\[
y^{*'} = (2A_1 x^3 + (3A_1 + 2A_2) x^2 + 2A_2 x)e^{2x},
\]
и...
\[y^{***} = (4A_1x^3 + (12A_1 + 4A_2)x^2 + (6A_1 + 8A_2)x + 2A_2)e^{2x}. \]

Таким образом,

\[\begin{align*}
4y^* &= (A_1x^3 + A_2x^2)e^{2x}, \\
-4y^* &= (2A_1x^3 + (3A_1 + 2A_2)x^2 + 2A_2x)e^{2x}, \\
1y^{**} &= (4A_1x^3 + (12A_1 + 4A_2)x^2 + (6A_1 + 8A_2)x + 2A_2)e^{2x}, \\
y^{**} - 4y^* + 4y^* &= 6A_1xe^{2x} + 2A_2e^{2x} \equiv xe^{2x}.
\end{align*} \]

Отсюда \(A_1 = \frac{1}{6}, \ A_2 = 0. \)

Следовательно, общее решение исходного уравнения

\[Y_{o,n} = e^{2x}(c_1 + c_2x) + \frac{x^3}{6} e^{2x}. \]

Пример 12. Решить задачу Коши \(y'' - 2y' = e^{2x} + x^2 - 1, \ y(0) = \frac{1}{8}, \ y'(0) = 1. \)

\(\Delta \) Характеристическое уравнение \(\lambda^2 - 2\lambda = 0 \) имеет корни \(\lambda_1 = 0, \lambda_2 = 2, \)

поэтому общее решение однородного уравнения: \(Y_{o,o} = c_1 + c_2 e^{2x}. \)

Пользуясь принципом суперпозиции, частное решение исходного уравнения следует искать в виде \(y^* = y_{*1}^* + y_{*2}^* = A_1xe^{2x} + A_2x^3 + A_3x^2 + A_4x. \)

Подставляя функцию \(y^* \) и ее производные

\[\begin{align*}
y'^* &= 2A_1e^{2x} + 2A_1xe^{2x} + 3A_2x^2 + 2A_3x + A_4, \\
y^{**} &= 6A_1e^{2x} + 4A_1xe^{2x} + 6A_2x^2 + 2A_3 \equiv e^{2x} + x^2 - 1, \text{ откуда} \\
&\begin{cases} -6A_2 = 1, \\
-6A_2 - 4A_3 = 0, \\
2A_3 - 2A_4 = -1. \end{cases}
\end{align*} \]

Решая систему, находим: \(A_1 = \frac{1}{2}, \ A_2 = -\frac{1}{6}, \ A_3 = -\frac{1}{4}, \ A_4 = \frac{1}{4}. \)

Следовательно, \(Y_{o,n} = c_1 + c_2 e^{2x} + \frac{1}{2} xe^{2x} - \frac{1}{6} x^3 - \frac{1}{4} x^2 + \frac{1}{4} x. \)

Для того чтобы решить задачу Коши, находим

\[Y_{o,n}' = 2c_2 e^{2x} + \frac{1}{2} e^{2x} + xe^{2x} - \frac{1}{2} x^2 - \frac{1}{2} x + \frac{1}{4}. \]

Используя начальные условия, получаем систему для определения \(c_1 \) и \(c_2 \):
\[
\begin{cases}
c_1 + c_2 = \frac{1}{8}, \\
2c_2 + \frac{1}{2} + \frac{1}{4} = 1,
\end{cases}
\]
откуда находим \(c_1 = 0, \ c_2 = \frac{1}{8}. \)

Таким образом, частное решение, удовлетворяющее данным начальным условиям, имеет вид
\[
y = \frac{1}{8} e^{2x} + \frac{1}{2} x e^{2x} - \frac{1}{6} x^3 - \frac{1}{4} x^2 + \frac{1}{4} x.
\]
▲

Дополнительные задачи

1. Решить уравнения:
 a) \(y'' - y' + y = 0; \)
 b) \(y'' - 2y'' + 9y' - 18y = 0; \)
 в) \(y^{(4)} + 10y'' + 9y = 0; \)
 г) \(y'' - 4y' + 3y = 0; \)
 д) \(y'' - 5y' = 0; \)
 е) \(y'' + 6y' + 9y = 0; \)
 ж) \(4y'' - 4y' + y = 0; \)
 з) \(y'' - 2y' + 2y = 0; \)
 и) \(y'' - 6y' + 13y = 0; \)
 к) \(y^{IV} - 16y = 0; \)
 л) \(y^{IV} + 4y = 0. \)

Ответ: а) \(y = e^{\frac{x}{2}} \left(C_1 \cos \frac{\sqrt{3}}{2} + C_2 \sin \frac{\sqrt{3}}{2} x \right); \)
 б) \(y = C_1 e^{2x} + C_2 \cos 3x + C_3 \sin 3x; \)
 в) \(y = C_1 \cos x + C_2 \sin x + C_3 \cos 3x + C_4 \sin 3x; \)
 г) \(y = C_1 e^x + C_2 e^{3x}; \)
 д) \(y = C_1 + C_2 e^{5x}; \)
 е) \(y = C_1 e^{-3x} + C_2 xe^{-3x}; \)
 ж) \(y = C_1 e^{x} + C_2 xe^{\frac{x}{2}}; \)
 з) \(y = e^x (C_1 \cos x + C_2 \sin x); \)
 и) \(y = e^{3x} (C_1 \cos 2x + C_2 \sin 2x); \)
 к) \(y = C_1 e^{-2x} + C_2 e^{2x} + C_3 \cos 2x + C_4 \sin 2x; \)
 л) \(y = e^x (C_1 \cos x + C_2 \sin x) + e^{-x} (C_3 \cos x + C_4 \sin x). \)

2. Решить уравнения методом Лагранжа (вариации произвольных постоянных):
 a) \(y'' + 4y = \frac{1}{\cos 2x}; \)
 б) \(y'' - y' = e^{2x} \cos e^x; \)
в) \(y'' + 4y' + 4y = e^{-2x} \ln x \); г) \(y'' - 2y' + y = \frac{e^x}{x^2 + 1} \).

Ответ: а) \(y = \left(\frac{1}{4} \ln|\cos 2x| + c_1 \right) \cos 2x + \left(\frac{1}{2} x + c_1 \right) \sin 2x \);
б) \(y = c_1 + c_2 e^x - \cos(e^x) \); в) \(y = e^{-2x}(C_1 + C_2 x) + \frac{x^2}{4} e^{-2x}(2 \ln x - 3) \);
г) \(y = e^x(C_1 + C_2 x) + e^x \left(x \arctg x - \frac{1}{2} \ln(x^2 + 1) \right) \).

3. Указать вид частного решения уравнения:
а) \(y''' + 4y'' - 3y' + 2y = (2x + 1)e^{3x} \);
б) \(y''' + 49y = x^3 + 4x + 3 \sin 7x \); г) \(y''' - y'' + y = e^x \cos x \);
д) \(y'' + y = x \cos x \); е) \(y''' + 2y'' + y' = (2x + 1) \sin x + (x^2 - 4x) \cos x \);
ж) \(y'' - y' = e^x \sin x + 2x^2 \).

Ответ: а) \(y_q = x^2(Ax + B) \); б) \(y_q = x(Ax + B)e^{3x} \);
в) \(y_q = Ax^3 + Bx^2 + Cx + D + x(M \cos 7x + N \sin 7x) \);
г) \(y_q = e^x(A \cos x + B \sin x) \); д) \(y_q = x((Ax + B) \cos x + (Cx + D) \sin x) \);
е) \(y_q = (Ax^2 + Bx + C) \cos x + (Dx^2 + Ex + F) \sin x \);
ж) \(y_q = e^x(A \cos x + B \sin x) + x(Cx^2 + Dx + F) \).

4. Решить уравнения:
а) \(y''' + 3y'' - y' - 3y = 3x - 14 \);
б) \(y''' + 3y'' + 3y' + y = 6e^{-x} \);
в) \(y''' + 6y' + 13y = -75 \sin 2x \);
г) \(y'' + 5y' + 6y = e^{-x} + e^{-2x} \);
д) \(y'' - 3y' = e^{3x} - 18x \);
е) \(y''' - y'' = -3x + 1 \);
ж) \(y'' - y = \cos^2 x \).

Ответ: а) \(y = C_1 e^{-3x} + C_2 e^{-x} + C_3 e^x - x + 5 \);
б) \(y = e^{-x}(C_1 + C_2 x + C_3 x^2) + x^3 e^{-x} \).
в) \(y = e^{-3x} (C_1 \cos 2x + C_2 \sin 2x) + 4 \cos 2x - 3 \sin 2x; \)

г) \(y = C_1 e^{-2x} + C_2 e^{-3x} + \frac{1}{2} e^{-x} + xe^{-2x}; \)

d) \(y = \frac{1}{3} xe^{3x} + 3x^2 + 2x + c_1 + c_2 e^{3x}; \)

e) \(y = \frac{1}{2} x^3 + x^2 + c_1 e^x + c_2 + c_3 x; \)

ж) \(y = -\frac{1}{2} - \frac{1}{10} \cos 2x + c_1 e^x + c_2 e^{-x}. \)

Занятия 25–26

Системы дифференциальных уравнений

Пример 1. Решить систему уравнений

\[
\begin{aligned}
\frac{dx}{dt} &= x \sin t, \\
\frac{dy}{dt} &= xe^{\cos t}.
\end{aligned}
\]

\(\Delta \) Первое уравнение решается независимо от второго. Разделяя в нем переменные и интегрируя, получим

\[
\frac{dx}{t} = \sin t dt, \quad \ln |x| = c - \cos t, \quad x = c_1 e^{-\cos t} \quad (c_1 \in \mathbb{R}).
\]

Подставляем найденное значение \(x(t) \) во второе уравнение \(\frac{dy}{dt} = c_1. \)

Отсюда \(y = c_1 t + c_2. \) \(\Delta \)

Пример 2. Решить систему уравнений

\[
\begin{aligned}
\frac{dx}{dt} &= -\frac{y}{t}, \\
\frac{dy}{dt} &= -\frac{x}{t},
\end{aligned}
\] \(t > 0. \)

\(\Delta \) Сложив почленно данные уравнения, получим \(\frac{d}{dt} (x + y) = -\frac{1}{t} (x + y), \)
откуда \(x + y = \frac{c_1}{t}. \)

Вычитая почленно исходные уравнения, имеем \(\frac{d}{dt} (x - y) = \frac{1}{t} (x - y), \)
откуда \(x - y = c_2 - t. \)

Из системы уравнений \[
\begin{aligned}
x + y &= \frac{c_1}{t}, \\
x - y &= c_2 t
\end{aligned}
\]
находим \(x = \frac{1}{2} \left(\frac{c_1}{t} + c_2 t \right). \)
Пример 3. Решить систему уравнений

\[
\begin{align*}
\frac{dx}{dt} &= x^2 y, \\
\frac{dy}{dt} &= \frac{y}{t} - xy^2.
\end{align*}
\]

Умножив обе части первого уравнения на \(y \), а второго – на \(x \) и сложив почленно полученные уравнения, имеем \(y \frac{dx}{dt} + x \frac{dy}{dt} = \frac{xy}{t} \) или \(d(xy) = \frac{xy}{t} \, dt \).

Отсюда \(xy = c_1 t \).

Заменяя в первом уравнении данной системы \(xy \) на \(c_1 t \), получим

\[
\frac{dx}{dt} = c_1 tx.
\]

Интегрируя это уравнение, находим \(x = c_1 e^{\frac{c_1 t^2}{2}} \). Если \(c_2 \neq 0 \), то \(y = \frac{c_1 t}{x} = \frac{c_1}{c_2} e^{\frac{c_1 t^2}{2}} \).

Если \(c_2 = 0 \), т. е. \(x = 0 \), то \(y = ct \); если \(y = 0 \), то \(x = c \). ▲

Пример 4. Найти общее решение системы

\[
\begin{align*}
\frac{dy}{dx} + 2y - 4z &= 0, \\
\frac{dz}{dx} + y - 3z &= 3x^2
\end{align*}
\]

и частное ее решение, удовлетворяющее начальным условиям \(y(0) = -7, \ z(0) = -1\frac{3}{4} \).

Дифференцируем по \(x \) первое уравнение: \(y'' + 2y' - 4z' = 0 \). Подставляем в это уравнение \(z' = 3x^2 - y + 3z \), а затем \(z = \frac{1}{4}(y' + 2y) \). В результате получаем одно дифференциальное уравнение второго порядка с одной неизвестной функцией \(y \): \(y'' - y' - 2y = 12x^2 \).

Составим и решим характеристическое уравнение \(\lambda^2 - \lambda - 2 = 0 \), \(\lambda_1 = -1, \lambda_2 = 2 \).

\[Y_{o.o} = c_1 e^{-x} + c_2 e^{2x}; \quad Y_{u,n} = A_1 x^2 + A_2 x + A_3; \quad Y'_{u,n} = 2A_1 x + A_2; \quad Y''_{u,n} = 2A_1 . \]

Находим неизвестные коэффициенты \(A_1, A_2, A_3 \):

\[
2A_1 - 2A_1 x - A_2 - 2A_1 x^2 - 2A_2 x - 2A_3 = 12x^2, \quad A_1 = -6, \quad A_2 = 6, \quad A_3 = -9.
\]
Следовательно,

\[Y_{o.m} = c_1e^{-x} + c_2e^{2x} - 6x^2 + 6x - 9, \quad Z_{o.m} = \frac{y' + 2y}{4} = \frac{1}{4}c_1e^{-x} + c_2e^{2x} - 3x^2 - 3. \]

Подставив в полученные соотношения \(x = 0, y = -7, z = -1 \frac{3}{4} \), получим

\[
\begin{align*}
 c_1 + c_2 - 9 &= -7, \\
 \frac{1}{4}c_1 + c_2 - 3 &= -1 \frac{3}{4}.
\end{align*}
\]

Откуда \(c_1 = 1, \ c_2 = 1 \).

Частное решение имеет вид

\[
\begin{align*}
 y &= e^{-x} + e^{2x} - 6x^2 + 6x - 9, \\
 z &= \frac{1}{4}e^{-x} + e^{2x} - 3x^2 - 3.
\end{align*}
\]

Пример 5. Решить систему уравнений

\[
\begin{align*}
 y' &= -y - 2z, \\
 z' &= 3y + 4z.
\end{align*}
\]

Найти ее частное решение, удовлетворяющее начальным условиям: \(y = -1, \ z = 2 \) при \(x = 0 \).

\(\Delta \) Частные решения этой системы ищем в виде \(y = \alpha e^{\lambda x}, \ z = \beta e^{\lambda x} \).

Составляем характеристическое уравнение

\[
\begin{vmatrix}
 -1 - \lambda & -2 \\
 3 & 4 - \lambda
\end{vmatrix}
= 0.
\]

\(\lambda^2 - 3\lambda + 2 = 0 \). Оно имеет корни \(\lambda_1 = 1, \lambda_2 = 2 \).

При \(\lambda = \lambda_1 = 1 \) система уравнений для нахождения \(\alpha \) и \(\beta \) имеет вид

\[
\begin{align*}
 -2\alpha - 2\beta &= 0, \\
 3\alpha + 3\beta &= 0.
\end{align*}
\]

Она эквивалентна уравнению \(\alpha + \beta = 0 \), одно из решений которого: \(\alpha = 1, \beta = -1 \). Поэтому характеристическому числу \(\lambda = 1 \) соответствует частное решение \(y_1 = e^x, \ z_1 = -e^x \).

Аналогично находим частное решение, соответствующее характеристическому числу \(\lambda_2 = 2 \):

\[
\begin{align*}
 -3\alpha - 2\beta &= 0, \\
 3\alpha + 2\beta &= 0.
\end{align*}
\]

Одно из решений этой системы: \(\alpha = 2, \beta = -3 \).

Таким образом, \(y_2 = 2e^{2x}, \ z_2 = -3e^{2x} \).

Общим решением системы уравнений будет

\[
\begin{align*}
 y &= c_1e^x + 2c_2e^{2x}, \\
 z &= -c_1e^x - 3c_2e^{2x}.
\end{align*}
\]
Найдем частное решение, удовлетворяющее указанным начальным условиям. Полагая в общем решении \(x = 0, \ y = -1, \ z = 2, \) имеем \[
\begin{align*}
-1 &= c_1 + 2c_2, \\
2 &= -c_1 - 3c_2,
\end{align*}
\] откуда \(c_1 = 1, c_2 = -1. \)

Поэтому частным решением будет \[
\begin{align*}
y &= e^x - 2e^{2x}, \\
z &= -e^x + 3e^{2x}.
\end{align*}
\]

Пример 6. Решить систему уравнений \[
\begin{align*}
\frac{dx}{dt} &= 3x + y, \\
\frac{dy}{dt} &= -x + y.
\end{align*}
\]

Составляем и решаем характеристическое уравнение:
\[
\begin{vmatrix}
3 - \lambda & 1 \\
-1 & 1 - \lambda
\end{vmatrix} = 0, \quad \lambda^2 - 4\lambda + 4 = 0, \quad \lambda_1 = \lambda_2 = 2.
\]

Так как характеристическое уравнение имеет корень \(\lambda = 2 \) кратностью два, частные решения системы ищем в виде \(x = (\alpha + \gamma t)e^{2t}, \ y = (\beta + \delta t)e^{2t}. \)

Подставляя эти выражения в исходные уравнения, получим
\[
\begin{align*}
\gamma + 2(\alpha + \gamma t) &= 3(\alpha + \gamma t) + \beta + \delta t, \\
\delta + 2(\beta + \delta t) &= -\alpha - \gamma t + \beta + \delta t.
\end{align*}
\]

Эти равенства тождественно выполняются тогда и только тогда, когда
\[
\begin{align*}
\alpha - \gamma + \beta &= 0, \\
\gamma + \delta &= 0.
\end{align*}
\]

Полученная алгебраическая система имеет два линейно независимых решения, так как она содержит четыре неизвестных и ранг матрицы системы не равен нулю.

Очевидно, что в качестве таких решений можно взять, например, \(\alpha = 1, \beta = -1, \ \gamma = \delta = 0 \) и \(\alpha = 1, \beta = 0, \ \gamma = 1, \ \delta = -1. \) Следовательно, найдены два линейно-независимых решения исходных уравнений: \(x_1 = e^{2t}, \ y_1(t) = -e^{2t} \) и \(x_2 = (1 + t)e^{2t}, \ y_2(t) = -te^{2t}. \)

Все решения начальной системы уравнений запишутся в виде
\[
\begin{align*}
x &= c_1e^{2t} + c_2(1 + t)e^{2t}, \\
y &= -c_1e^{2t} - c_2te^{2t}.
\end{align*}
\]
Пример 7. Решить систему уравнений
\[\begin{cases} \frac{dy}{dx} = 2y - z, \\ \frac{dz}{dx} = y + 2z. \end{cases} \]

\[\Delta \text{ Составляем и решаем характеристическое уравнение} \]
\[\begin{vmatrix} 2 - \lambda & -1 \\ 1 & 2 - \lambda \end{vmatrix} = 0, \quad \lambda^2 - 4\lambda + 5 = 0, \quad \lambda_{1,2} = 2 \pm i. \]

Построим комплексное решение вида \(y = \alpha e^{(2+i)x}, \quad z = \beta e^{(2+i)x}, \) соответствующее характеристическому числу \(\lambda_1 = 2 + i. \) Числа \(\alpha \) и \(\beta \) определяем из уравнения \(-i\alpha - \beta = 0.\) Полагая \(\alpha = 1, \) находим \(\beta = -i, \) так что
\[\begin{cases} y = e^{(2+i)x} = e^{2x} (\cos x + i \sin x), \\ z = -ie^{(2+i)x} = e^{2x} (\sin x - i \cos x). \end{cases} \]

Отделяя действительные и мнимые части, получаем два вещественных линейно независимых частных решения:
\[\begin{cases} y_1 = e^{2x} \cos x, \\ z_1 = e^{2x} \sin x, \end{cases} \quad \text{и} \quad \begin{cases} y_2 = e^{2x} \sin x, \\ z_2 = -e^{2x} \cos x. \end{cases} \]

Общим решением системы будет
\[\begin{cases} y = e^{2x} (c_1 \cos x + c_2 \sin x), \\ z = e^{2x} (c_1 \sin x - c_2 \cos x). \end{cases} \]

Пример 8. Решить систему уравнений
\[\begin{cases} \frac{dx_1}{dt} = x_1 + 2x_3, \\ \frac{dx_2}{dt} = x_2 - 4x_3, \\ \frac{dx_3}{dt} = -x_1 - 2x_3. \end{cases} \]

\[\Delta \text{ Составляем и решаем характеристическое уравнение} \]
\[\begin{vmatrix} 1 - \lambda & 0 & 2 \\ 0 & 1 - \lambda & -4 \\ -1 & 0 & -2 - \lambda \end{vmatrix} = 0, \quad \lambda (\lambda^2 - 1) = 0, \quad \lambda_1 = 0, \quad \lambda_2 = 1, \quad \lambda_3 = -1. \]

Частные решения системы будем искать в виде \(x_1 = \alpha e^{\lambda_1 t}, \quad x_2 = \beta e^{\lambda_2 t}, \quad x_3 = \gamma e^{\lambda_3 t}. \)

Корню \(\lambda_1 = 0 \) соответствует система из двух уравнений (третье есть следствие первых двух): \[\begin{cases} \alpha + 2\gamma = 0, \\ \beta - 4\gamma = 0. \end{cases} \]
Одно из решений: \(\alpha = 2, \beta = -4, \gamma = -1 \).
Отсюда получаем одно решение исходной системы:
\[
x_1^{(1)} = 2e^{\gamma t} = 2, \quad x_2^{(1)} = -4e^{\beta t} = -4, \quad x_3^{(1)} = -1e^{\alpha t} = -1.
\]
Корню \(\lambda_2 = 1 \) соответствует система
\[
\begin{cases}
2\gamma = 0, \\
-\alpha - 3\gamma = 0.
\end{cases}
\]
Одно из решений: \(\alpha = 0, \beta = 1, \gamma = 0 \).
Получаем второе решение исходной системы: \(x_1^{(2)} = 0, \quad x_2^{(2)} = e^t, \quad x_3^{(2)} = 0 \).
Корню \(\lambda = -1 \) соответствует система
\[
\begin{cases}
2\alpha + 2\gamma = 0, \\
2\beta - 4\gamma = 0.
\end{cases}
\]
Одно из решений: \(\alpha = 1, \beta = -2, \gamma = -1 \).
Отсюда получаем третье решение исходной системы:
\(x_1^{(3)} = e^{-t}, \quad x_2^{(3)} = -2e^{-t}, \quad x_3^{(3)} = -e^{-t} \).
Общее решение имеет вид
\[
x = c_1 \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix} + c_2 e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 e^{-t} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, \text{ или }
\begin{cases}
x_1 = 2c_1 + c_3 e^{-t}, \\
x_2 = -4c_1 + c_2 e^t - 2c_3 e^{-t}, \\
x_3 = -c_1 - c_3 e^{-t}.
\end{cases}
\]

Пример 9. Решить систему уравнений
\[
\begin{cases}
\frac{dx}{dt} = 3x + 2y + 3e^{2t}, \\
\frac{dy}{dt} = x + 2y + e^{2t}.
\end{cases}
\]
а) Методом вариации произвольных постоянных.
б) Методом неопределенных коэффициентов.

\[\Delta\]

а) Рассмотрим однородную систему
\[
\begin{cases}
\frac{dx}{dt} = 3x + 2y, \\
\frac{dy}{dt} = x + 2y.
\end{cases}
\]
Ее решение ищем в виде \(x = \alpha e^{\lambda t}, \quad y = \beta e^{\lambda t}, \) где \(\lambda \) — корень уравнения
\[
\begin{vmatrix}
3 - \lambda & 2 \\
1 & 2 - \lambda
\end{vmatrix} = 0, \quad \lambda^2 - 5\lambda + 4 = 0, \quad \lambda_1 = 1, \quad \lambda_2 = 4.
\]
Соответствующие корню \(\lambda_1 = 1 \) значения \(\alpha \) и \(\beta \) определяем из уравнения \(2\alpha + 2\beta = 0 \). Одно из решений этого уравнения есть \(\alpha = 1, \beta = -1 \). Поэтому \(x_1 = e^t, \quad y_1 = -e^t \) — решение однородной системы. Значения \(\alpha \) и \(\beta \), соответствующие второму корню \(\lambda = 4 \), определяются из уравнения \(-\alpha + 2\beta = 0 \). Чис-
ла $\alpha = 2$, $\beta = 1$ удовлетворяют этому уравнению, поэтому $x_2 = 2e^{4t}$, $y_2 = e^{4t}$ – решение однородной системы. Общее решение однородной системы имеет вид

$$
\begin{align*}
x &= c_1 e^t + 2c_2 e^{4t}, \\
y &= -c_1 e^t + c_2 e^{4t}.
\end{align*}
$$

Решение исходной неоднородной системы ищем в виде

$$
\begin{align*}
x &= c_1(t)e^t + 2c_2(t)e^{4t}, \\
y &= -c_1(t)e^t + c_2(t)e^{4t}.
\end{align*}
$$

После подстановки этих выражений в начальную систему уравнений

$$
\begin{align*}
c_1'(t)e^t + 2c_2'(t)e^{4t} &= 3e^{2t}, \\
-c_1(t)e^t + c_2'(t)e^{4t} &= e^{2t}.
\end{align*}
$$

Отсюда $c_1'(t) = \frac{1}{3}e^t$, $c_2'(t) = \frac{4}{3}e^{-2t}$ или $c_1(t) = \frac{1}{3}e^t + c_1$, $c_2(t) = -\frac{2}{3}e^{-2t} + c_2$.

Подставляем найденные значения $c_1(t)$ и $c_2(t)$ в решение неоднородной системы. Окончательно получим

$$
\begin{align*}
x &= c_1 e^t + 2c_2 e^{4t} - e^{2t}, \\
y &= -c_1 e^t + c_2 e^{4t} - e^{2t}.
\end{align*}
$$

б) Общее решение линейной неоднородной системы имеет вид $X_{\text{o,n}} = X_{\text{o,o}} + X_{\text{ч,n}}$.

Найдем $X_{\text{ч,n}} = \begin{pmatrix} x_{\text{ч,n}} \\ y_{\text{ч,n}} \end{pmatrix}$.

Так как число 2 не является корнем характеристического уравнения, частное решение системы ищем в виде $x = \alpha e^{2t}$, $y = \beta e^{2t}$.

Подставляя эти выражения в данную систему уравнений, получим уравнение для определения коэффициентов α и β:

$$
\begin{align*}
2\alpha &= 3\alpha + 2\beta + 3, \\
2\beta &= \alpha + 2\beta + 1,
\end{align*}
$$

$\alpha = -1$, $\beta = -1$.

Таким образом, искомое частное решение есть $x_{\text{ч,n}} = -e^{2t}$, $y_{\text{ч,n}} = -e^{2t}$, а общее решение системы имеет вид

$$
\begin{align*}
x &= c_1 e^t + 2c_2 e^{4t} - e^{2t}, \\
y &= -c_1 e^t + c_2 e^{4t} - e^{2t}.
\end{align*}
$$

Пример 10. Для системы неоднородных линейных уравнений

$$
\begin{align*}
\frac{dx}{dt} &= 2x + y + 2e^t, \\
\frac{dy}{dt} &= x + 2y - 3e^{4t}.
\end{align*}
$$

128
нужно записать структуру его частного решения.

Δ Находим корни характеристического уравнения соответствующей однородной системы
\[\begin{vmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{vmatrix} = 0, \quad \lambda^2 - 4\lambda + 3 = 0, \quad \lambda_1 = 1, \quad \lambda_2 = 3. \]

Так как число 1 является простым корнем характеристического уравнения, а число 4 не является корнем характеристического уравнения, частное решение данной системы имеет вид
\[x_{ч,н} = (A_1 + A_2 t)e^t + A_3 e^{At}, \quad y_{ч,н} = (B_1 + B_2 t)e^t + B_3 e^{At}. \]

Пример 11. Решить систему уравнений
\[\begin{cases} dx \over dt = y + \tan^2 t - 1, \\ dy \over dt = -x + \tan t. \end{cases} \]

Δ Найдем общее решение соответствующей однородной системы
\[\begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = 0, \quad \lambda^2 + 1 = 0, \quad \lambda_{1,2} = \pm i. \]

Построим комплексное решение вида \(x = \alpha e^{it}, \quad y = \beta e^{it} \). Числа \(\alpha \) и \(\beta \) определяем из уравнения \(i\alpha + \beta = 0 \). Полагая \(\alpha = 1 \), находим \(\beta = i \).

Таким образом, \(x = e^{it} = \cos t + i\sin t, \quad y = i e^{it} = -\sin t + i \cos t \).

Отделяя вещественные и мнимые части, получаем
\[\begin{cases} x_1 = \cos t, \\ x_2 = \sin t, \\ y_1 = -\sin t, \\ y_2 = \cos t. \end{cases} \]

Общее решение однородной системы имеет вид
\[\begin{cases} x = c_1 \cos t + c_2 \sin t, \\ y = -c_1 \sin t + c_2 \cos t. \end{cases} \]

Решение неоднородной системы ищем в виде
\[\begin{cases} x = c_1(t) \cos t + c_2(t) \sin t, \\ y = -c_1(t) \sin t + c_2(t) \cos t. \end{cases} \]

Подставляя эти выражения в исходную систему, получаем
\[\begin{cases} c_1'(t) \cos t + c_2'(t) \sin t = \tan^2 t - 1, \\ -c_1'(t) \sin t + c_2'(t) \cos t = \tan t. \end{cases} \]

Отсюда \(c_1'(t) = -\cos t, \quad c_2'(t) = \frac{\sin^3 t}{\cos^2 t}. \)
Интегрируя, находим $c_1(t) = -\int \cos t \, dt = c_1 - \sin t$.

$$c_2(t) = \int \frac{\sin t}{\cos^2 t} \, dt = -\int \frac{(1-\cos^2 t) \cos t}{\cos^2 t} \, dt = c_2 + \frac{1}{\cos t} + \cos t.$$

Последовательно:

$$\begin{cases} x = c_1 \cos t + c_2 \sin t + \tan t, \\
y = -c_1 \sin t + c_2 \cos t + 2. \end{cases}$$

Дополнительные задачи

1. Решить системы методом исключения:

 a) $\begin{cases} \frac{dx}{dt} = x + 2y, \\
 \frac{dy}{dt} = 4x + 3y; \end{cases}$

 b) $\begin{cases} \frac{dx}{dt} = 6x + 3y, \\
 \frac{dy}{dt} = -8x - 5y; \end{cases}$

 в) $\begin{cases} \frac{dx}{dt} = x - y + 8t, \\
 \frac{dy}{dt} = 5x - y + 1; \end{cases}$

 г) $\begin{cases} \frac{dx}{dt} = x + y + e^t, \\
 \frac{dy}{dt} = x + y; \end{cases}$

 д) $\begin{cases} \frac{dx}{dt} = y + \tan^2 t - 1, \\
 \frac{dy}{dt} = -x + \tan t. \end{cases}$

Ответ:

a) $x = C_1 e^{-t} + C_2 e^{5t}$, $y = -C_1 e^{-t} + 2C_2 e^{5t}$;

б) $x = C_1 e^{-2t} + C_2 e^{3t}$, $y = -\frac{8}{3} C_1 e^{-2t} - C_2 e^{3t}$;

в) $x = C_1 \cos 2t + C_2 \sin 2t + 2t + \frac{7}{4}$;

$y = (C_1 - 2C_2) \cos 2t + (2C_1 + C_2) \sin 2t + 10t + \frac{15}{4}$;

г) $x = C_1 + C_2 e^{2t}$, $y = -C_1 + C_2 e^{2t} - e^{t}$;

д) $x = -C_2 \cos t + C_1 \sin t + \tan t$, $y = C_1 \cos t + C_2 \sin t + 2$.

2. Решить систему $\begin{cases} \frac{dx}{dt} = x - 2y, \\
 \frac{dy}{dt} = x - y \end{cases}$ сведением к дифференциальному уравнению высшего порядка.

Ответ: $x = c_1 \cos t + c_2 \sin t$, $y = \frac{1}{2} (c_1 - c_2) \cos t + (c_1 + c_2) \sin t$.

130
3. Решить систему с помощью характеристического уравнения.

Ответ: \(x = c_1 e^{5t} + c_2 e^t, \quad y = 3c_1 e^{5t} - c_2 e^t. \)

4. Найти общее решение системы методом вариации постоянных.

Ответ: \(y = -2e^{-x} + c_1 e^x + 2c_2 e^{2x}, \quad z = e^{-x} - c_1 e^x - 3c_2 e^{2x}. \)

5. Найти общее решение системы

Ответ: \(x = 2c_1 + c_2 e^t + c_3 e^{2t}, \quad y = 3c_1 - 2c_2 e^{2t}, \quad z = c_1 + c_2 e^t + 2c_3 e^{2t}. \)

Занятие 27

Контрольная работа. Дифференциальные уравнения.

Вариант 1

1. Решить задачу Коши

\(y'' - 5y'' + 8y' - 4y = 0, \quad y(0) = 1, \quad y'(0) = -1, \quad y''(0) = 0. \)

Ответ: \(y = \frac{1}{2} e^x + \frac{1}{2} e^{2x} - \frac{5}{8} xe^{2x}. \)

2. Найти общее решение уравнения, используя метод Лагранжа:

\(y'' + 4y = 8 \cot 2x. \)

Ответ: \(y = 2 \sin 2x \ln |\tan x| + c_1 \cos 2x + c_2 \sin 2x. \)

3. Определить вид частного решения:

а) \(y'' + 4y' + 5y = 3xe^{-2x} \cos x; \)
6) \(y''' - 4y' = e^{2x} \cos 2x - 4x. \)

Ответ: а) \(y = e^{-2x} ((Ax^2 + Bx) \cos x + (Dx^2 + Kx) \sin x); \)
б) \(y = e^{2x} (A \cos 2x + B \sin 2x) + (Dx^2 + Kx). \)

4. Найти общее решение уравнения \(y'' - 12y' + 36y = 14e^{6x}. \)

Ответ: \(y = c_1 e^{6x} + c_2 x e^{6x} + 7x^2 e^{6x}. \)

5. Решить задачу Коши \(y'' + 2y' + 2y = 2x^2 + 8x + 6, \quad y(0) = 1, \quad y'(0) = 4. \)

Ответ: \(y = e^{-x} (\cos x + 3 \sin x) + x^2 + 2x. \)

6. Решить систему методом исключения:

\[
\begin{align*}
y' &= -2y + z - e^{2x}, \\
z' &= -3y + 2z + 6e^{2x}.
\end{align*}
\]

Ответ: \(y = 2e^{2x} + c_1 e^x + c_2 e^{-x}, \quad z = 9e^{2x} + 3c_1 e^x + c_2 e^{-x}. \)

7. Решить систему методом Эйлера:

\[
\begin{align*}
\frac{dy}{dx} &= 2y - 3z, \\
\frac{dz}{dx} &= 3y + 2z.
\end{align*}
\]

Ответ: \(y = e^{2x} (c_1 \cos 3x + c_2 \sin 3x), \quad z = e^{2x} (c_1 \sin 3x - c_2 \cos 3x). \)

Вариант 2

1. Решить задачу Коши

\(y''' + y'' - 5y' + 3y = 0, \quad y(0) = 0, \quad y'(0) = 1, \quad y''(0) = -14. \)

Ответ: \(y = e^{x} - 3xe^{-x} - e^{-3x}. \)

2. Найти общее решение уравнения, используя метод Лагранжа:

\(y'' + \frac{1}{4} y = \frac{1}{4} \cot \frac{x}{2}. \)

Ответ: \(y = \sin \frac{x}{2} \ln \left| \tan \frac{x}{4} \right| + c_1 \cos \frac{x}{2} + c_2 \sin \frac{x}{2}. \)

3. Определить вид частного решения:

а) \(y'' - 2y' + 5y = 2xe^x \sin 2x; \)
б) \(y'' - 2y'' = e^{2x} \sin 2x + 3x. \)

Ответ: а) \(y = e^x ((Ax^2 + Bx) \cos 2x + (Dx^2 + Kx) \sin 2x); \)
б) \(y = e^{-2x} (A \cos 2x + B \sin 2x) + (Dx^3 + Kx^2) \).

4. Найти общее решение уравнения \(y'' + 2y' + y = 6e^{-x} \).

Ответ: \(y = c_1 e^{-x} + c_2 xe^{-x} + 3x^2 e^{-x} \).

5. Решить задачу Коши

\(y'' - 6y' + 25y = 9 \sin 4x - 24 \cos 4x \), \(y(0) = 2 \), \(y'(0) = -2 \).

Ответ: \(y = e^{3x} (2 \cos 4x - 3 \sin 4x) + \sin 4x \).

6. Решить систему методом исключения:

\[
\begin{cases}
y' = 2y - z + 2e^x,
z' = 3y - 2z + 4e^x.
\end{cases}
\]

Ответ: \(y = xe^x + c_1 e^x + c_2 e^{-x} \), \(z = (x+1)e^x + c_1 e^x + 3c_2 e^{-x} \).

7. Решить систему методом Эйлера:

\[
\begin{align*}
\frac{dx}{dt} &= x - 3y, \\
\frac{dy}{dt} &= 3x + y.
\end{align*}
\]

Ответ: \(x = e^t (c_1 \cos 3t + c_2 \sin 3t) \), \(y = e^t (c_1 \sin 3t - c_2 \cos 3t) \).

Занятия 28–29

Кратные интегралы. Приложения кратных интегралов

Пример 1. Пользуясь определением двойного интеграла, вычислить

\[
I = \iint_{0 \leq x \leq 1, 0 \leq y \leq 2} xy^2 \, dx \, dy.
\]

\(\Delta \) Разобьем область интегрирования на элементарные ячейки соответственно прямыми \(x = \frac{k}{n} \), \(y = \frac{2l}{n} \) \((k, l = 1, 2, ..., n-1) \). При таком разбиении площади всех элементарных ячеек равны между собой и составляют \(\frac{2}{n^2} \). При составлении интегральной суммы значения функции \(xy^2 \) будем брать в правой вершине прямоугольника. Тогда

\[
S_n = \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{2}{n^2} \cdot \frac{4k^2 l^2}{n^3} = \frac{8}{5} \sum_{k=1}^{n} k \sum_{l=1}^{n} l^2.
\]
Как известно, \(1 + 2 + \ldots + n = \frac{(n+1)n}{2}, \quad 1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}\).

Отсюда \(I = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{8n^2(n+1)^2(2n+1)}{6 \cdot 2n^5} = \frac{4}{3}\). ▲

Пример 2. Оценить интеграл \(I = \iint_{x^2+y^2 \leq 100} \frac{dy dx}{100 + \cos x + \sin^2 y}\).

Отметим что наибольшее и наименьшее значения функции в области интегрирования:
\[M = \max \left(\frac{1}{100 + \cos x + \sin^2 y} \right) = \frac{1}{99}, \quad m = \min \left(\frac{1}{100 + \cos x + \sin^2 y} \right) = \frac{1}{102}\.

Площадь интегрирования \(S = 100\pi\).

Поэтому
\[
\frac{100\pi}{102} \leq I \leq \frac{100\pi}{99}, \quad 3,08 \leq I \leq 3,17. \ ▲
\]

Пример 3. На плоскости \(Oxy\) построить область интегрирования \(D\) по заданным пределам изменения переменных в повторном интеграле \(I = \int_0^4 \int_{\frac{x^2}{2} - 3}^{\frac{2x-3}{3}} dy dx\) и вычислить этот интеграл.

Отметим, что область интегрирования \(D\) расположена между прямыми \(x = 0\) и \(x = 4\), снизу ограничена параболой \(y = \frac{x^2}{2} - 3\), сверху — прямой \(y = 2x - 3\) (рис. 27).

Следовательно,
\[I = \int_0^4 \int_{\frac{x^2}{2} - 3}^{\frac{2x-3}{3}} dy dx = \int_0^4 \left(2x - 3 - \left(\frac{x^2}{2} - 3\right)\right) dx = \int_0^4 \left(2x - \frac{x^2}{2}\right) dx = \left(\frac{x^2}{2} - \frac{x^3}{6}\right)\bigg|_0^4 = 16 - 10 \frac{2}{3} = 5 \frac{1}{3}. \ ▲
\]

Пример 4. Представить двойной интеграл \(I = \iint_D f(x, y)dy dx\) в виде повторного интеграла с внешним интегрированием по \(x\) и внутренним интегрированием по \(y\), если известно, что область интегрирования \(D\):
а) ограничена прямыми \(x = 1, \ x = 4, \ x - y + 5 = 0, \ x - y = 0\);
b) треугольник с вершинами \(O(0;0), \ A(2;1), \ B(3; -2)\);
в) внутренняя область эллипса
\[
\frac{x^2}{9} + \frac{y^2}{4} = 1;
\]

г) круговое кольцо \(1 \leq x^2 + y^2 \leq 4\).

\[\Delta\] а) Построим область интегрирования \(D\) (рис. 28). Она представляет собой параллелограмм \(ABCD\). Из уравнения стороны \(BC\) \(x - y + 5 = 0\) получаем \(y = x + 5\), а из уравнения стороны \(AD\) \(x - y = 0\) получаем \(y = x\).

Следовательно,
\[
I = \iint_D f(x, y)dx dy = \int_1^7 \int_x^{x+5} f(x, y)dy dx.
\]

Если изменить порядок интегрирования, то область \(D\) необходимо рассматривать как объединение трех областей: треугольников \(ABE\), \(CDF\) и параллелограмма \(BFDE\). Это вызвано тем, что нельзя записать границу \(ABC\) и границу \(ADC\).

Из уравнения стороны \(BC\) получаем \(x = y - 5\), а из уравнения стороны \(AD\) получаем \(x = y\).

Тогда
\[
I = \iint_D f(x, y)dx dy = \iint_{ABE} f(x, y)dx dy + \iint_{CDF} f(x, y)dx dy + \iint_{BFDE} f(x, y)dx dy = \int_1^6 \int_1^y f(x, y)dy dx + \int_1^{y-5} \int_{y-5}^{x+5} f(x, y)dx dy + \int_6^{12} \int_{y-5}^{x+5} f(x, y)dy dx.
\]

б) Область интегрирования \(D\) изображена на рис. 29. Нахождим уравнения прямых \(OA\), \(AB\) и \(OB\), на которых расположены стороны треугольника. Воспользуемся уравнением прямой, проходящей через две заданные точки:
\[
\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}.
\]

Для стороны OA имеем \[\frac{x-0}{2-0} = \frac{y-0}{1-0}.\]

Следовательно, уравнение прямой OA имеет вид $y = \frac{1}{2} x$ или $x = 2y$.

Аналогично, прямая AB задается уравнением $y = -3x + 7$ или $x = -\frac{1}{3} y + \frac{7}{3}$, а прямая OB – уравнением $y = \frac{2}{3} x$ или $x = -\frac{3}{2} y$.

Так как верхняя граница области интегрирования D состоит из отрезков двух прямых, задаваемых различными уравнениями, то область D следует разбить прямой $x = 2$ на два треугольника: OAC и CAB. Тогда

\[I = \iint_D f(x, y) dxdy = \iint_{OAC} f(x, y) dxdy + \iint_{CAB} f(x, y) dxdy =\]

\[= \int_0^2 \int_{\frac{-2}{3} x}^{\frac{1}{2} x} f(x, y) dy dx + \int_{\frac{-2}{3} x}^{\frac{1}{2} x} f(x, y) dx dy.\]

Если изменить порядок интегрирования, то область D следует рассматривать как совокупность треугольников OAD и OBD:

\[I = \iint_D f(x, y) dxdy = \iint_{OAD} f(x, y) dxdy + \iint_{OBD} f(x, y) dxdy =\]

\[= \int_{\frac{-2}{3} y}^{\frac{1}{3} y + \frac{7}{3}} \int_0^1 f(x, y) dx dy + \int_{\frac{-2}{3} y}^{\frac{1}{3} y + \frac{7}{3}} f(x, y) dy dx.\]

в) Уравнение $\frac{x^2}{9} + \frac{y^2}{4} = 1$ задает эллипс с центром в начале координат, фокусы которого расположены на осях Ox и который имеет полуоси 3 и 2 (рис. 30).

Верхняя граница области интегрирования – дуга ABC, уравнение которой $y = \frac{2}{3} \sqrt{9-x^2}$. Нижняя граница – дуга ADC, задается уравнением $y = -\frac{2}{3} \sqrt{9-x^2}$.

Следовательно,

\[I = \iint_D f(x, y) dxdy = \int_{-3}^3 \int_{-\frac{2}{3} \sqrt{9-x^2}}^{\frac{2}{3} \sqrt{9-x^2}} f(x, y) dy \ dx.\]

Рис. 30
Запишем двойной интеграл в виде повторного с внешним интегрированием по \(y \). В этом случае область интегрирования \(D \) ограничена справа дугой \(DCB \), уравнение которой \(x = \frac{3}{2} \sqrt{4-y^2} \), а слева — дугой \(DAB \) с уравнением \(x = -\frac{3}{2} \sqrt{4-y^2} \).

Потому

\[
I = \iint_D f(x, y) \, dx \, dy = \int_{-2}^{2} \int_{\frac{-3}{2} \sqrt{9-y^2}}^{\frac{3}{2} \sqrt{9-y^2}} f(x, y) \, dx \, dy.
\]

г) Кольцо \(1 \leq x^2 + y^2 \leq 4 \) образовано двумя концентрическими окружностями радиусами 1 и 2 с центром в начале координат (рис. 31). Вертикальные касательные \(BL \) и \(DF \), проведенные в точках \(M(-1;0) \) и \(N(1;0) \) к окружности \(x^2 + y^2 = 1 \), разбивают кольцо на области \(ABL, MBCDNR, MLKFNS, EDF \). Дуги \(AB, BD, DE \) задаются уравнением \(y = \sqrt{4-x^2} \); дуги \(AL, LF, FE \) задаются уравнением \(y = -\sqrt{4-x^2} \); дуга \(MRN \) задается уравнением \(y = \sqrt{1-x^2} \); дуга \(MSN \) задается уравнением \(y = -\sqrt{1-x^2} \).

Таким образом,

\[
I = \iint_D f(x, y) \, dx \, dy = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x, y) \, dy \, dx + \int_{-1}^{1} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x, y) \, dy \, dx + \int_{-1}^{1} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x, y) \, dy \, dx.
\]

При изменении порядка интегрирования получаем аналогичное выражение формальной заменой \(x \) на \(y \) и \(y \) на \(x \) (за исключением выражения функции \(f(x, y) \)). \(\Delta \)

Пример 5. Вычислить повторные интегралы:

а) \(\int_{0}^{\frac{\pi}{2}} \int_{0}^{x} \cos(x+y) \, dy \, dx \); б) \(\int_{0}^{\sin^2 2u} \int_{0}^{\frac{uv}{\sqrt{u^2-v^2}}} dv \, du \).

\[
\Delta \quad \text{а) } \int_{0}^{\frac{\pi}{2}} \int_{0}^{x} \cos(x+y) \, dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{x} \cos(x+y) \, d(x+y) = \int_{0}^{\frac{\pi}{2}} \sin(x+y) \bigg|_{y=0}^{y=x} \, dx = \frac{\pi}{2}.
\]

137
\[
= \int_0^\pi (\sin 2x - \sin x)\,dx = -\frac{1}{2} \cos 2x \bigg|_0^{\pi/2} + \cos x \bigg|_0^{\pi/2} = \frac{\pi}{2} + \frac{1}{2} - 1 = 0;
\]

б) \[
\int_0^\sin^2 u \frac{uv}{\sqrt{u^2 - v^2}} \,dv = \int_0^u \sin^2 \frac{1}{2} d(u^2 - v^2) =
\]

\[
= -\frac{1}{2} \cdot 2 \int_0^\sin^2 \left[u\sqrt{u^2 - v^2} \right] \,dv = -\int_0^\sin^2 (-u|u|) \,du = \int_0^\sin^2 u \,du = \frac{u^3}{3}\sin^2 0 = \frac{1}{3}\sin^2 2. \quad \Box
\]

Пример 6. Вычислить двойной интеграл \(I = \int_D \frac{x\,dx\,dy}{(1 + x^2 + y^2)^{3/2}} \) по прямоугольной области \(D: 0 \leq x \leq 1; \ 0 \leq y \leq 1. \)

\[\Delta \]

\[\text{С целью упрощения вычислений здесь целесообразно записать внутренний интеграл по переменной } x: \]

\[I = \int dy \int_0^1 \frac{x\,dx}{(1 + x^2 + y^2)^{3/2}} = \frac{1}{2} \int_0^1 \frac{1}{(1 + x^2 + y^2)^{3/2}} \,d(1 + x^2 + y^2) =
\]

\[= -\int_0^1 \frac{1}{(1 + x^2 + y^2)^{1/2}} \left| \begin{array}{c} x=1 \\ x=0 \end{array} \right| dy = \int_0^1 \left(\frac{1}{y^2 + 1} - \frac{1}{\sqrt{y^2 + 2}} \right) dy =
\]

\[= \ln \left| \frac{y + \sqrt{y^2 + 1}}{y + \sqrt{y^2 + 2}} \right|_0^1 = \ln \frac{2 + \sqrt{2}}{1 + \sqrt{3}}. \quad \Box
\]

Пример 7. Изменить порядок интегрирования в следующих двойных интегралах:

а) \(I = \int_0^1 dx \int_0^{\sqrt{x}} f(x; y)\,dy + \int_1^2 dx \int_{\sqrt{2x-x^2}}^{1-\sqrt{4x-x^2-3}} f(x; y)\,dy; \)

б) \(I = \int_0^1 dx \int_0^{\sqrt{2x-\frac{x^2}{2}}} f(x; y)\,dy; \)

в) \(I = \int_{-2}^2 dx \int_0^{\sqrt{4-x^2}} f(x; y)\,dy; \)

г) \(I = \int_1^4 dy \int_0^{\frac{1}{y}} f(x; y)\,dx. \)
а) В первом интеграле x изменяется от 0 до 1, а y от прямой $y = 0$ до кривой $y = \frac{x^3}{2}$, во втором интеграле x изменяется от 1 до 2, а y от прямой $y = 0$ до кривой $y = 1 - \sqrt{4x - x^2} - 3$. Область интегрирования изобразим на чертеже (рис. 32).

Разрешим уравнения кривых OA и AB относительно переменной x:

$$y = \frac{x^3}{2} \Rightarrow x = \frac{y^2}{3}; \quad y = 1 - \sqrt{4x - x^2} - 3 \Rightarrow (x - 2)^2 + (y - 1)^2 = 1 \Rightarrow x = 2 - \sqrt{2y - y^2}.$$

Следовательно, $I = \int_0^1 dy \int_{\frac{y^2}{2}}^3 f(x; y) \, dx$.

б) Изобразим область интегрирования на чертеже (рис. 33).

Если к полуокружности $y = \sqrt{2x - x^2}$ провести касательную, параллельную оси Ox, то она разобьет данную область на три части: OAB, BDK и ACD.

Разрешим уравнения кривых OA, AC и BK относительно переменной x:

OA и AC: $y = \sqrt{2x} \Rightarrow x = \frac{1}{2} y^2$;

OB: $y = \sqrt{2x - x^2} \Rightarrow x = 1 - \sqrt{1 - y^2}$ ($x \leq 1$);

BK: $y = \sqrt{2x - x^2} \Rightarrow x = 1 + \sqrt{1 - y^2}$ ($x \geq 1$).

Уравнение прямой KC имеет вид $x = 2$. В областях OAB и BDK y изменяется от 0 до 1, а в области ACD – от 1 до 2.

Таким образом,

$$I = \int_0^1 dy \int_{\frac{1 - \sqrt{1 - y^2}}{2}}^{\frac{1 - \sqrt{1 - y^2}}{2}} f(x; y) \, dx + \int_0^2 dy \int_{\sqrt{1 - y^2}}^{\sqrt{1 - y^2}} f(x; y) \, dx + \int_1^2 dy \int_{\sqrt{2y^2}}^{\sqrt{2y^2}} f(x; y) \, dx.$$
в) По пределам интегрирования второго интеграла восстановим область интегрирования D. Границы искомой области задаются уравнениями:

$$x = -2; x = 2; y = 0; y = \sqrt{4 - x^2}.$$

Область интегрирования представлена на рис. 34.

Разрешим уравнение кривой ABC относительно переменной x:

$$x = -\sqrt{4 - y^2} \ (x \leq 0), \quad x = \sqrt{4 - y^2} \ (x \geq 0).$$

Следовательно, $I = \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} f(x; y) dy$.

г) Область интегрирования D имеет следующие границы: $y = 1; \quad y = 4; \quad x = \frac{1}{y}; \quad x = \sqrt{y}$ (рис. 35). При изменении порядка интегрирования разобьем область D прямой $x = 1$ на две области: ABN и NBC.

Разрешим уравнения кривых AB и BC относительно переменной y:

$AB: \quad x = \frac{1}{y} \Rightarrow y = \frac{1}{x};$

при $y = 4, \quad x = \frac{1}{4}$; при $y = 1, \quad x = 1$;

$BC: \quad x = \sqrt{y} \Rightarrow y = x^2;$

при $y = 1, \quad x = 1$; при $y = 4, \quad x = 2$.

Таким образом,

$I = \int_{x=1}^{x=4} \int_{y=1}^{y=2} f(x; y) dy dx + \int_{x=1}^{x=4} \int_{y=1}^{y=2} f(x; y) dx dy. \ △$

Пример 8. Вычислить $I = \iint_D (x^2 + y) dx dy,$ если область D ограничена параболами $y = x^2, \quad x = y^2$.

Область интегрирования D изображена на рис. 36.

Она ограничена слева и справа прямыми $x = 0$ и $x = 1$, а снизу и сверху –
параболами \(y = x^2 \) и \(y = \sqrt{x} \).

Следовательно,

\[
I = \iint_D (x^2 + y) \, dx \, dy = \int_0^1 dx \int_{\sqrt{x}} \left(x^2 + y \right) \, dy = \int_0^1 \left(x^2 \, \frac{\sqrt{x}}{2} + \frac{y^2}{2} \right) \, dx
\]

\[
= \int_0^1 \left(x^2 \sqrt{x} + \frac{x}{2} - x^4 - \frac{x^4}{2} \right) \, dx = \left[\frac{5}{7} x^ \frac{7}{2} + \frac{x^2}{4} - \frac{3}{10} x^5 \right]_0^1 = \frac{33}{140}. \quad \blacktriangle
\]

Пример 9. Вычислить \(I = \iint_D xy \, dx \, dy \), если \(D: \ y = x - 4, \ y^2 = 2x \).

\[\Delta\] Построим данные линии и найдем их точки пересечения (рис. 37).

Если внутренний интеграл записать по переменной \(x \), то двойной интеграл по области \(D \) выразится одним двукратным интегралом:

\[
I = \int \int_D xy \, dx \, dy = \int_{-2}^{4} dy \int_{2}^{y+4} x^2 \, dx = \left[\frac{1}{2} y^2 x \right]_{2}^{y+4} \, dy = \frac{1}{2} \int_{-2}^{4} \left((y+4)^2 - \frac{y^4}{4} \right) \, dy
\]

\[
= \frac{1}{2} \left[\frac{y^4}{4} + 8y^3 + 16y - \frac{y^5}{4} \right]_{-2}^{4} = 90.
\]

Если интегрировать в другом порядке – сначала по \(y \), а затем по \(x \), то нужно область \(D \) предварительно разбить прямой \(BC \) на две части.

В этом случае \(I = \int \int_D xy \, dx \, dy + \int \int_D xy \, dy \, dx \).

Вычислив сумму этих двух интегралов, можно убедиться, что результат не зависит от порядка интегрирования. \(\blacktriangle \)
Пример 10. Вычислить
\[I = \iint_D (\sin x - 2y) \, dxdy, \text{ если } D: y = x^2, \quad y = 2 + x^2, \quad x = 0, \quad x = \frac{\pi}{2}. \]

Начертим область интегрирования (рис. 38).
Если интегрировать вначале по переменной x, то пришлось бы область D предварительно разбить прямыми, параллельными оси Ox, на три части. Поэтому целесообразно внутренний интеграл записать по переменной y.

Имеем
\[
I = \iint_D (\sin x - 2y) \, dxdy = \int_0^{\frac{\pi}{2}} dx \int_{x^2}^{2+x^2} (\sin x - 2y) \, dy =
\]
\[
= \int_0^{\frac{\pi}{2}} \left(y \sin x - y^2 \right) \, dx \bigg|_{y=x^2}^{y=2+x^2} =
\]
\[
= \int_0^{\frac{\pi}{2}} ((2 + x^2) \sin x - x^2 \sin x - (2 + x^2)^2 + x^4) \, dx =
\]
\[
= \int_0^{\frac{\pi}{2}} (2 \sin x - 4x^2 - 4) \, dx = 2(1 - \pi) - \frac{\pi^3}{6}. \]

Пример 11. Вычислить
\[\iint_D \frac{y}{x} \, dxdy, \text{ если } D: xy = 1, \quad xy = 3, \quad y = x, \quad y = 2x, \quad x > 0, \quad y > 0. \]

Изобразим область интегрирования на чертеже (рис. 39).
Для вычисления этого интеграла в декартовой системе координат область $ABCD$ необходимо разбить прямыми, параллельными одной из координатных осей, на три части. Затем вычислить интеграл по каждой частичной области и полученные результаты просуммировать. Однако существует более короткий путь вычисления этого интеграла. Осуществим переход к криволинейным координатам по формулам:
\[xy = u, \quad (1 \leq u \leq 3), \quad y = vx, \quad (1 \leq v \leq 2). \]

Отсюда
\[x = \sqrt{\frac{u}{v}}, \quad y = \sqrt{uv}. \]

При этом изображением области D является прямоугольник D_1: $1 \leq u \leq 3$, $1 \leq v \leq 2$ (рис. 40).
Определяем якобиан преобразования:

\[J(u, v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2\sqrt{uv}} & \frac{1}{2\sqrt{v^3}} \\ \frac{1}{\sqrt{v}} & \frac{1}{2\sqrt{v}} \end{vmatrix} = \frac{1}{2v}. \]

Таким образом,

\[\iint_D \frac{y}{x} dxdy = \iint_{D'} \frac{\sqrt{uv}}{u} \cdot \frac{1}{2v} dudv = \frac{1}{2} \int_1^3 du \int_1^2 dv = 1. \]

Пример 12. Перейти к полярным координатам и расставить пределы интегрирования в двойном интегrale \(I = \iint_D f(x, y)dxdy \), где

а) \(D \) – круг \(x^2 + y^2 \leq R^2 \);

б) \(D \) – область, ограниченная линиями \(x^2 + y^2 = 4x, \ x^2 + y^2 = 8x, \ y = x, \ y = 2x \).

\(\Delta \) а) Переходя к полярной системе координат \(x = r \cos \phi, \ y = r \sin \phi \), получаем следующее уравнение окружности \(x^2 + y^2 = R^2: \ r = R \). Очевидно, что \(0 \leq \phi \leq 2\pi, \ I(r; \phi) = r \), поэтому

\[I = \int_0^{2\pi} \int_0^R f(r \cos \phi, r \sin \phi) \cdot r \cdot dr. \]

б) Преобразуем выражения \(x^2 + y^2 = 4x \) и \(x^2 + y^2 = 8x \) к каноническому виду:

\[x^2 + y^2 = 4x \Rightarrow (x - 2)^2 + y^2 = 4; \]

\[x^2 + y^2 = 8x \Rightarrow (x - 4)^2 + y^2 = 16. \]

Следовательно, область \(D \) ограничена окружностью радиусом 2 с центром в точке (2;0), окружностью радиусом 4 с центром в точке (4;0), а также прямыми \(y = x \) и \(y = 2x \) (рис. 41).

Фигура \(ABCK \) ограничена лучом \(\phi = \frac{\pi}{4} \) и \(\phi = \arctg 2 \). В полярной системе координат уравнение дуги \(AK \) имеет вид \(r^2 \cos^2 \phi + r^2 \sin^2 \phi = 4r \cos \phi \Rightarrow r = 4 \cos \phi \).

Аналогично уравнение дуги \(BC \) имеет вид \(r^2 \cos^2 \phi + r^2 \sin^2 \phi = 8r \cos \phi \Rightarrow r = 8 \cos \phi. \)
Таким образом, \[I = \int_{\frac{\pi}{4}}^{\arctg 2} d\varphi \int f(r \cos \varphi, r \sin \varphi) \cdot r \cdot dr. \]

Пример 13. Переходя к полярным координатам, вычислить \[\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} \, dy \, dx. \]

Изобразим область интегрирования (рис. 42). Перейдем к полярным координатам:

\[x = r \cos \varphi, \quad y = r \sin \varphi, \quad 0 \leq \varphi \leq \frac{\pi}{2}, \]

\[I(r; \varphi) = r, \quad \sqrt{x^2+y^2} = r. \]

Следовательно,

\[\int_{0}^{a} dx \int_{0}^{\sqrt{a^2-x^2}} dy = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{a} r^2 \, dr = \varphi \mid_{0}^{\frac{\pi}{2}} \cdot r^3 \mid_{0}^{a} = \frac{1}{6} \pi a^3. \]

Пример 14. Вычислить \[I = \iint_{D} \frac{1}{\sqrt{x^2+y^2}} \, dx \, dy, \quad \text{если} \quad D: \quad 1 \leq x^2 + y^2 \leq 4. \]

Из аналитического выражения подынтегральной функции и уравнения границы области \(D \) следует, что для решения этой задачи целесообразно перейти к обобщенным полярным координатам. Положив \(x = ar \cos \varphi, \quad y = br \sin \varphi, \) получим

Пример 15. Вычислить \[\iint_{D} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} \, dx \, dy, \quad \text{если} \quad D: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \]
\[\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} = \sqrt{1 - r^2}, \quad I(\rho; \varphi) = abr, \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow r = 1, \quad 0 \leq \varphi \leq 2\pi. \]

Следовательно,

\[\iiint_D \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} \, dx \, dy \, dz = ab \int_0^{\frac{2\pi}{3}} \int_0^{\frac{1}{3}} r \sqrt{1 - r^2} \, dr \, d\varphi \left[\frac{1}{2} (1 - r^2)^{\frac{3}{2}}\right]_0^1 = \frac{2\pi}{3} \pi ab. \]

Приравнивая переменную интегрирования каждого интеграла его пределам, получим следующие уравнения:

\[I_1 = \int_0^{\frac{2}{3}} (4 + z) \, dz = \left. \frac{(4 + z)^2}{2} \right|_0^2 = \frac{36 - 16}{2} = 10; \]

\[I_2 = \int_{x^2}^{1} dy = 10 \int_{x^2}^{1} y \, dy = 10 \left. \frac{y^2}{2} \right|_0^1 = 10(1 - x^2); \]

\[I_3 = \int_{-1}^{1} dx = 10 \int_{-1}^{1} (1 - x^2) \, dx = 10 \left. \left(x - \frac{x^3}{3} \right) \right|_{-1}^1 = \frac{40}{3}. \]

Для построения области интегрирования данного трехкратного интеграла запишем вначале уравнения поверхностей, ограничивавших эту область. Приравниваем переменную интегрирования каждого интеграла его пределам, получим следующие уравнения: \(x = -1, \quad x = 1, \quad y = x^2, \quad x = 1, \quad y = 1, \quad z = 0, \quad z = 2. \)

Построим в системе координат поверхности, соответствующие этим уравнениям (рис. 44).
Ограниченная этими поверхностями область есть прямой цилиндр, обра-
зуяще которого параллельны оси \(Oz \). ▲

Пример 17. Привести тройной интеграл
\[
\iiint_V f(x; y; z) \, dx \, dy \, dz
\]
tо трехкратному, если об-
ласть интегрирования \(V \) ограничена поверхно-
стями \(z = x^2 + y^2 \) и \(z = 2 - x^2 - y^2 \).

△ Очевидно, что тело ограничено снизу па-
раболоидом \(z = x^2 + y^2 \) и сверху \(z = 2 - x^2 - y^2 \).

Найдем проекцию тела на плоскость \(xOy \) (рис. 45):
\[
x^2 + y^2 = 2 - x^2 - y^2 \Rightarrow x^2 + y^2 = 1.
\]
Следовательно,
\[
\iiint_V f(x; y; z) \, dx \, dy \, dz = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} f(x; y; z) \, dz.
\]

Пример 18. Вычислить \(\iiint_V xy^2 z^3 \, dx \, dy \, dz \), если \(V \):
\[
z = xy, \ y = x, \ x = 1, \ z = 0.
\]
△ Область интегрирования \(V \) определяется следующими нераве-
нствами:
\[
0 \leq x \leq 1, \ 0 \leq y \leq x, \ 0 \leq z \leq xy
\]
(рис. 46), поэтому
\[
\iiint_V xy^2 z^3 \, dx \, dy \, dz = \int_{0}^{1} \int_{0}^{x} \int_{0}^{xy} \left(\frac{x^5 y^6}{4} \right) \, dy \, dx = \int_{0}^{1} \frac{x^5 y^7}{28} \bigg|_{y=0}^{y=x} \, dx = \frac{1}{28} \int_{0}^{1} x^{12} \, dx = \frac{1}{364} x^{13} \bigg|_{0}^{1} = \frac{1}{364}.
\]

Пример 19. Вычислить \(\iiint_V \frac{dx \, dy \, dz}{1 - x - y} \), если \(V \):
\[
x + y + z = 1, \ x = 0, \ y = 0, \ z = 0.
\]
Построим данные плоскости. Область \(V \) есть тетраэдр \(OABC \) (рис. 47). Любая прямая, проходящая внутри этого тетраэдра параллельно оси \(Oz \) пересекает его границу в двух точках. Уравнения плоскостей \(AOB \) и \(ACB \) имеют вид \(z = 0 \) и \(z = 1 - x - y \) соответственно.

Следовательно,
\[
\iiint_V dx dy dz = \iiint_{AOB} dx dy \int_{0}^{1-x-y} dz = \\
= \iiint_{AOB} dx dy \left(z \right|_{0}^{1-x-y} = \\
= \iint_{AOB} dx dy = S_{AOB} = \frac{AO \cdot OB}{2} = \frac{1}{2}. \quad \Delta
\]

Пример 20. Вычислить \(\iiint_V xyz dx dy dz \), если область \(V \) ограничена сферой \(x^2 + y^2 + z^2 = 1 \) и плоскостями \(x = 0, y = 0, z = 0 \) (первый октант).

\(\Delta \) Область \(V \) ограничена снизу плоскостью \(z = 0 \) и сверху – поверхностью \(z = \sqrt{1-x^2-y^2} \). Изобразим проекцию области \(V \) на плоскость \(xOy \) (рис. 48).

Следовательно,
\[
\iiint_V xyz dx dy dz = \int_{0}^{1} x dx \int_{0}^{\sqrt{1-x^2}} y dy \int_{0}^{\sqrt{1-x^2-y^2}} z dz = \\
= \frac{1}{2} \int_{0}^{1} x dx \left(y \right|_{0}^{\sqrt{1-x^2}} - \frac{y^2}{2} \right|_{0}^{\sqrt{1-x^2}} = \\
= \frac{1}{8} \int_{0}^{1} (2x - 2x^3 - 2x^3 + 2x^5 - x + 2x^3 - x^5) dx = \\
= \frac{1}{8} \left(\frac{x^2}{2} - \frac{x^4}{2} + \frac{x^6}{6} \right|_{0}^{1} = \frac{1}{48}. \quad \Delta
\]

Пример 21. Вычислить \(\iiint_V z \sqrt{x^2 + y^2} dx dy dz \), если \(V: \ x^2 + y^2 = 2x, z = 0, z = 3 \).

\(\Delta \) Проекция области \(V \) на плоскость \(xOy \) есть круг \((x-1)^2 + y^2 = 1 \) (рис. 49).
Перейдем к цилиндрическим координатам. Уравнение окружности $x^2 + y^2 = 2x$ в этих координатах имеет вид $r = 2\cos \varphi$, \((-\frac{\pi}{2} \leq \varphi \leq \frac{\pi}{2})$.

Якобиан преобразования $J(r, \varphi) = r, \sqrt{x^2 + y^2} = r$.

Следовательно,

$$
\iiint_V z\sqrt{x^2 + y^2} \, dxdydz = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^{2\cos \varphi} \int_0^r z \, dz \, dr \, d\varphi = \frac{9}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^{\frac{r^3}{3}} 2\cos \varphi \, d\varphi = 24 \int_0^{\frac{\pi}{3}} \cos^3 \varphi \, d\varphi = 24 \left(\sin \varphi - \frac{\sin^3 \varphi}{3}\right) \bigg|_0^{\frac{\pi}{3}} = 24 \left(\frac{2}{3}\right) = 16. \quad \Box
$$

Пример 22. Вычислить $\iiint_V \sqrt{x^2 + y^2} \, dxdydz$, если $V: x^2 + y^2 = z^2, \ z = 1$.

Δ Перейдем к цилиндрическим координатам: $x = r \cos \varphi, \ y = r \sin \varphi, \ r(r, \varphi) = r, \sqrt{x^2 + y^2} = r$.

Область V снизу ограничена поверхностью $z = r$ (поверхностью конуса), сверху – плоскостью $z = 1$.

Проекцией области V на плоскость xOy является круг $r \leq 1$.

Следовательно,

$$
\iiint_V \sqrt{x^2 + y^2} \, dxdydz = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^r \int_0^1 z \, dz \, dr \, d\varphi = 2\pi \int_0^1 r^2 \int_0^1 (1 - r) \, dr = 2\pi \left(\frac{r^3}{3} - \frac{r^4}{4}\right) \bigg|_0^1 = \frac{\pi}{6}. \quad \Box
$$

Пример 23. Вычислить $\iiint_V \sqrt{x^2 + y^2 + z^2} \, dxdydz$, если $V: x^2 + y^2 + z^2 = 1$.

Δ Каноническое уравнение сферы $x^2 + y^2 + z^2 = z$ имеет вид

$$
(x^2 + y^2 + \left(z - \frac{1}{2}\right)^2) = \frac{1}{4}.
$$

Изобразим сферу (рис. 50) и ее проекцию на плоскость xOy (рис. 51).
Перейдем к сферическим координатам: \(x = z \cos \varphi \sin \varphi, \ y = r \sin \varphi \sin \varphi, \ z = r \cos \varphi, \ I = r^2 \sin \varphi, \ x^2 + y^2 + z^2 = z \Rightarrow r = \cos \varphi, \ \sqrt{x^2 + y^2 + z^2} = r. \)

В области \(V \) сферические координаты изменяются так: \(0 \leq r \leq \cos \varphi, \ 0 \leq \varphi \leq 2\pi, \ 0 \leq Q \leq \frac{\pi}{2}. \)

Поэтому

\[
\iiint_V \sqrt{x^2 + y^2 + z^2} \, dV = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^\sqrt{3} r^3 \cos^4 \varphi \sin \varphi \sin^2 \varphi \, dr \, d\varphi \\
= -\frac{\pi}{2} \int_0^{\frac{\pi}{2}} \cos^4 \varphi \cos \varphi \, d\varphi + \frac{\pi}{10} \cos^5 \varphi \bigg|_0^{\frac{\pi}{2}} = \frac{\pi}{10}. \]

Пример 24. Вычислить \(\iiint_V \frac{x^2}{x^2 + y^2} \, dx \, dy \, dz \), если область \(V \) ограничена поверхностями \(z = \sqrt{36 - x^2 - y^2} \) и \(z = \frac{\sqrt{x^2 + y^2}}{3} \).

Так как \(V \) — область, ограниченная верхней полусферой и верхним полуконусом, удобно перейти к сферическим координатам: \(x = r \cos \varphi \sin \varphi, \ y = r \sin \varphi \sin \varphi, \ z = r \cos \varphi. \)

Тогда \(I = r^2 \sin \varphi, \ \frac{x^2}{x^2 + y^2} = \cos^2 \varphi, \ z = \sqrt{36 - x^2 - y^2} \Rightarrow r = 6; \)

\[
z = \sqrt{\frac{x^2 + y^2}{3}} \Rightarrow \tan \varphi = \sqrt{3}, \]

В области \(V \) сферические координаты изменяются так: \(0 \leq r \leq 6, \ 0 \leq \varphi \leq 2\pi, \ 0 \leq Q \leq \frac{\pi}{3}. \)

Переходя от тройного интеграла к повторному и последовательно интегрируя, получаем

\[
\iiint_V \frac{x^2}{x^2 + y^2} \, dx \, dy \, dz = \int_0^{2\pi} \int_0^{\frac{\pi}{3}} \int_0^6 r^2 \cdot \sin \varphi \cdot \cos^2 \varphi \, dr \, d\varphi \, dQ = \\
= \frac{\pi}{3} \int_0^{2\pi} \int_0^{\frac{\pi}{3}} \sin \varphi \, d\varphi \, dQ = 36\pi. \]

Пример 25. Найти площадь фигуры, ограниченной линиями \(y = 2 - x^2 \) и \(y = 2x - 1. \)
Построим фигуру (рис. 52).
Решив уравнение \(y = 2 - x^2 = 2x - 1 \), найдем абсциссы точек \(A \) и \(B \): \(x_A = -3, \ x_B = 1 \).

Находим
\[
S = \int_{-3}^{3} (2 - x^2 - 2x + 1)\ dx = \left(3x - \frac{x^3}{3} - x^2\right)|_{-3}^{1} = \\
= \left(3 - \frac{1}{3} - 1\right) - (-9 + 9 - 9) = 10\frac{2}{3}, \quad \Delta
\]

Пример 26. Найти площадь фигуры, ограниченной линиями \(r = 2\cos\varphi \) и \(r = 2(1 + \cos\varphi) \).

Линии заданы в полярных координатах, поэтому воспользуемся формулой площади в полярных координатах
\[
S = \int_{\varphi_1}^{\varphi_2} r^2\ d\varphi.
\]

Функция \(r = 2\cos\varphi \) определена при \(\varphi \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \), так как при прочих значениях \(\varphi \) получается \(r < 0 \). Вторая функция \(r = 2(1 + \cos\varphi) \) определена при \(\varphi \in (-\pi; \pi) \).

Область интегрирования \(D \) имеет вид, изображенный на рис. 53. Так как фигура симметрична относительно полярной оси, можно ограничиться вычислением верхней половины площади, а результат утроить.

Имеем
\[
S = 2\int_{\varphi_1}^{\varphi_2} r\ dr\ d\varphi = 2\int_{0}^{\pi/2} \sqrt{2(1 + \cos\varphi)}\ d\varphi = \\
= 4\int_{0}^{\pi/2} (1 + \cos 2\varphi)\ d\varphi + 4\int_{\pi/2}^{\pi} (1 + \cos 2\varphi + \cos^2\varphi)\ d\varphi = \\
= 4\left\{\int_{0}^{\pi/2} (1 + \cos 2\varphi)\ d\varphi + \int_{\pi/2}^{\pi} (1 + \cos 2\varphi)\ d\varphi + \int_{\pi/2}^{\pi} \cos^2\varphi\ d\varphi\right\} =
\]
Пример 27. Найти площадь фигуры, ограниченной линией \(x^3 + y^3 = 3axy \).

\[\Delta \quad \text{Уравнение } x^3 + y^3 = 3axy \]
заряжает прямую, которая называется декартовым листом и состоит из петли и двух бесконечных ветвей (рис. 54). Для нахождения площади фигуры удобно перейти к полярным координатам:

\[x = r \cos \phi, \quad y = r \sin \phi, \quad I(r, \phi) = r. \]

В полярной системе координат исходное уравнение примет вид

\[r^3 (\cos^3 \phi + \sin^3 \phi) = 3ar^2 \cos \phi \sin \phi, \]

т. е. \(r = \frac{3a \cos \phi \sin \phi}{\cos \phi + \sin \phi} \).

Осью симметрии петли является луч \(\phi = \frac{\pi}{4} \), поэтому

\[S = 2 \int_{D_1} r dr d\phi = 2 \int_{0}^{\frac{\pi}{4}} d\phi \int_{0}^{\frac{3a \cos \phi \sin \phi}{\cos \phi + \sin \phi}} r dr = 9a^2 \int_{0}^{\frac{\pi}{4}} \frac{\cos^2 \phi \cdot \sin^2 \phi}{(\cos \phi + \sin \phi)^2} d\phi = \]

\[= 9a^2 \int_{0}^{\frac{\pi}{4}} \frac{\cos^4 \phi \cdot \operatorname{tg}^2 \phi}{\cos^6 \phi (1 + \operatorname{tg}^3 \phi)^2} d\phi = 3a^2 \int_{0}^{\frac{\pi}{4}} \frac{3 \operatorname{tg}^2 \phi d(tg \phi)}{(1 + \operatorname{tg}^3 \phi)^2} d\phi = \]

\[= 3a^2 \int_{0}^{\frac{\pi}{4}} d(1 + \operatorname{tg}^3 \phi) = - \frac{3a^2}{1 + \operatorname{tg}^3 \phi} \mid_{0}^{\frac{\pi}{4}} = \frac{3a^2}{2}. \]

Пример 28. Найти площадь, ограниченную линией \(\left(\frac{x^2}{4} + \frac{y^2}{9}\right)^2 = \frac{x^2}{4} - \frac{y^2}{9}. \)

\[\Delta \quad \text{Ввиду симметрии, площадь всей фигуры } S = 4S_1, \text{ где } S_1 \text{ – площадь части фигуры, расположенной в первой четверти. Перейдем к обобщенным полярным координатам: } x = 2r \cos \phi, \quad y = 3r \sin \phi, \quad I = 6r. \]

Найдем уравнение линии в обобщенной полярной системе:
\[
\left(\frac{4r^2 \cos^2 \varphi + 9r^2 \sin^2 \varphi}{9} \right)^2 = \frac{4r^2 \cos^2 \varphi}{4} - \frac{9r^2 \sin^2 \varphi}{9}; \quad r_1 = 0, \quad r_2 = \sqrt{\cos 2\varphi}.
\]

Отсюда следует, что в первой четверти полярные координаты изменяются так: \(0 \leq \varphi \leq \frac{\pi}{4}, \quad 0 \leq r \leq \sqrt{\cos 2\varphi} \).

Таким образом,

\[
S = 4 \int_0^{\pi/4} \frac{\sqrt{\cos 2\varphi}}{0} d\varphi = 24 \int_0^{\pi/4} \frac{1}{2} \cos 2\varphi d\varphi = 6 \sin 2\varphi \bigg|_0^{\pi/4} = 6. \quad \▲
\]

Пример 29. Найти объем тела, ограниченного следующими поверхностями: \(y = \sqrt{x}, \quad y = 2\sqrt{x}, \quad x + z = 6, \quad z = 0\).

\(\Delta\) Снизу тело ограничено плоскостью \(z = 0\), сверху — плоскостью \(z = 6 - x\). Изобразим проекцию тела на плоскость \(xOy\) (рис. 55).

Следовательно,

\[
V = \int_0^6 \int_0^{2\sqrt{x}} (6 - x) dy = \int_0^6 \int_y^{2\sqrt{x}} dy dx = \int_0^6 \left(12\sqrt{x} - 2x\sqrt{x} - 6\sqrt{x} + x\right) dx = \int_0^6 \left(6x^{3/2} - x^3\right) dx = \left[\frac{2}{3} \cdot 6x^{5/2} - \frac{2}{5}x^5 \right]_0^6 = \frac{2}{3} \cdot 6 \cdot 5^2 - \frac{2}{5} \cdot 6 \cdot 5^5 = \frac{4}{15} \cdot 6^3 = \frac{48}{5} \sqrt{6}. \quad \▲
\]

Пример 30. Найти объем тела, ограниченного плоскостями \(y + z = 2, \quad y - z = 2\) и цилиндром \(x^2 + y^2 = 4\).

\(\Delta\) Тело, ограниченное данными поверхностями, изображено на рис. 56. В силу его симметрии относительно плоскости \(xOy\), вычислим объем половины тела, расположенной над плоскостью \(xOy\), и результат удвоим. Проекцией этой части тела на плоскость \(xOy\) является окружность \(x^2 + y^2 = 4\) радиусом 2 с центром в точке \(O\). Для вычисления двойного интеграла...
грала, определяющего объем тела, перейдем к полярным координатам: \(x = r \cos \varphi, \ y = r \sin \varphi, \ I(r; \varphi) = r \).

Уравнение окружности \(x^2 + y^2 = 4 \) в полярной системе координат имеет вид \(r^2 = 4 \) или \(r = 2 \); уравнение плоскости \(z = 2 - y = 2 - r \sin \varphi \). Так как \(0 \leq \varphi \leq 2 \pi \), то имеем

\[
V = 2 \int_0^{2\pi} d\varphi \int_0^2 r(2-r\sin \varphi) \, dr = 2 \int_0^{2\pi} \left(r^2 - \frac{r^3}{3} \sin \varphi \right) \, dr = 2 \int_0^{2\pi} \left(4 - \frac{8}{3} \sin \varphi \right) \, d\varphi =
\]

\[
= 2 \left(4\varphi + \frac{8}{3} \cos \varphi \right) \bigg|_0^{2\pi} = 16\pi. \quad \square
\]

При мер 31. Вычислить площадь поверхности конуса \(z = \sqrt{x^2 + y^2} \), расположенной внутри цилиндра \(x^2 + y^2 = 1 \).

∆ Проекцией поверхности на плоскость \(xOy \) является круг \(x^2 + y^2 \leq 1 \). Из уравнения конуса имеем

\[
\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}.
\]

Тогда \(S = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2} \, dxdy = \iint_D \sqrt{1 + \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2}} \, dxdy =
\]

\[
= \sqrt{2} \int_D dxdy = \sqrt{2} S = \sqrt{2} \cdot \pi = \sqrt{2} \pi. \quad \square
\]

При мер 32. Вычислить массу неоднородной пластины \(D \), ограниченной линиями \(y = x^2 \), \(x = y^2 \), если поверхностная плотность в каждой ее точке \(\mu = 3x + 2y + 6 \).

∆ Построим область, ограниченную кривыми \(y = x^2 \) и \(x = y^2 \) (рис. 57).

Из физического смысла двойного интеграла следует, что искомая масса

\[
m = \iint_D \mu(x, y) \, dxdy = \int_0^1 dx \int_0^{\sqrt{x}} (3x + 2y + 6)dy =
\]

\[
= \int_0^1 (3xy + y^2 + 6y) \bigg|_{y = \sqrt{x}}^{y = 2} \, dx =
\]

\[
= \int_0^1 (3x^2 + x + 6x - 3x^3 - x^4 - 6x^2) \, dx =
\]

\[
= \left(\frac{2}{5} 3x^2 + \frac{x^3}{2} + 6 \frac{2}{3} 3x^2 - \frac{3}{4} x^4 - \frac{1}{5} x^5 - 2x^3 \right) \bigg|_0^1 =
\]

\[
= \quad \text{Рис. 57}
\]
\[
\frac{6}{5} + \frac{1}{2} + 4 - \frac{3}{4} - \frac{1}{5} - 2 = \frac{11}{4}. \quad \blacktriangle
\]

Пример 33. Найти моменты инерции \(I_x \) и \(I_y \) относительно координатных осей \(Ox \) и \(Oy \) пластины плотностью \(\delta(x, y) = xy \), ограниченной кривыми \(y = 0 \), \(y = x \), \(y = 2x \).

\(\Delta \) Область, ограниченная кривыми \(y = 0 \), \(y = x \), \(y = 2x \) изображена на рис. 58. Моменты инерции \(I_x \) и \(I_y \) определяются по формулам:

\[
\begin{align*}
I_x &= \iint_D y^2 \delta(x, y) \, dxdy, \\
I_y &= \iint_D x^2 \delta(x, y) \, dxdy.
\end{align*}
\]

Следовательно,

\[
\begin{align*}
I_x &= \int_0^1 \int_0^{2-y} x y^3 \, dxdy = \int_0^1 y^3 dy \int_0^{2-y} x \, dxdy = \int_0^1 y^3 \left(\frac{x^2}{2} \right)_{x=0}^{x=2-y} dy = 2 \int_0^1 \left(y^3 - y^4 \right) dy = \frac{1}{10}; \\
I_y &= \int_0^1 \int_0^{2-y} x^3 \, dx dy = \int_0^1 y^3 \int_0^{2-y} x^3 \, dx dy = \int_0^1 y^3 \left(\frac{x^4}{4} \right)_{x=0}^{x=2-y} dy = \int_0^1 y \left(\frac{(2-y)^4}{4} - \frac{y^4}{4} \right) dy = \frac{13}{30}.
\end{align*}
\]

Пример 34. Найти объем тела, ограниченного поверхностями

\(y = 2x^2 - 3 \), \(y = -7x^2 + 6 \), \(z = 1 - 5x^2 - 6y^2 \), \(z = -3 - 5x^2 - 6y^2 \).

\(\Delta \) Изобразим проекцию тела на плоскость \(xOy \) (рис. 59).

Ввиду симметрии

\[
V = \int_0^1 dx \int_0^{2x^2-3} dy \int_0^{-7x^2+6-5x^2-6y^2} dz = \int_0^1 dx \int_0^{2x^2-3} dy \int_0^{-7x^2+6} dz = \int_0^1 dx \int_0^{2x^2-3} \left(-7x^2 + 6 - 2x^2 + 3 \right) dx = \int_0^1 (9 - 9x^2) dx = 8 \left(9x - 3x^3 \right) \bigg|_0^1 = 48. \quad \blacktriangle
\]

Пример 35. Вычислить объем тела, ограниченного поверхностями \(z = 8((x+1)^2 + y^2) + 3 \), \(z = 16x + 19 \).

\(\Delta \) Снизу тело ограничено параболоидом \(z = 8((x+1)^2 + y^2) + 3 \), сверху – плоскостью \(z = 16x + 19 \).
Найдем проекцию тела на плоскость xOy:

$$8((x + 1)^2 + y^2) + 3 = 16x + 19 \Rightarrow x^2 + y^2 = 1.$$

Это окружность радиусом 1 с центром в начале координат. Введем цилиндрические координаты: $x = r \cos \varphi, y = r \sin \varphi, z = z, |I| = r$.

Тогда $0 \leq \varphi \leq 2\pi, 0 \leq r \leq 1,$

$$8r^2 + 16r \cos \varphi + 11 \leq z \leq 16r \cos \varphi + 19.$$

Имеем

$$V = \iiint_V dx\,dy\,dz = \left[\int_0^{2\pi} d\varphi \int_0^1 r \, dr \int_{8r^2+16r\cos\varphi+11}^{16r\cos\varphi+19} dz \right] = \int_0^{2\pi} d\varphi \int_0^1 (8r - 8r^3) \, dr =$$

$$= 2\pi (4r^2 - 2r^4) \bigg|_0^1 = 4\pi. \quad \Delta$$

Пример 36. Вычислить объем тела, ограниченного сферой $x^2 + y^2 + z^2 = a^2$ и конусом $z^2 = x^2 + y^2$ (внеши-го по отношению к конусу).

По заданным уравнениям поверхностей строим область V (рис. 60).

Тело симметрично относительно плоскости xOy. Поэтому $V = 2V_1$, где V_1 — объем верхней половины тела.

Перейдем к сферическим координатам:

$$x = r \sin Q \cos \varphi,$$

$$y = r \sin Q \sin \varphi, \quad z = r \cos Q, \quad |I| = r^2 \sin Q.$$

В области V_1 сферические координаты изменяются так: $0 \leq r \leq a,$

$$\frac{\pi}{4} \leq Q \leq \frac{\pi}{2}, \quad 0 \leq \varphi \leq 2\pi.$$

Следовательно,

$$V = 2\int_0^{\frac{\pi}{4}} \sin Q \int_0^{2\pi} d\varphi \int_0^a r^2 \, dr = 2\cos Q \left. \left[\frac{\pi}{2} \cdot 2\pi \cdot \frac{r^3}{3} \right]_0^a \right| = \sqrt{2} \cdot 2\pi \cdot \frac{a^3}{3} = \frac{2\sqrt{2}\pi a^3}{3}. \quad \Delta$$

Пример 37. Найти массу тела, ограниченного цилиндрической поверхнос-
ностью $x^2 = 2y$ и плоскостями $y + z = 1, 2y + z = 2$, если в каждой его точке объемная плотность численно равна ординате этой точки.

Согласно условию, в точке $N(x, y, z)$ тела объемная плотность $\delta(M) = y$. Масса этого тела вычисляется по формуле

$$m = \iiint_V \delta(M)\, dx\,dy\,dz = \iiint_V y\, dx\,dy\,dz,$$
где V – область, ограниченная данным телом (рис. 61).

Вывчисляя тройной интеграл получим

$$m = \iiint_V y \, dx \, dy \, dz = \iiint_{AOB} y(1-y) \, dx \, dy = \int_0^1 (y - y^2) \, dy \int_{-\sqrt{2y}}^{\sqrt{2y}} dx =$$

$$= \int_0^1 (y - y^2) 2\sqrt{2} y \, dy = 2\sqrt{2}\left(\frac{2}{5} y^2 - \frac{2}{7} y^3\right)|_0^1 = \frac{8\sqrt{2}}{35}.$$ ▲

Пример 38. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную поверхностями

$$x = 6(y^2 + z^2), \quad y^2 + z^2 = 3, \quad x = 0.$$ △ Строим тело, ограниченное данными поверхностями (рис. 62).

Его проекция на плоскость Oyz представляет круг, ограниченный окружностью $y^2 + z^2 = 3$ радиусом $\sqrt{3}$. Вычислим вначале массу тела в цилиндрических координатах, считая, что его плотность $\delta = 1$:

$$m = \iiint_V dx \, dy \, dz = \int_0^{\sqrt{3}} \int_0^{\sqrt{3}} \int_0^{2\pi} r \, dr \, d\phi \, dx = 2\pi \cdot \int_0^{\sqrt{3}} \int_0^{2\pi} r^2 \, dr \, dx = 3\pi r^4 |_0^{\sqrt{3}} = 27\pi.$$ □

Тогда $x_c = \frac{1}{m} \iiint_V x \, dx \, dy \, dz = \frac{1}{27\pi} \int_0^{\sqrt{3}} \int_0^{\sqrt{3}} \int_0^{2\pi} r \, dr \, d\phi \, x \, dx = \frac{2}{27} \int_0^{\sqrt{3}} 18r^5 \, dr = \frac{2}{27} \frac{3}{2} r^6 |_0^{\sqrt{3}} = \frac{\sqrt{3}}{9}.$
Так как тело однородное и симметрично относительно оси Ox, то $y_c = x_c = 0$. ▲

Дополнительные задачи

1. Найти площадь области, ограниченной кривыми:
а) $y^2 = 10x + 25$, $y^2 = 9 - 6x$;
б) $(x^2 + y^2)^3 = x^4 + y^4$.

Ответ: а) $\frac{1}{3} \cdot 16\sqrt{15}$; б) $\frac{3\pi}{4}$.

2. Найти объемы тел, ограниченных поверхностями:
а) $x^2 + y^2 = x$, $x^2 + y^2 = 2x$, $z = x^2 + y^2$, $z = 0$;
б) $(x^2 + y^2 + z^2)^2 = z (x^2 + y^2)$.

Ответ: а) $\frac{45\pi}{32}$; б) $\frac{\pi}{60}$.

3. Найти координаты центра масс однородного тела $\frac{1}{4} (y^2 + 2z^2) \leq x \leq 2$.

Ответ: $x_c = \frac{4}{3}$, $y_c = z_c = 0$.

4. Вычислить повторные интегралы, переменив порядок интегрирования:
а) $\int_0^1 \int_0^{\sqrt{1-x^2}} (1 - y^2)^{\frac{3}{2}} dy$;
б) $\int_0^\pi \int_0^{\pi \sin x} \frac{\sin x}{x} dx$.

Ответ: а) $\frac{8}{15}$; б) 2.

5. Вычислить двойные интегралы:
а) $\int_D (x + 2y) dx dy$, D: $y = x$, $y = 2x$, $x = 2$, $x = 3$;
б) $\int_D \frac{dxdy}{x^2 + y^2 - 1}$, D: $\{9 \leq x^2 + y^2 \leq 25\}$.

157
Ответ: а) $\frac{76}{3}$; б) $\pi \ln 3$.

6. Вычислить $\iiint_V (x + 2y + 3z)dxdydz$, где V – призма, ограниченная плоскостями $y = 0$, $z = 0$, $z = 2$, $x + y = 2$, $2x - y + 2 = 0$.

Ответ: 28.

7. Вычислить $\iiint_V (x^2 + y^2)dxdydz$, перейдя к цилиндрическим координатам, если $V = \left\{ \frac{1}{2}(x^2 + y^2) \leq z \leq 2 \right\}$.

Ответ: $\frac{16\pi}{3}$.

8. Вычислить $\iiint_V \sqrt{x^2 + y^2 + z^2} dxdydz$, перейдя к сферическим координатам, если $V = \left\{ 1 \leq x^2 + y^2 + z^2 \leq 8 \right\}$.

Ответ: 63π.

Занятие 30

Контрольная работа. Кратные интегралы

Вариант 1

1. Свести двойной интеграл $\iint_D f(x; y)dxdy$ к повторному двумя способами, если D – треугольник с вершинами $O(0;0)$, $A(2;4)$, $B(2;6)$.

Ответ: $\iint_D f(x; y)dxdy = \int_{x=0}^{x=2} \int_{y=0}^{y=\frac{3x}{2}} f(x; y)dydx = \int_{y=0}^{y=\frac{4}{3}} \int_{x=0}^{x=\frac{2y}{3}} f(x; y)dxdy + \int_{y=\frac{4}{3}}^{y=\frac{6}{3}} \int_{x=0}^{x=\frac{2y}{3}} f(x; y)dxdy.$

2. Вычислить $\iint_D x dxdy$, где D – область, ограниченная кривыми $y = 3x^2$, $y = 63x$.

Ответ: $-\frac{27}{4}$.

3. Вычислить площадь фигуры $(x^2 + y^2)^2 = 4x^2 + y^2$ (перейти к полярным координатам).
Ответ: \(\frac{5\pi}{2} \).

4. Вычислить объем тела, ограниченного поверхностями \(x^2 = 1 - y, \) \(x + y + z = 3, \) \(y \geq 0, \) \(z \geq 0. \)

Ответ: \(\frac{52}{15} \).

5. Вычислить \(\iiint_V y\,dxdydz \) если \(V \) – пирамида, ограниченная плоскостями \(x = 0, \) \(y = 0, \) \(z = 0, \) \(2x + y + z = 4. \)

Ответ: \(\frac{16}{3} \).

6. Вычислить \(\iiint_V y\,dxdydz \) \(V : 4 \leq x^2 + y^2 + z^2 \leq 16, \) \(y \leq \sqrt{3x}, \) \(y \geq 0, \) \(z \geq 0 \)

с помощью сферических координат.

Ответ: \(\frac{15\pi}{2} \).

7. Вычислить координаты центра масс однородного тела, занимающего область \(V, \) ограниченную поверхностями \(x^2 + z^2 = 4y, \) \(y = 9. \)

Ответ: \((0; 6; 0). \)

Вариант 2

1. Свести двойной интеграл \(\iint_D f(x; y)\,dxdy \) к повторному двумя способами, если \(D \) – треугольник с вершинами \(O(0,0), A(1; -1), B(1;4). \)

Ответ: \(\iint_D f(x; y)\,dxdy = \int_0^4 \int_{-x}^{4x} f(x; y)\,dy\,dx + \int_{-1}^0 \int_{-y}^{1-y} f(x; y)\,dx\,dy + \int_{0}^{1} \int_{0}^{x} f(x; y)\,dy\,dx. \)

2. Вычислить \(\iint_D \frac{y}{x^2}\,dxdy, \) \(D = \left\{ 0 < x, x^2 \leq y \leq x^2 \right\}. \)

Ответ: \(\frac{1}{15}. \)

3. Вычислить площадь фигуры \((x^2 + y^2)^3 = x^2 y^2 \) (перейти к полярным координатам).

Ответ: \(\frac{\pi}{8}. \)

4. Вычислить объем тела, ограниченного поверхностями
$z = x^2, x + y = 6, y = 2x, x \geq 0, y \geq 0, z \geq 0.$

Ответ: 4.

5. Вычислить $\iiint_V x\,dxdydz$, если V — пирамида, ограниченная плоскостями $x = 0, y = 0, z = 0, x - y + z = 1$.

Ответ: $\frac{1}{24}$.

6. Вычислить $\iiint_V \frac{x\,dxdydz}{\sqrt{x^2 + y^2 + z^2}}$, $V: 1 \leq x^2 + y^2 + z^2 \leq 9, y \leq x, y \geq 0, z \geq 0$ с помощью сферических координат.

Ответ: $\frac{13\sqrt{2}\pi}{12}$.

7. Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную поверхностями $x = 2\sqrt{y^2 + z^2}, y^2 + z^2 = 4, x = 0$.

Ответ: $\left(\frac{3}{2}; 0; 0\right)$.

Занятия 31–32

Криволинейные и поверхностные интегралы. Самостоятельная работа

Пример 1. Вычислить криволинейный интеграл $I = \int_C \frac{dl}{c\sqrt{x^2 + y^2 + 4}}$, где C — отрезок прямой, соединяющий точки $O(0; 0)$ и $A(1; 2)$.

Уравнение прямой OA имеет вид $y = 2x \ (0 \leq x \leq 1)$. Находим $dl = \sqrt{1 + y'^2}\,dx = \sqrt{5}dx$.

Следовательно,

$I = \int_0^1 \frac{\sqrt{5}dx}{\sqrt{x^2 + 4x^2 + 4}} = \sqrt{\frac{5}{5}} \int_0^1 \frac{dx}{\sqrt{4 + x^2}} = \ln \left(x + \sqrt{4 + x^2}\right)_0^1 = \ln \frac{\sqrt{5} + 3}{2}.$

Пример 2. Вычислить $I = \int_C (4\sqrt{x} - 3\sqrt{y})\,dl$ между точками $A(-1; 0)$ и
В(0;1) по дуге астроиды $x = \cos^3 t$, $y = \sin^3 t$.

Δ Находим $x' = -3\cos^2 t \sin t$, $y' = 3\sin^2 t \cos t$,

$$dl = \sqrt{x'^2 + y'^2} \, dt = 3|\sin t \cos t| \, dt = -3\sin t \cos t \, dt,$$

так как $\frac{\pi}{2} \leq t \leq \pi$.

Следовательно, $I = -\int_{\pi/2}^{\pi/2} (4\cos t - 3\sqrt{\sin^3 t}) \sin t \cos t \, dt = -12\int_{\pi/2}^{\pi/2} \cos^2 t \sin t \, dt + 9\int_{\pi/2}^{\pi/2} \sin^2 t \cos t \, dt = \frac{12}{3} \cos^3 t \left|_{\pi/2}^{\pi/2} + \frac{18}{7} \sin^2 t \left|_{\pi/2}^{\pi/2} \right. \right. = -\frac{46}{7}$. ▲

Пример 3. Вычислить $I = \int_C \arctg_\frac{y}{x} \, dl$, где C — дуга кардиоиды $r = 1 + \cos \varphi$, $0 \leq \varphi \leq \frac{\pi}{2}$.

Δ Находим $r' = -\sin \varphi$, $dl = \sqrt{r^2 + r'^2} \, d\varphi = \sqrt{(1 + \cos \varphi)^2 + \sin^2 \varphi} \, d\varphi = \sqrt{2 + 2\cos \varphi} \, d\varphi = \sqrt{2} \cdot \sqrt{1 + \cos \varphi} \, d\varphi = \sqrt{2} \cdot \sqrt{\cos^2 \frac{\varphi}{2} + \frac{1}{2}} \, d\varphi = 2\cos \frac{\varphi}{2} \, d\varphi$, так как $0 \leq \varphi \leq \frac{\pi}{2}$; $f(x, y) = \varphi$, поскольку $\arctg_\frac{y}{x} = \arctg(\tg \varphi) = \varphi$ при $0 \leq \varphi \leq \frac{\pi}{2}$.

Следовательно,

$$I = \int_0^{\pi/2} 2\cos \frac{\varphi}{2} \, d\varphi = 2\int_0^{\pi/2} \cos \frac{\varphi}{2} \, d\varphi = \left. u = \varphi, \, du = d\varphi \right|_{v = 2\sin \frac{\varphi}{2}} = 2\left(2\sin \frac{\pi}{2} - 2\sin \frac{0}{2}\right) = 2\left(2 \cdot \frac{\pi}{2} \cdot \frac{\sqrt{2}}{2} + 4\cos \frac{\pi}{2} \right) = \sqrt{2} \pi + 4\sqrt{2} - 8 = (\pi + 4)\sqrt{2} - 8$. ▲

Пример 4. Вычислить $I = \int_C xy \, dl$, где C — четверть эллипса \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), лежащая в первом квадранте.

Δ Запишем параметрическое уравнение эллипса:

$$x = a \cos t, \ y = b \sin t \left(0 \leq t \leq \frac{\pi}{2}\right).$$
Находим \(x' = -a \sin t \), \(y' = b \cos t \), \(dl = \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt \).
Следовательно,
\[
I = \int_{0}^{\frac{\pi}{2}} a \cos t b \sin t \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt =
\]
\[
= \frac{ab}{2(a^2 - b^2)} \int_{0}^{\frac{\pi}{2}} (a^2 \sin^2 t + b^2 \cos^2 t) \frac{1}{2} \, d(a^2 \sin^2 t + b^2 \cos^2 t) =
\]
\[
= \frac{2}{3} \cdot \frac{ab}{2(a^2 - b^2)} (a^2 \sin^2 t + b^2 \cos^2 t) \left|_{0}^{\frac{\pi}{2}} \right. = \frac{ab}{3(a^2 - b^2)} (a^3 - b^3) =
\]
\[
= \frac{ab(a^2 + ab + b^2)}{3(a+b)}. \quad \blacktriangle
\]

Пример 5. Вычислить \(I = \int (x+z) \, dl \), где \(C \) — дуга кривой \(x = t \), \(y = \frac{3t^2}{\sqrt{2}} \), \(z = t^3 \) \((0 \leq t \leq 1)\).

\Delta Находим \(x' = 1 \), \(y' = \frac{6t}{\sqrt{2}} \), \(z' = 3t^2 \), \(dl = \sqrt{1+18t^2+9t^4} \, dt \).
Следовательно,
\[
I = \int_{0}^{1} (t+t^3) \sqrt{1+18t^2+9t^4} \, dt = \frac{1}{36} \int_{0}^{1} (1+18t^2+9t^4)^{\frac{1}{2}} \, d(1+18t^2+9t^4) =
\]
\[
= \frac{1}{36} \cdot \frac{2}{3} (1+18t^2+9t^4)^{\frac{3}{2}} \left|_{0}^{1} \right. = \frac{1}{54} (56\sqrt{7} - 1). \quad \blacktriangle
\]

Пример 6. Вычислить \(I = \int \sqrt{x^2 + y^2} \, dl \), где \(C \) — кривая, заданная уравнением \((x^2 + y^2)^{\frac{3}{2}} = a^2 \left(x^2 - y^2 \right) \).

\Delta Перейдем к полярным координатам: \(x = r \cos \varphi \), \(y = r \sin \varphi \). Уравнение кривой \(C \) примет вид \(r = a^2 \cos 2\varphi \), где \(\varphi \in \left[-\pi \cdot \frac{4}{4}, \pi \cdot \frac{4}{4} \right] \cup \left[3\pi \cdot \frac{4}{4}, 5\pi \cdot \frac{4}{4} \right] \).
Так как \(\sqrt{x^2 + y^2} = r = a^2 \cos 2\varphi \), \(dl = \sqrt{r^2 + r'^2} \, d\varphi = a^2 \sqrt{1 + 3 \sin^2 2\varphi} \, d\varphi \), то

162
\[I = \int_{-\frac{\pi}{4}}^{\frac{5\pi}{4}} a^4 \cos 2\varphi \sqrt{1 + 3\sin^2 2\varphi} \, d\varphi + \int_{-\frac{3\pi}{4}}^{\frac{\pi}{4}} a^2 \cos 2\varphi \sqrt{1 + 3\sin^2 2\varphi} \, d\varphi = \]
\[= 2a^4 + \frac{a^4}{\sqrt{3}} \ln (\sqrt{3} + 2). \]

Пример 7. Вычислить массу \(m \) дуги \(AB \) кривой \(y = \ln x \), заключенной между точками с абсциссами \(x = \sqrt{3} \) и \(x = \sqrt{8} \), если линейная плотность \(q \) дуги в каждой точке равна квадрату абсциссы в этой точке.

\[\Delta \text{ Воспользуемся формулой } m = \int_{AB} \rho(x, y) \, dl. \]

Так как \(y' = \frac{1}{x} \), \(dl = \sqrt{1 + (y')^2} \, dx = \sqrt{1 + \frac{1}{x^2}} \, dx \), \(\rho(x, y) = x^2 \), то
\[m = \int_{\sqrt{3}}^{\sqrt{8}} x^2 \sqrt{1 + \frac{1}{x^2}} \, dx = \frac{1}{2} \int_{\frac{3}{3}}^{\sqrt{8}} (x^2 + 1)^{\frac{1}{2}} d(x^2 + 1) = \frac{1}{3} (x^2 + 1)^{\frac{3}{2}} \bigg|_3^{8} = \]
\[= \frac{1}{3} (27 - 8) = \frac{19}{3}. \]

Пример 8. Найти координаты \(x_0, y_0, z_0 \) центра тяжести первого полувитка винтовой линии \(C \), заданной уравнениями \(x = a \cos t \), \(y = a \sin t \), \(z = bt \), \(0 \leq t \leq \pi \), если ее линейная плотность постоянная и равна \(\rho \).

\[\Delta \text{ Масса } m = \int_{C} \rho \, dl. \]

Так как \(dl = \sqrt{x'^2 + y'^2 + z'^2} \, dt = \sqrt{a^2 \sin^2 t + a^2 \cos^2 t + b^2} \, dt = \sqrt{a^2 + b^2} \, dt \), то
\[m = \rho \, dl. \]

Значения \(x_0, y_0, z_0 \) находим по формулам:
\[x_0 = \frac{\rho}{m} \int_{C} x \, dl, \quad y_0 = \frac{\rho}{m} \int_{C} y \, dl, \quad z_0 = \frac{\rho}{m} \int_{C} z \, dl. \]

Таким образом,
\[x_0 = \frac{\rho}{m} \int_{0}^{\pi} a \cos t \sqrt{a^2 + b^2} \, dt = 0, \]
\[y_0 = \frac{\rho}{m} \int_{0}^{\pi} a \sin t \sqrt{a^2 + b^2} \, dt = \frac{2a}{\pi}, \]
\[z_0 = \frac{\rho}{m} \int_{0}^{\pi} bt \sqrt{a^2 + b^2} \, dt = \frac{b\pi}{2}. \]

Пример 9. Вычислить криволинейный интеграл \(I = \int_{C} x^2 \, y \, dl \), где \(C \) – отрезок прямой \(y = 3x - 1 \), заключенный между точками \(A(0; -1) \) и \(B(2; 5) \).
Δ Находим \(dl = \sqrt{1+ y'^2} \, dx = \sqrt{1+9} \, dx = \sqrt{10} \, dx \).
Следовательно,
\[
I = \int_0^2 x^2 \left(3x - 1\right) - \sqrt{10} \, dx = \sqrt{10} \int_0^2 \left(3x^3 - x^2\right) \, dx = \sqrt{10} \left(3 \cdot \frac{x^4}{4} - \frac{x^3}{3}\right) \bigg|_0^1 = \frac{5\sqrt{10}}{12}. \quad \square
\]

Пример 10. Вычислить \(I = \int_{AB} (4x + y) \, dx + (x + 4y) \, dy \), где кривая \(AB \) задана уравнением \(y = x^4 \), \(A(1; 1) \) и \(B(-1; 1) \).
Δ Учитывая, что \(y = x^4 \), \(dy = 4x^3 \, dx \) и \(x \) изменяется от 1 до –1, получаем
\[
I = \int_{-1}^1 (4x + x^4) + (x + 4x^4) \cdot 4x^3 \, dx = \int_{-1}^1 (16x^7 + 5x^4 + 4x) \, dx =
\]
\[
= \left(2x^8 + x^5 + 2x^2\right) \bigg|_{-1}^1 = -2. \quad \square
\]

Пример 11. Вычислить
\[
I = \int_C 2xy \, dx - x^2 \, dy,
\]
где \(C \) — ломаная \(OBA; O(0; 0), B(2; 0), A(2; 3) \) (рис. 63).
Δ Воспользуемся свойством аддитивности интеграла и представим его как сумму двух интегралов – по отрезкам \(OB \) и \(BA \). Так как для отрезка \(OB \) \(y = 0 \), \(y' = 0 \), \(0 \leq x \leq 2 \), то
\[
\int_{OB} 2xy \, dx - x^2 \, dy = \int_0^2 \left(2x \cdot 0 - x^2 \cdot 0\right) \, dx = 0.
\]
Для отрезка \(BA \) имеем \(x = x(y) = 2 \), \(x' = 0 \), \(0 \leq y \leq 3 \), поэтому
\[
\int_{BA} 2xy \, dx - x^2 \, dy = \int_0^3 \left(2 \cdot 2 \cdot y \cdot 0 - 2^2 \right) \, dy = -4y \bigg|_0^3 = -12.
\]
Следовательно, \(I = \int_{OB} 2xy \, dx - x^2 \, dy + \int_{BA} 2xy \, dx - x^2 \, dy = 0 - 12 = -12. \quad \square
\]

Пример 12. Вычислить криволинейный интеграл \(I = \int_C (x^2 + y^2) \, dx \), где \(C \) — дуга параболы \(y = 2x^2 \), заключенная между точками \(A(2; 8) \) и \(B(4; 32) \).
Δ Кривая задана явным уравнением \(y = f(x) \), поэтому для вычисления интеграла применим формулу

164
\[
\int P(x, y) \, dx + Q(x, y) \, dy = \int_{a}^{b} \left(P(x, f(x)) + Q(x, f(x)) \cdot f'(x) \right) \, dx.
\]

Так как \(Q(x, y) = 0 \), то \(I = \int_{a}^{b} \left(\frac{x^3}{3} + 4 \cdot \frac{x^5}{5} \right) \, dx = \frac{12184}{15}. \quad \▲

Пример 13. Найти работу силы \(\overline{F} = \frac{2x}{x^2 + y^2} \overline{r} + \frac{2y}{x^2 + y^2} \overline{j} \) при перемещении материальной точки вдоль отрезка прямой \(AB \), если \(A(2; 1) \) и \(B(1; 7) \).

\(\Delta \) Уравнение прямой \(AB \) имеет вид \(y = -6x + 13 \). Тогда работа \(A \) силы \(\overline{F} \) по пути \(AB \) вычисляется по формуле

\[
A = \int_{AB} F_x \, dx + F_y \, dy = \int_{AB} \left(\frac{2x}{x^2 + y^2} \, dx + \frac{2y}{x^2 + y^2} \, dy \right) = \\
= \frac{1}{2} \left(\frac{2x}{x^2 + (-6x + 13)^2} + \frac{2(-6x + 13)}{x^2 + (-6x + 13)^2} \cdot (-6) \right) \, dx = \\
= \frac{1}{2} \left(\frac{74x - 156}{37x^2 - 156x + 169} \right) \, dx = \frac{1}{2} \left(\frac{d}{37x^2 - 156x + 169} (37x^2 - 156x + 169) \right) = \\
= \ln \left| \frac{37x^2 - 156x + 169}{2} \right|^{1}_{0} = \ln 10. \quad \▲
\]

Пример 14. Вычислить \(I = \int_{C} (y^2 - z^2) \, dx + 2yz \, dy - x^2 \, dz \), где \(C \) – кривая \(x = t, \ y = t^2, \ z = t^3, \ 0 \leq t \leq 1, \) пробегаемая в направлении возрастания параметра \(t \).

\(\Delta \) Так как \(dx = dt, \ dy = 2tdt, \ dz = 3t^2 \, dt \), то

\[
I = \int_{0}^{1} \left(t^4 - t^6 + 2t^2 \cdot t^3 \cdot 2t - t^2 \cdot 3t^2 \right) \, dt = \int_{0}^{1} \left(t^4 - t^6 + 4t^6 - 3t^4 \right) \, dt = \\
= \int_{0}^{1} \left(3t^6 - 2t^4 \right) \, dt = \left[\frac{3}{7} t^7 - \frac{2}{5} t^5 \right]^{1}_{0} = \frac{1}{35}. \quad \▲
\]

Пример 15. Найти работу упругой силы, направленной к началу координат, величина которой пропорциональна удалению точки от начала координат, если точка приложения силы описывает против часовой стрелки четверть эллипса \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), лежащую в первом квадранте.

\(\Delta \) Запишем параметрическое уравнение кривой \(x = a \cos t, \ y = b \sin t, \)
0 ≤ t ≤ \(\frac{\pi}{2} \). Точка движется под действием силы \(\mathbf{F} = k(-a \cos t \mathbf{i} - b \sin t \mathbf{j}) \). Находим \(\frac{dx}{dt} = -a \sin t, \frac{dy}{dt} = b \cos t \).

Работа силы \(\mathbf{F} \) по пути \(AB \) вычисляется по формуле

\[
A = \int_{AB} F_x \, dx + F_y \, dy = k \int_{0}^{\frac{\pi}{2}} (a^2 \sin t \cos t + b^2 \sin t \cos t) \, dt =
\]

\[
= -k \left(\frac{b^2 - a^2}{2} \right) \int_{0}^{\frac{\pi}{2}} \sin 2t \, dt = \frac{k (b^2 - a^2)}{4} \cos 2t \bigg|_{0}^{\frac{\pi}{2}} = \frac{k (a^2 - b^2)}{2}. \quad \blacktriangle
\]

Пример 16. Применяя формулу Грина, вычислить \(I_1 = \int_{C} -x^2 \, y \, dx + xy^2 \, dy \), где \(C \) – окружность \(x^2 + y^2 = R^2 \), пробегаемая против часовой стрелки.

\(\Delta \) Находим \(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = x^2 + y^2 \).

Следовательно,

\(I_1 = \int_{C} -x^2 \, y \, dx + xy^2 \, dy = \iint_{D} (x^2 + y^2) \, dxdy, \)

Перейдем к полярной системе координат:

\(x = r \cos \varphi, \quad y = r \sin \varphi, \quad |I| = r, \quad x^2 + y^2 = r^2, \quad 0 \leq \varphi \leq 2\pi. \)

\(I_1 = \int_{0}^{2\pi} \int_{0}^{R} r^2 \, dr \, d\varphi = 2\pi \cdot \frac{R^4}{4} \bigg|_{0}^{R} = \frac{\pi R^4}{2}. \quad \blacktriangle \)

Пример 17. Вычислить площадь \(S \) фигуры, ограниченной кривыми \(y = \frac{x^2}{4}, \) \(x = \frac{y^2}{4}, \) \(xy = 2 \) и примыкающей к началу координат (рис. 64).

\(\Delta \) Решая совместно уравнения кривых, находим точки их пересечения: \(A(2; 1) \) и \(B(1; 2) \). Для нахождения площади воспользуемся формулой \(S = \frac{1}{2} \int_{C} x \, dy - y \, dx \).

Имеем

\[
S = \frac{1}{2} \int_{OA} x \, dy - y \, dx + \frac{1}{2} \int_{AB} x \, dy - y \, dx + \frac{1}{2} \int_{BO} x \, dy - y \, dx =
\]

166
Пример 18. Вычислить площадь S фигуры, ограниченной астатройдой $x = a \cos^3 t$, $y = b \sin^3 t$, $0 \leq t \leq 2\pi$.

Δ Пользуясь формулой $S = \frac{1}{2} \int_C xdy - ydx$, находим

$S = \frac{1}{2} \int_0^{2\pi} (3ab \cos^4 t \sin^2 t + 3ab \sin^4 t \cos^2 t) dt = \frac{3}{2} ab \int_0^{2\pi} \cos^2 t \sin^2 t dt = \frac{3}{8} ab \int_0^{2\pi} \sin^2 2t dt = \frac{3}{16} ab \int_0^{2\pi} (1 - \cos 4t) dt = \frac{3ab\pi}{8}$. ▲

Пример 19. Доказать, что подынтегральное выражение является полным дифференциалом и вычислить интеграл $I = \int_A^B (x^2 + 4xy^3) dx + (6x^2 y^2 - 5y^4) dy$, где $A(-2;-1)$, $B(3;0)$.

Δ Здесь $P = x^2 + 4xy^3$, $Q = 6x^2 y^2 - 5y^4$, $\frac{\partial P}{\partial y} = 12xy^2$, $\frac{\partial Q}{\partial x} = 12xy^2$.

Таким образом, $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Следовательно, выражение $Pdx + Qdy$ является полным дифференциалом, а криволинейный интеграл $I = \int_A^B Pdx + Qdy$ не зависит от пути интегрирования. Возьмем в качестве пути интегрирования ломаную AMB (рис. 65).

Вдоль отрезка AM и $x = -2$, $dx = 0$, $-1 \leq y \leq 0$, поэтому

$\int_A^M Pdx + Qdy = \int_{-1}^{0} (24y^2 - 5y^4) dy = (8y^3 - y^5) \bigg|_{x=-2}^{x=0} = 7$.

Вдоль отрезка MB имеем $y = 0$, $dy = 0$, $-2 \leq x \leq 3$. Поэтому

$\int_M^B Pdx + Qdy = \int_{-2}^{3} x^2 dx = \frac{x^3}{3} \bigg|_{-2}^{3} = \frac{35}{3}$.

Искомый интеграл равен сумме вычисленных интегралов, т. е. $\frac{56}{3}$. ▲
Пример 20. Показать, что дифференциальное выражение
\[du = (x^2 + 2xy - y^2) \, dx + (x^2 - 2xy - y^2) \, dy \]
является полным дифференциалом некоторой функции, и найти эту функцию.

\[\Delta \quad \text{Так как} \quad P(x; y) = x^2 + 2xy - y^2, \quad Q(x; y) = x^2 - 2xy - y^2, \quad \text{то} \]
\[\frac{\partial P}{\partial y} = 2x - 2y \quad \text{и} \quad \frac{\partial Q}{\partial x} = 2x - 2y. \]

Значит во всех точках плоскости Оху данное дифференциальное выражение будет полным дифференциалом. Для нахождения функции \(u(x; y) \) воспользуемся формулой \(u(x; y) = \int P(x; y_0) \, dx + \int Q(x; y) \, dy + C \), где можно взять \(x_0 = y_0 = 0 \).

Имеем
\[u(x; y) = \int_0^x x^2 \, dx + \int_0^y (x^2 - 2xy - y^2) \, dy + C = \frac{x^3}{3} \bigg|_0^x + \left(x^2 y - xy^2 - \frac{y^3}{3} \right) \bigg|_{y=0}^{y=y} + C = \]
\[= \frac{x^3}{3} + x^2 y - xy^2 - \frac{y^3}{3} + C. \]

Пример 21. Вычислить поверхностный интеграл первого рода
\[I = \iint_S (6x + 4y + 3z) \, dS, \]
где \(S \) – часть плоскости \(x + 2y + 3z = 6 \), расположенная в первом октанте.

\[\Delta \quad \text{Поверхность} \ S \ \text{однозначно проектируется на плоскость} \ Oxy \ (\text{рис. 66}). \]

Рис. 66

Пользуясь ее уравнением, преобразуем поверхностный интеграл в двойной:
\[z = \frac{1}{3} (6 - 2x - 2y), \quad dS = \sqrt{1 + z_x'^2 + z_y'^2} \, dx \, dy = \frac{\sqrt{14}}{3} \, dx \, dy, \]
\[I = \frac{\sqrt{14}}{3} \int_{D_{xy}} (5x + 2y + 6) \, dx \, dy = \frac{\sqrt{14}}{3} \int_0^6 \int_0^{6-2y} (5x + 2y + 6) \, dx \, dy = \]

168
Пример 22. Вычислить поверхностный интеграл первого рода \(I = \iint_S zdS \),
где \(S \) — часть гиперболического параболоида \(z = xy \), вырезанная цилиндром \(x^2 + y^2 \leq 4 \).

\[\Delta \] Проекцией поверхности \(S \) на плоскость \(Oxy \) является круг \(x^2 + y^2 \leq 4 \).

Если масса поверхности \(S \) на плоскость \(Oxy \) является круг \(x^2 + y^2 \leq 4 \).

\[\Delta \] Проекцией поверхности \(S \) на плоскость \(Oxy \) является круг \(x^2 + y^2 \leq 4 \).

Пример 23. Найти массу поверхности куба \(0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1 \), если поверхностная плотность в точке \(M(x; y; z) \) равна \(xyz \).

\[\Delta \] Ввиду симметрии масса поверхности куба равна утроенной массе верхней грани куба (масса трех граней куба равна нулю).

Найдем массу верхней грани куба \(m_1 = \iint_S \rho(x; y; z) dS \).

Проекция поверхности \(S \) на плоскость \(Oxy \) представляет собой квадрат

\[\Delta \] Нормаль к поверхности образует тупой угол с осью \(O_3 \). Проекцией данной части конуса на плоскость \(Oxy \) является круг \(D_{xy} : x^2 + y^2 \leq 1 \). Сведем поверхностный интеграл к двойному: \(I = \iint_S dxdy = - \iint_{D_{xy}} dxdy. \)
Так как \(\int dxdy = S_{круга} = \pi \), то \(I = -\pi \). ▲

Пример 25. Вычислить поверхностный интеграл второго рода
\[
I = \iint_S dxdy + ydxdz - x^2 z dydz,
\]
где \(S \) – внешняя сторона части эллипсоида \(4x^2 + y^2 + 4z^2 = 4 \), расположенной в первом октанте.

\(\Delta \) Раскладываем данный поверхностный интеграл на три слагаемых интеграла
\[
I = \iint_S dxdy + \iint_S ydxdz - \iint_S x^2 z dydz.
\]

Каждый из полученных интегралов преобразуем в двойной интеграл, учитывая, что нормаль к ориентированной поверхности образует острые углы с осями \(Ox, Oy, Oz \).

Находим \(I_1 = \iint_S dxdy = \iint_{D_{xy}} dxdy \), где \(D_{xy} \) – четверть области \(x^2 + \frac{y^2}{4} \leq 1 \).

Этот интеграл равен четверти площади эллипса с полуосами \(a = 1, b = 2 \), т. е. \(I_1 = \frac{\pi ab}{4} = \frac{\pi}{2} \). \(I_2 = \iint_S ydxdz = 2 \iint_{D_{xz}} \sqrt{1-x^2+z^2} dxdz \), где \(D_{xz} \) – четверть круга \(x^2 + z^2 \leq 1 \).

Переходя к полярным координатам, получим:
\[
I_2 = 2 \int_0^{\frac{\pi}{2}} dp \int_0^{\sqrt{1-r^2}} r (1-r^2)^{\frac{1}{2}} dr = -\frac{\pi}{2} \left. \int_0^{\frac{1}{2}} (1-r^2)^{\frac{1}{2}} d (1-r^2) = -\frac{\pi}{3} \right|_0^1 = \frac{\pi}{3};
\]
\[
I_3 = \int_0^{\frac{2}{\sqrt{1-z^2}}} zdz \int_0^{\frac{1}{\sqrt{1-z^2}}} \left(1-\frac{y^2}{4} - z^2\right) dy = \int_0^{\frac{2}{\sqrt{1-z^2}}} z \left(y-\frac{y^3}{12} - z^2 y \right) |_{y=2\sqrt{1-z^2}}^{y=0} dz =
\]
\[
= \frac{4}{3} \left. z (1-z^2)^{\frac{3}{2}} \right|_0^1 = \frac{4}{15}.
\]

Следовательно, \(I = \frac{\pi}{2} + \frac{\pi}{3} - \frac{4}{15} = \frac{5}{6} \pi - \frac{4}{15} \). ▲

Пример 26. Вычислить поверхностный интеграл второго рода
\[
I = \iint_S xdydz + ydzdx + zdxdy,
\]
где \(S \) – внешняя сторона сферы \(x^2 + y^2 + z^2 = a^2 \).

\(\Delta \) Рассмотрим интеграл \(I_1 = \iint_S zdx dy \). Его можно представить в виде суммы интегралов по верхней и нижней сторонам сферы, которые обозначим соответственно...
ветственно S_+ и S_-.

На поверхности S_+ $z = \sqrt{a^2 - x^2 - y^2}$, а на поверхности S_- $z = -\sqrt{a^2 - x^2 - y^2}$.

Но нормаль к поверхности S_+ образует острый угол с осью Oz, а нормаль к поверхности S_- образует тупой угол с осью Oz. С учетом того, что проекции S_+ и S_- на плоскость Oxy совпадают, имеем

$$I_1 = 2 \iint_{D_{xy}} \sqrt{a^2 - x^2 - y^2} dxdy = 2 \int_0^{2\pi} d\phi \int_0^a r\sqrt{a^2 - r^2} dr = -\frac{4}{3} \pi (a^2 - r^2)^{\frac{3}{2}} \bigg|_0^a = \frac{4}{3} \pi a^3.$$

Из очевидных равенств $\iint_S xdydz = \iint_S ydzdx = I_1$ окончательно находим

$$I = 4\pi a^3. \quad \blacksquare$$

Пример 27. Вычислить поверхностный интеграл второго рода

$$I = \iint_S xdydz + ydzdx - 3zdzdy,$$

где S – часть внешней поверхности параболоида $z = x^2 + y^2$, отсеченного плоскостью $z = 4$.

Д Воспользуемся формулой

$$\iint_S Pdydz + Qdzdx + Rdxdy = \iint_D \left(\vec{a} \cdot \vec{n} \right) dxdy,$$

В нашем случае $\vec{a} = (x; y; -3z)$, $\vec{n} = \pm(-z'_x; -z'_y; 1) = \pm(-2x; -2y; 1)$.

Так как внешняя нормаль образует тупой угол с осью Oz, $\vec{n} = (2x; 2y; -1)$. Находим $(\vec{a}; \vec{n}) = 2x^2 + 2y^2 + 3z$. Таким образом,

$$I = \iint_{D_{xy}} (2x^2 + 2y^2 + 3z) \bigg|_{z = x^2 + y^2} dxdy = 5 \iint_{D_{xy}} (x^2 + y^2)dxdy.$$

Областью интегрирования является круг $x^2 + y^2 \leq 4$. Переходя к полярной системе координат, получим

$$I = 5 \int_0^{2\pi} d\phi \int_0^2 r^2 dr = 40\pi. \quad \blacksquare$$

Пример 28. Пользуясь формулой Гаусса – Остроградского, вычислить

$$I = \iint_S xdydz + ydzdx + zdxdy,$$

где S – внешняя сторона пирамиды, ограниченной плоскостями $x + y + z = 1$, $x = 0$, $y = 0$, $z = 0$.

Д Используя формулу Гаусса – Остроградского, получаем
\[I = \iint_S x\,dy\,dz + y\,dz\,dx + z\,dx\,dy = \iiint_V dV = 3V = 3 \cdot \frac{1}{6} = \frac{1}{2}. \quad \uparrow \]

Пример 29. Пользуясь формулой Гаусса – Остроградского, вычислить
\[I = \iint_S x^3\,dy\,dz + y^3\,dz\,dx + z^3\,dx\,dy, \]
где \(S \) – внешняя сторона сферы \(x^2 + y^2 + z^2 = a^2 \).

\[\Delta \text{ Используя формулу Гаусса – Остроградского, находим} \]
\[I = 3 \iiint_V (x^2 + y^2 + z^2)\,dx\,dy\,dz. \]

Переходя к сферическим координатам, получаем
\[I = \int_0^{\pi} \sin \psi \int_0^{2\pi} \int_0^a r^4\,dr\,d\phi\,d\psi = \frac{12}{5} \pi a^5. \quad \uparrow \]

Пример 30. Применяя формулу Стокса, вычислить \(I = \oint_C y\,dx + z\,dy + x\,dz, \)
где \(C \) – окружность \(x^2 + y^2 + z^2 = a^2, \ x + y + z = 0, \) пробегаемая против хода часовой стрелки, если смотреть с положительной стороны оси \(Ox. \)

\[\Delta \text{ По формуле Стокса} \]
\[\int_C P\,dx + Q\,dy + R\,dz = \iiint_S \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right)\,dy\,dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right)\,dz\,dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)\,dx\,dy \]

имеем
\[\oint_C y\,dx + z\,dy + x\,dz = -\iint_S dy\,dz + dz\,dx + dx\,dy = -\iint_S (\cos \alpha + \cos \beta + \cos \gamma)\,dS. \]

В качестве поверхности \(S \) можно взять круг радиусом \(a \) с центром в начале координат, лежащий в плоскости \(z = -x - y. \)

Найдем направляющие косинусы нормали к плоскости \(z = -x - y: \)
\[\cos \alpha = \frac{-z_x'}{\pm \sqrt{1 + z_x'^2 + z_y'^2}}, \quad \cos \beta = \frac{-z_y'}{\pm \sqrt{1 + z_x'^2 + z_y'^2}}, \quad \cos \gamma = \frac{1}{\pm \sqrt{1 + z_x'^2 + z_y'^2}}. \]

Так как нормаль к плоскости образует с осями острые углы, получаем
\[\cos \alpha = \cos \beta = \cos \gamma = \frac{1}{\sqrt{3}}. \]

Таким образом, \[I = -\sqrt{3} \iint_S dS = -\sqrt{3} \cdot S, \] где \(S = \pi a^2. \) Окончательно,
\[I = -\sqrt{3} \pi a^2. \quad \uparrow \]
Самостоятельная работа

Вариант 1

1. Вычислить криволинейный интеграл первого рода \(\int_C (x - y)dl \),
где \(C \) – окружность \(x^2 + y^2 = 2x \) \((x = 1 + \cos t, \ y = \sin t) \).
Ответ: \(2\pi \).

2. Вычислить \(\int_O \bigg(xydx - y^2dy \bigg) \), \(O(0; 0), \ A(2; 2), \ y^2 = 2x \).
Ответ: \(\frac{8}{15} \).

3. Вычислить \(\iint_S (2x + 15y + z) dS \), где \(S \) – часть плоскости \(x + 2y + 2z = 2 \), отсеченная координатными плоскостями.
Ответ: 10.

4. Вычислить \(\iint_S xdydz \), где \(S \) – внешняя сторона сферы \(x^2 + y^2 + z^2 = 1 \).
Ответ: \(\frac{4}{3} \pi \).

5. Вычислить с помощью формулы Гаусса – Остроградского
\(\iint_S 3xdydz + (y + z) dx dz + (x - z) dy dx \),
где \(S \) – внешняя поверхность пирамиды, образованная плоскостью \(x + 3y + z = 3 \) и координатными плоскостями.
Ответ: \(\frac{9}{2} \).

Вариант 2

1. Вычислить криволинейный интеграл первого рода \(\int_C (x^2 + y^2)dl \),
где \(C \) – окружность \(x^2 + y^2 = 4x \) \((x = 2 + 2 \cos t, \ y = 2 \sin t) \).
Ответ: \(32\pi \).

2. Вычислить \(\int_O \bigg(y(x - y) + xdy \bigg) \), \(O(0; 0), \ A(1; 2), \ y^2 = 4x \).
Ответ: \(-\frac{8}{15} \).

3. Вычислить \(\iint_S (4x - 4y - z) dS \), где \(S \) – часть плоскости \(x = 2y + 2z = 4 \), отсеченная координатными плоскостями.
Ответ: 44.

4. Вычислить \(\iiint_S x^2 dydz \), где \(S \) – внешняя сторона части сферы
 \[x^2 + y^2 + z^2 = R^2, \quad x \leq 0, \ y \geq 0. \]
 \[\text{Ответ:} \ -\frac{\pi R^4}{4}. \]

5. Вычислить с помощью формулы Гаусса – Остроградского
 \[\iiint_S (x+z) dydz + (z-x) dxz + (x+2y+z) dxdy, \]
 где \(S \) – внешняя поверхность пирамиды, образованная плоскостью
 \[x + 3y + z = 2 \] и координатными плоскостями.
 \[\text{Ответ:} \ \frac{16}{3}. \]

Дополнительные задачи

1. Вычислить криволинейный интеграл первого рода по кривой \(C \):
 \[\int_C (2x+y)dl, \quad \text{где} \ C = \text{ломаная} ABOA, \ A(1; \ 0), B(0; \ 2), O(0; \ 0). \]
 \[\text{Ответ:} \ 3 + 2\sqrt{5}. \]

2. Вычислить \(\int_C (x+y)dl \), где \(C \) – четверть окружности
 \[x^2 + y^2 + z^2 = a^2, \ y = x, \] расположенная в первом октанте.
 \[\text{Указание.} \ C : x = \frac{a}{\sqrt{2}} \cos t, \ y = \frac{a}{\sqrt{2}} \cos t, \ z = a \sin t \ \left(0 \leq t \leq \frac{\pi}{2} \right). \]
 \[\text{Ответ:} \ a^2 \sqrt{2}. \]

3. Вычислить \(\int_{AB} xydx - y^2dy \), где \(AB \) – дуга параболы \(y^2 = 2x \), \(A(0;0), B(2;2) \).
 \[\text{Ответ:} \ \frac{8}{15}. \]

4. Вычислить \(\int_C ydx + zdy + xdz \) в направлении возрастания параметра, \(C \) – виток винтовой линии
 \(x = a \cos t, \ y = a \sin t, \ z = bt, \ 0 \leq t \leq 2\pi. \)
 \[\text{Ответ:} \ -\pi a^2. \]

5. Вычислить \(\iiint_S z^2 dS \), где \(S \) – полная поверхность конуса \(\sqrt{x^2 + y^2} \leq z \leq 2. \)
 \[\text{Ответ:} \ 8\pi(2 + \sqrt{2}). \]
6. Вычислить \(\iint_{S} (2z - x)\,dy\,dz + (x + 2z)\,dz\,dx + 3z\,dxdy \), где \(S \) – верхняя сторона плоскости треугольника \(x + 4y + z = 4, x \geq 0, y \geq 0, z \geq 0 \).

Ответ: \(\frac{128}{3} \).

7. Вычислить \(\iint_{S} x^3\,dy\,dz + y^3\,dxdz + z^3\,dxdy \), где \(S \) – внешняя сторона боковой поверхности конуса \(x^2 + y^2 \leq z^2, 0 \leq z \leq 1 \).

Указание. Замкнуть поверхность плоскостью \(z = 1 \) и применить формулу Гаусса – Остроградского.

Ответ: \(-\frac{\pi}{10}\).

8. Применив формулу Стокса, вычислить

\[\int_{L} (y^2 - z^2)\,dx + (z^2 - x^2)\,dy + (x^2 - y^2)\,dz, \]

где \(L \) – кривая пересечения параболоида \(x^2 + y^2 + z = 3 \) с плоскостью \(x + y + z = 2 \), которая ориентирована положительно относительно вектора \((1; 0; 0) \).

Ответ: \(-12\pi\).

Занятия 33–34

Поток векторного поля. Дивергенция. Линейный интеграл и циркуляция векторного поля. Ротор векторного поля.

Потенциальные поля

Пример 1. Найти поток вектора \(\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k} \) через площадку, перпендикулярную оси \(Oz \) и имеющую форму круга радиусом \(R \), в положительном направлении оси \(Oz \).

\[\Delta \text{ Согласно определению потока вектора через поверхность } S, \text{ будем иметь } \Pi = \iint_{S} (\vec{a}, \vec{n})\,dS. \]

В нашем случае \(\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}, \vec{n}_0 = \vec{k}, \text{ так что } (\vec{a}, \vec{n}_0) = 3. \text{ Учитывая, что площадь круга равна } \pi R^2, \text{ получим } \Pi = \iint_{S} 3\,dS = 3\iint_{S} dS = 3\pi R^2. \]

Пример 2. Найти поток векторного поля \(\vec{a} = \vec{r}, \) где \(\vec{r} \) – радиус-вектор через прямой круговой цилиндр с высотой \(h \), радиусом основания \(R \) и осью \(Oz \):

\[\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}. \]

\(\Delta \text{ Поверхность } S \text{ состоит из боковой поверхности } S_1, \text{ верхнего основания} \]
S_2 и нижнего основания S_3 цилиндра. Искомый поток Π в силу свойств аддитивности равен $\Pi = \Pi_1 + \Pi_2 + \Pi_3$, где Π_1, Π_2, Π_3 — потоки данного поля через S_1, S_2, S_3 соответственно.

На боковой поверхности S_1

$$(\vec{a}, \vec{n}_0) = (\vec{r}, \vec{n}_0) = R \text{ (рис. 67)}.$$

Следовательно,

$$\Pi_1 = \iint_{S_1} (\vec{a}, \vec{n}_0) dS = R \iint_{S_1} dS = R \cdot 2\pi Rh = 2\pi R^2 h.$$

На верхнем основании $(\vec{a}, \vec{n}_0) = (\vec{r}, \vec{k}) = h$ и,
 значит,

$$\Pi_2 = \iint_{S_2} (\vec{a}, \vec{n}_0) dS = h \iint_{S_2} dS = \pi R^2 h.$$

На нижнем основании S_3 вектор \vec{r} перпендикулярен вектору $\vec{n}_0 = -\vec{k}$. Поэтому $(\vec{a}, \vec{n}_0) = 0$ и $\Pi_3 = 0$.

Искомый поток равен $\Pi = \iint_{S} (\vec{a}, \vec{n}_0) dS = 3\pi R^2 h$. ▲

Пример 3. Вычислить поток вектора $\vec{a} = x\vec{i} + y\vec{j} - z\vec{k}$ через внешнюю поверхность гиперболоида $x^2 + y^2 - z^2 = 3h^2$, ограниченную плоскостями $z = 0, z = h$ (рис. 68). Данная поверхность проектируется взаимно однозначно на плоскость xOy в кольцо Dxy (рис. 69).

Находим орт нормали \vec{n}_0 к поверхности S:

$$\vec{n}_0 = \pm \frac{\text{grad} (x^2 + y^2 - z^2)}{\sqrt{\text{grad} (x^2 + y^2 - z^2)}} = \pm \frac{x\vec{i} + y\vec{j} - z\vec{k}}{\sqrt{x^2 + y^2 + z^2}}.$$
По условию задачи нормаль \mathbf{n}_0 образует тупой угол с осью Oz, поэтому перед дробью надо взять знак плюс. Таким образом, $\mathbf{n}_0 = \frac{x\mathbf{i} + y\mathbf{j} - z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}}$.

Отсюда $\cos \gamma = \frac{-z}{\sqrt{x^2 + y^2 + z^2}} < 0$ и, значит, $dS = \frac{dxdy}{|\cos \gamma|} = \frac{\sqrt{x^2 + y^2 + z^2}}{z} dxdy$.

Находим скалярное произведение $(\mathbf{a}, \mathbf{n}_0) = \frac{x^2 + y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}}$:

$$\Pi = \int_S (\mathbf{a}, \mathbf{n}_0) dS = \int_S \frac{x^2 + y^2 + z^2}{z} dxdy = \int_{\Delta} \frac{x^2 + y^2 + z^2}{z} \Big|_{z = \sqrt{x^2 + y^2 + z^2}} dxdy =$$

$$= \int d\phi \int \frac{2r^2 - 3h^2}{\sqrt{r^2 - 3h^2}} dr + \int d\phi \int \frac{2h}{r} dr = 2\pi \int \frac{2h}{h \sqrt{r^2 - 3h^2}} (r^2 - 3h^2) dr =$$

$$= \pi \cdot \frac{2}{3} (r^2 - 3h^2)^{3/2} \int_{h\sqrt{3}}^{2h} = \frac{2\pi}{3} \pi h^3;$$

$$\int d\phi \int \frac{r^3}{r^2 - 3h^2} dr = \int_0^h r dr = \frac{1}{2} \int_0^h (r^2 - 3h^2)^{1/2} d(r^2 - 3h^2) =$$

$$= 2\pi \int_0^h (z^2 + 3h^2) dz = 2\pi \left(\frac{h^3}{3} + 3h^3 \right) = \frac{20}{3} \pi h^3;$$

$$\Pi = \frac{2}{3} \pi h^3 + \frac{20}{3} \pi h^3 = \frac{22}{3} \pi h^3. \quad \blacksquare$$

Пример 4. Даны векторное поле $\mathbf{a} = (y - x + z)\mathbf{j}$ и плоскость P: $2x - y + 2z - 2 = 0$, которая ограничена координатными плоскостями. Требуется вычислить поток векторного поля \mathbf{a} через часть плоскости P в том направлении нормали к плоскости P, которая образует с осью Oz оструй угол.

Δ Если поверхность S взаимно однозначно проектируется на все три координатные плоскости, то поток вектора $\mathbf{a} = P(x; y; z)\mathbf{i} + Q(x; y; z)\mathbf{j} + R(x; y; z)\mathbf{k}$ че-
рез поверхность \(S \) можно записать так:
\[
\Pi = \pm \int_{D_{yz}} P(x(y; z), y; z) dy dz \pm \int_{D_{xz}} Q(x; y(x; z); z) dx dz \pm \int_{D_{xy}} R(x; y; z(x; y)) dx dy,
\]
причем знак в каждой из формул выбирается таким, какой знак \(\cos \alpha, \cos \beta, \cos \gamma \) на поверхности \(S \). В качестве нормального вектора плоскости \(P \) можно взять вектор \(\vec{n} = 2\vec{i} - \vec{j} + 2\vec{k} \) (\(\cos \gamma > 0 \)), откуда получим \(\cos \gamma > 0, \cos \beta < 0 \). Так как в нашем случае \(P(x; y; z) = R(x; y; z) = 0 \), будем иметь
\[
\Pi = -\int_{D_{xz}} (y - x + z) dxdz = -\int_{D_{xz}} (x + 3z - 2) dxdz,
\]
где \(D_{xz} \) – проекция части плоскости \(P \) на плоскость \(xOz \) (рис. 70).
\[
\Pi = \frac{1}{2} \int_{0}^{1} \int_{0}^{1-x} (x + 3z - 2) dz dx = \frac{1}{2} \int_{0}^{1} (x + 3z^2 - 2z) \Big|_{z=0}^{z=1-x} dx = \frac{1}{2} \int_{0}^{1} (2xz + 3z^2 - 4z) \Big|_{z=0}^{z=1-x} dx = \frac{1}{2} \int_{0}^{1} (2x - 2x^2 + 3 - 6x + 3x^2 - 4 + 4) dx = \frac{1}{2} \int_{0}^{1} (x^2 - 1) dx = \frac{1}{2} \left(\frac{x^3}{3} - x \right) \Big|_{0}^{1} = \frac{1}{3}.
\]

Пример 5. Пользуясь инвариантным определением вычислить дивергенцию вектора \(\vec{a} = z\vec{k} \) в произвольной точке \(M \), выбрав в качестве поверхностей \(S \), окружающих точку \(M \), поверхности куба с гранями, параллельными координатным плоскостям, и стороной куба, равной \(\varepsilon \) (рис. 71).

Для определения дивергенции в нашей точке имеем
\[
\text{div} \vec{a}(M) = \lim_{\varepsilon \to 0} \frac{\int_{S}(\vec{a}, \vec{n}_0) dS}{V},
\]
где \(V \) – объем куба.

Поверхность \(S \) состоит из боковой поверхности \(S_1 \), нижнего основания \(S_2 \) и верхнего основания \(S_3 \).

Пусть для определенности уравнение нижней грани – \(z = h \). Тогда уравнение верхней грани – \(z = h + \varepsilon \). Поток вектора \(\Pi_1 \) через боковую поверхность \(S_1 \) равен нулю, так как \(\vec{a} \) перпендикулярен \(\vec{n}_0 \).
\[\Pi_2 = \iiint_{S_2} (\vec{a}, \vec{n}_0) dS = \iiint_{S_2} -h dS = -h \varepsilon^2. \]
\[\Pi_3 = \iiint_{S_3} (\vec{a}, \vec{n}_0) dS = \iiint_{S_3} (h + \varepsilon) dS = h \varepsilon^2 + \varepsilon^3. \]
\[\Pi = \Pi_1 + \Pi_2 + \Pi_3 = \varepsilon^3. \]
Следовательно, \(\text{div} \, \vec{a}(M) = \lim_{\varepsilon \to 0} \frac{\Pi}{V} = 1. \]

Пример 6. Найти дивергенцию векторного поля \(\vec{a} = xy^2 \vec{i} + x^2 y \vec{j} + z^3 \vec{k} \) в точке \(A(1; -1; 3) \). Будет ли данная точка источником или стоком поля?

\[\Delta \text{div} \, \vec{a} = \frac{\partial (xy^2)}{\partial x} + \frac{\partial (x^2 y)}{\partial y} + \frac{\partial (z^3)}{\partial z} = x^2 + y^2 + 3z^2; \quad \text{div} \, \vec{a}(A) = 29 > 0. \]

Следовательно, точка \(A \) является источником векторного поля. ▲

Пример 7. Применив Формулу Гаусса–Остроградского, вычислить поток векторного поля \(\vec{a} = (x - y) \vec{i} + (z - y) \vec{j} + (2z - x) \vec{k} \) через сферу \(x^2 + 6x + y^2 + z^2 = 0. \)

\[\Delta \text{Запишем уравнение сферы в виде} \quad (x + 3)^2 + y^2 + z^2 = 9. \]
Радиус сферы равен 3.

\[\text{div} \, \vec{a}(M) = \frac{\partial (x - y)}{\partial x} + \frac{\partial (z - y)}{\partial y} + \frac{\partial (2z - x)}{\partial z} = 1 - 1 + 2 = 2. \]
Находим \(\Pi = \iiint_V \text{div} \, \vec{a}(M) \, dV = 2 \iiint_V dV = 2 \cdot \frac{4}{3} \pi \cdot 3^3 = 72 \pi. \)

Пример 8. Вычислить поток векторного поля \(\vec{a} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k} \) через боковую поверхность \(S_1 \) конуса \(\sqrt{x^2 + y^2} \leq z \leq h \) в сторону внешней нормали.

\[\Delta \text{Дополним заданную поверхность} \quad S_1 \quad \text{до замкнутой кусочно-гладкой} \]
покрытии с основанием конуса – кругом \(S_2: \quad x^2 + y^2 \leq h^2, \quad z = h. \)

Применим теперь формулу Гаусса–Остроградского к области \(V \), ограниченной замкнутой поверхностью \(S: \)

\[\iiint_{S_1} (\vec{a}, \vec{n}_0) dS + \iiint_{S_2} (\vec{a}, \vec{n}_0) dS = \iiint_V \text{div} \, \vec{a} dxdydz = 2 \iiint_V (x + y + z) dxdydz. \]
На круге \(S_2 \) имеем \(\vec{a} = x^2 \vec{i} + y^2 \vec{j} + h^2 \vec{k}, \quad \vec{n}_0 = \vec{k} \), поэтому
\[\iiint_{S_2} (\vec{a}, \vec{n}_0) = \iint_{S_2} h^2 dS = \pi h^4. \]
Для вычисления тройного интеграла перейдем к цилиндрическим координатам: \(x = r \cos \varphi, \quad y = 2 \sin \varphi, \quad z = z \). Уравнение конической поверхности примет вид \(z = r \).
Таким образом,

\[2 \iiint_V (x + y + z) \, dxdydz = 2 \int_0^{2\pi} d\varphi \int_0^h r dr \int r (\cos \varphi + \sin \varphi + z) \, dz = \]

\[= 2 \int_0^{2\pi} d\varphi \int_0^h r dr \, zdz = 2\pi \int_0^h r (h^2 - r^2) \, dr = 2\pi \left(\frac{r^2h^2}{2} - \frac{r^4}{4} \right) \bigg|_0^h = \frac{\pi}{2} h^4. \]

Искомый интеграл по боковой поверхности равен

\[\iiint_{S_1} (\vec{a}, \vec{n}_0) = \frac{\pi h^4}{2} - \frac{\pi h^4}{2} = -\frac{\pi h^4}{2}. \]

Пример 9. Вычислить линейный интеграл в векторном поле \(\vec{a} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k} \) в направлении от точки \(A(0;0;0) \) до точки \(B(1;1;1) \) вдоль отрезка прямой, проходящей через эти точки.

\(\Delta \) Линейный интеграл имеет вид \(\int_{AB} (\vec{a}, d\vec{r}) = \int_{AB} x^2 \, dx + y^2 \, dy + z^2 \, dz. \)

Запишем параметрическое уравнение прямой \(AB: \)

\[\begin{align*}
 x &= t, \\
 y &= t, \quad t \in [0;1]. \\
 z &= t,
\end{align*} \]

Отсюда \(dx = dy = dz = dt. \)

Искомый линейный интеграл будет равен

\[\int_0^1 (t^2 + t^2 + t^2) \, dt = \frac{3}{3} t^3 \bigg|_0^1 = 1. \]

\(\Delta \)

Пример 10. Вычислить циркуляцию вектора \(\vec{a} = z^2 \vec{i} + x \vec{j} + y \vec{k} \) по контуру \(L: \)

\[\begin{cases}
 x^2 + y^2 = 1, \\
 z = y.
\end{cases} \]

\(\Delta \) Параметрическое уравнение линии \(L: \)

\[\begin{align*}
 x &= \cos t, \\
 y &= \sin t, \quad 0 \leq t \leq 2\pi, \text{ так что } \\
 z &= y = \sin t,
\end{align*} \]

что \(dx = -\sin t dt, \quad dy = \cos t dt, \quad dz = \cos t dt. \)

\(\Gamma = \int_L (\vec{a}, d\vec{r}) = \int_{0}^{2\pi} (-\sin^3 t + \cos^2 t + \sin t \cos t) dt = \int_{0}^{2\pi} \cos^2 t dt = \]

\[= \frac{1}{2} \int_{0}^{2\pi} (1 + \cos 2t) dt = \frac{1}{2} \int_{0}^{2\pi} dt = \pi. \]

\(\Delta \)

Пример 11. Для векторного поля \(\vec{a} = z^3 \vec{i} + y^3 \vec{j} + x^3 \vec{k} \) найти вектор, направленный так, что для перпендикулярной ему плоскости плотность цирку-
ляции в точке \(P(1; 2; 2) \) будет наибольшей. Найти величину этой плотности циркуляции.

Δ Указанным условиям удовлетворяют вектор \(\text{rot} \, \vec{a}(p) \) и \(|\text{rot} \, \vec{a}(p)| \) соответственно.

\[
\text{rot} \, \vec{a} = \begin{vmatrix}
 i & j & k \\
 \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
 x^3 & y^3 & z^3
\end{vmatrix} = \left| \frac{\partial}{\partial y} \frac{\partial}{\partial z} - \frac{\partial}{\partial x} \frac{\partial}{\partial z} \right| \vec{i} - \left| \frac{\partial}{\partial x} \frac{\partial}{\partial z} - \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right| \vec{j} + \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} - \frac{\partial}{\partial z} \frac{\partial}{\partial x} \right| \vec{k} = 3(z^2 - x^2) \vec{j};
\]

\(\text{rot} \, \vec{a}(p) = 9 \vec{j}; \quad |\text{rot} \, \vec{a}(p)| = 9. \) ▲

Пример 12. Вычислить циркуляцию вектора \(\vec{a} = xz \vec{i} + xy^2 \vec{j} + yz^2 \vec{k} \) по контуру \(L \):

\[
\begin{cases}
x^2 + y^2 + z^2 = 9, \\
x^2 + y^2 = z^2 \quad (z > 0)
\end{cases}
\]

непосредственно и по теореме Стокса.

Δ Для параметрического задания контура необходимо найти радиус окружности, являющейся пересечением конуса и сферы (рис. 72). Для этого нужно решить систему уравнений:

\[
\begin{cases}
x^2 + y^2 = 9, \\
x^2 + y^2 = z^2.
\end{cases}
\]

\(2z^2 = 9, \quad z = \frac{3\sqrt{2}}{2}, \quad R = z = \frac{3\sqrt{2}}{2}. \)

Параметрическое уравнение контура:

\[
\begin{cases}
x = \frac{3}{\sqrt{2}} \cos t, \\
y = \frac{3}{\sqrt{2}} \sin t, \quad 0 \leq t \leq 2\pi.
\end{cases}
\]

Отсюда \(dx = -\frac{3}{\sqrt{2}} \sin t, \quad dy = \frac{3}{\sqrt{2}} \cos t dt, \quad dz = 0. \)

\[
\text{Ц} = \int_L (\vec{a}, d\vec{r}) = \int_0^{2\pi} \left(-\frac{27}{2\sqrt{2}} \sin t \cos t + \frac{81}{4} \cos^2 t \sin^2 t \right) dt =
\]

181
Вычислим циркуляцию по теореме Стокса:

\[
\text{rot} \, \vec{a} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz & xy^2 & z^2 y \end{vmatrix} = z^2 \vec{i} + x \vec{j} + y^2 \vec{k}.
\]

Натянем на контур \(L \) часть плоскости \(z = \frac{3\sqrt{2}}{2}, \quad \vec{n}_0 = \vec{k} \).

\[
\Gamma = \oint_S (\text{rot} \, \vec{a}, \vec{n}_0) dS = \iint_S y^2 dS = |dS| = \iint_{Dxy} y^2 dxdy = \left| x = r \cos \varphi \right| = \\
= \int_0^{2\pi} \int_0^{\frac{3}{2}} r(r^2 \sin^2 \varphi) dr d\varphi = \int_0^{\frac{3}{2}} \frac{1 - \cos 2\varphi}{2} r^3 dr = \\
= \frac{\pi}{4} \left(\frac{3}{\sqrt{2}} \right)^4 = \frac{81}{16} \pi. \quad \Delta
\]

Пример 13. Вычислить циркуляцию векторного поля \(\vec{a} = yi - xj + (z - y)k \) по контуру \(L = \left\{ x^2 + y^2 - \frac{z^2}{4} = 1, \quad z = x\sqrt{3} \right\} \), непосредственно и по теореме Стокса.

\(\Delta \) Найдем проекцию \(L \) на плоскость \(xOy \) (рис. 73):

\[
x^2 + y^2 - \frac{3x^2}{4} = 1, \quad \frac{x^2}{4} + \frac{y^2}{1} = 1.
\]

Проекцией контура на плоскость \(xOy \) является эллипс с полусами \(a = 2 \) и \(b = 1 \). Площадь этого эллипса равна \(2\pi \).

Запишем параметрическое уравнение контура:

\[
\begin{aligned}
x &= 2 \cos \varphi, \\
y &= \sin \varphi, & \quad 0 \leq \varphi \leq 2\pi. \\
z &= 2\sqrt{3} \cos \varphi,
\end{aligned}
\]

Отсюда

\[
dx = -2 \sin \varphi d\varphi, \quad dy = \cos \varphi d\varphi, \quad dz = -2\sqrt{3} \sin \varphi d\varphi.
\]
\[\zeta = \int (\vec{a}, d\vec{r}) = \int_{\mathcal{L}} (-2\sin^2 \varphi - 2\cos^2 \varphi - 12 \sin \varphi \cos \varphi + 2\sqrt{3} \sin^2 \varphi) \, d\varphi = \]

\[= \int_{0}^{2\pi} \left(-2\frac{1 - \cos^2 \varphi}{2} - 2\frac{1 + \cos^2 \varphi}{2} + 2\sqrt{3} \frac{1 - \cos^2 \varphi}{2}\right) \, d\varphi = \]

\[= \int_{0}^{2\pi} (-1 - \sqrt{3}) \, d\varphi = (\sqrt{3} - 2) \cdot 2\pi. \]

Вычислим циркуляцию по теореме Стокса:

\[\text{rot} \, \vec{a} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y - x & z - y & \end{vmatrix} = -i + 0j - 2k. \]

На контур \(L \) натянем часть плоскости \(z = x\sqrt{3}. \)

\[\vec{n}_0 = \pm \frac{\text{grad} (z - x\sqrt{3})}{\text{grad} (z - x\sqrt{3})} = \pm \frac{-\sqrt{3}i + k}{2}, \quad \vec{n}_0 = -\frac{\sqrt{3}i + k}{2}. \]

\[\zeta = \iint_{\mathcal{S}} (\text{rot} \, \vec{a}, \vec{n}_0) \, dS = \iint_{\mathcal{S}} \left(\frac{\sqrt{3}}{2} - 1\right) \, dS = \left(\frac{\sqrt{3}}{2} - 1\right) \iint_{\mathcal{D}_{xy}} \sqrt{1 + \left(\frac{\partial z}{\partial y}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dxdy = \]

\[= (\sqrt{3} - 2) \iint_{\mathcal{D}_{xy}} \, dxdy = (\sqrt{3} - 2) \cdot 2\pi. \]

Пример 14. Доказать, что векторное поле \(\vec{a} = (2xy + z)i + (x^2 - 2y)j + xk \)

является потенциальным, и найти его потенциал.

Вычислим \(\int_{(1;2;4)} (2xy + z)dx + (x^2 - 2y)dy + xdz. \)

\[\Delta \text{ Находим} \]

\[\text{rot} \, \vec{a} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy + z & x^2 - 2y & x \end{vmatrix} = \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & x \end{vmatrix} \vec{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ x & x \end{vmatrix} \vec{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ 2xy + z & x^2 - 2y \end{vmatrix} \vec{k} = 0\vec{i} - (1 - 1)\vec{j} + (2x - 2x)\vec{k} \equiv 0, \]

т. е. поле является потенциальным.

\[U(x; y; z) = \int_{x_0}^{x} P(x; y_0; z_0) \, dx + \int_{y_0}^{y} Q(x; y; z_0) \, dy + \int_{z_0}^{z} P(x; y; z) \, dz + C. \]
За начальную фиксированную точку примем $O(0;0;0)$.
Тогда получим

$$U(x; y; z) = \int_0^x 0 \, dx + \int_0^y (x^2 - 2y) \, dy + \int_0^z x \, dz + C = x^2 y - y^2 + xz + C.$$

$$(1;2;4) \quad \int_0^{2xy + z} (2xy + z) \, dx + (x^2 - 2y) \, dy + x \, dz = U(1;2;4) - U(1;1;1) =$$

$$= (2 + C) - (1 + C) = 1. \quad \blacktriangle$$

Дополнительные задачи

1. Найти поток векторного поля $\vec{a} = x^2 \vec{i} + xy \vec{j} + xz \vec{k}$ через внешнюю сторону части параболоида $y = x^2 + y^2$, ограниченную плоскостью $y = 1$ и лежащую в I октанте. **Ответ:** $-\frac{1}{15}$.

2. Применяя метод проектирования на все три координатные плоскости, вычислить поток векторного поля $\vec{a} = z \vec{i} - xy \vec{j} + y \vec{k}$ через верхнюю сторону треугольника, получаемого пересечением плоскости $3x + 6y - 2z - 6 = 0$ с координатными плоскостями. **Ответ:** $\frac{7}{6}$.

3. Вычислить поток векторного поля $\vec{a} = x^2z \vec{i} + yz \vec{j} + z \vec{k}$ через боковую поверхность конуса $x^2 + y^2 \leq z^2$, $0 \leq z \leq 1$ в сторону внешней нормали. **Указание.** Дополнить заданную поверхность плоскостью $z = 1$.

Ответ: $-\frac{\pi}{3}$.

4. Вычислить работу силового поля $\vec{F} = (x^2 + 2xy) \vec{i} + (x^2 + y^2) \vec{j}$ вдоль параболы $y = x^2$ от точки $(0;0)$ до точки $(1;1)$. **Ответ:** $\frac{5}{3}$.

5. Найти ротор вектора $\vec{a} = (x^2 + y^2) \vec{i} + (y^2 + z^2) \vec{j} + (z^2 + x^2) \vec{k}$.

Ответ: $-2(zi + xj + yk)$.

6. Найти циркуляцию вектора $\vec{a} = y \vec{i} - x \vec{j} + z \vec{k}$ по контуру L:

$$\begin{align*}
 &\begin{cases}
 x^2 + y^2 + z^2 = 1, \\
 z = x
 \end{cases}, \\
 &\text{непосредственно и по теореме Стокса.} \quad \textbf{Ответ:} \quad -\sqrt{2}\pi.
\end{align*}$$

7. Доказать, что векторное поле $\vec{a} = (x^2 - 2yz) \vec{i} + (y^2 - 2xz) \vec{j} + (z^2 - 2xy) \vec{k}$ является потенциальным. Найдите его потенциал.

Ответ: $\frac{1}{3}(x^3 + y^3 + z^3) - 2xyz + C.$
Список использованных источников

Содержание

Занятие 1.	Комплексные числа	3
Занятия 2–3.	Непосредственное интегрирование. Метод подстановки, интегрирование по частям	8
Занятие 4.	Интегрирование рациональных функций	16
Занятие 5.	Интегрирование тригонометрических и иррациональных выражений	21
Занятие 6.	Контрольная работа. Неопределенный интеграл	30
Занятие 7.	Определенный интеграл	32
Занятие 8.	Геометрические и физические приложения определенных интегралов	39
Занятия 9–10.	Несобственные интегралы. Самостоятельная работа	48
Занятие 11.	Основные понятия функции нескольких переменных	59
Частные производные, дифференциал		
Занятие 12.	Применение дифференциала. Производная сложной функции. Производная по направлению	65
Занятие 13.	Касательная плоскость и нормаль. Производные и дифференциалы высших порядков	70
Занятие 14.	Дифференцирование неявных функций. Формула Тейлора	75
Занятия 15–16.	Локальный экстремум функции нескольких переменных. Условный экстремум	80
Занятие 17.	Контрольная работа. Функции нескольких переменных	90
Занятие 18.	Основные понятия теории дифференциальных уравнений. Уравнения с разделяющимися переменными	92
Занятия 19–20.	Дифференциальные уравнения первого порядка	97
Занятия 21–22.	Уравнения, допускающие понижение порядка. Задачи, приводящие к дифференциальным уравнениям. Самостоятельная работа	104
Занятия 23–24.	Линейные уравнения высших порядков	112
Занятия 25–26.	Системы дифференциальных уравнений	122
Занятие 27.	Контрольная работа. Дифференциальные уравнения	131
Занятия 28–29.	Кратные интегралы. Приложения кратных интегралов	133
Занятие 30. Контрольная работа. Кратные интегралы 158
Занятия 31–32. Криволинейные и поверхностные интегралы.
Самостоятельная работа .. 160
Занятия 33–34. Поток векторного поля. Дивергенция. Линейный
интеграл и циркуляция векторного поля. Рotor векторного поля.
Потенциальные поля ... 175
Список использованных источников 185
Учебное издание

Цегельник Владимир Владимирович
Кобринец Николай Иванович
Баркова Елена Александровна и др.

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ И МНОГИХ ПЕРЕМЕННЫХ.
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

Редактор Е. И. Герман
Компьютерная верстка Г. М. Кореневская
Компьютерная правка, оригинал-макет Е. Г. Бабичева

Подписано в печать 20.07.2018. Формат 60×84 1/16. Бумага офсетная. Гарнитура «Таймс».
Отпечатано на ризографе. Усл. печ. л. 11,04. Уч.-изд. л. 11,5. Тираж 250 экз. Заказ 28.

Издатель и полиграфическое исполнение: учреждение образования
«Белорусский государственный университет информатики и радиоэлектроники».
Свидетельство о государственной регистрации издателя, изготовителя,
распространителя печатных изданий №1/238 от 24.03.2014,
220013, Минск, П. Бровки, 6