ИСПОЛЬЗОВАНИЕ ОБЛАЧНЫХ ВИРТУАЛЬНЫХ ЛАБОРАТОРИЙ ДЛЯ ПРОЕКТИРОВАНИЯ ПЕЧАТНЫХ ПЛАТ В ПРОЦЕССЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ

В. И. Журавлёв, В. С. Колбун, П. П. Стешенко, И. И. Шпак Белорусский государственный университет информатики и радиоэлектроники, Минск

Рассмотрены возможности технологии облачных виртуальных лабораторий для использования в дистанционном обучении проектированию печатных плат. Внедрение данных технологий позволяет работать с современными программными средствами в едином учебно-информационном пространстве вуза.

Введение

Среди стратегических целей вуза, касающихся обеспечения доступности, качества инженерного образования, подготовки высококвалифицированных и востребованных специалистов в современном информационном обществе, важной целью является интенсивное развитие системы дистанционного обучения. Современные подходы к формированию информационного образовательного пространства вузов порождают новые требования к структурированию его содержания. Одним из перспективных компонентов системы дистанционного обучения является использование технологии облачных виртуальных лабораторий.

В условиях современных информационных и коммуникационных технологий необходимость виртуальных лабораторий обусловлена в первую очередь стремлением к повышению качества образования, обеспечиваемого с помощью дистанционных форм обучения. Облачные технологии - это модель предоставления повсеместного и удобного сетевого доступа к общему узлу конфигурируемых вычислительных ресурсов, которые могут быть быстро предоставлены и освобождены с минимальными усилиями по управлению и необходимости взаимодействия с провайдером. В настоящее время использование данных технологий интенсивно развивается при обучении инженеровконструкторов радиоэлектронных средств.

1. Концепция учебных виртуальных лабораторий

Дистанционное обучение требует от студентов трудолюбия и определенного начального уровня, позволяющего использовать современные компьютерные технологии. Кроме того, как показывает практика, в условиях ограниченности аудиторного времени и сложности применения демонстрационного материала и лабораторного оборудования далеко не всегда студенты

могут с первого раза правильно выполнить учебное задание [1]. При проведении же лабораторных работ и практических заданий необходимо моделирование предметной среды, позволяющей студенту на расстоянии решать поставленные задачи. Особые сложности возникают у студентов, обучающихся заочно и дистанционно [2]. Студенты должны уметь обработать, проанализировать и представить результаты в аналитической и графической формах. Одной из составляющих построения единого образовательно-информационного пространства вуза являются виртуальные лаборатории с использованием облачных технологий.

Виртуальная лаборатория - это программно-аппаратный комплекс, позволяющий проводить опыты без непосредственного контакта с реальной установкой или при полном отсутствии таковой. При этом понимаются два типа таких комплексов: дистанционные лаборатории - комплекс лабораторной
установки с удаленным доступом, и виртуальные лаборатории - программное
обеспечение, позволяющее моделировать лабораторные эксперименты и
осуществлять весь процесс проектирования.

Преимущества виртуальных лабораторных работ заключаются в интерактивности, независимости от места, возможности моделирования объектов, процессов, явлений, которые нельзя воспроизвести в условиях учебного заведения или наблюдать в реальности, и возможности выполнять задания удаленно, используя сетевые технологии.

Поскольку большую часть времени обучающиеся дистанционно не могут работать в учебных лабораториях непосредственно, то выходом из сложившегося положения является внедрение в учебный процесс информационных технологий. Один из наиболее эффективных вариантов - облачные виртуальные лаборатории, в которых можно выполнять индивидуальные задания, практические и лабораторные работы с использованием интернеттехнологий. Более того, умение использовать средства облачных виртуальных лабораторий позволит студентам в будущем легче интегрироваться в реальный проектный процесс, где корпоративные облачные лаборатории или сетевые проектные уровни распределенных версий топологических систем автоматизированного проектирования (САПР) уже внедрены и активно используются.

Повсеместный переход на облачные технологии и сервисы затронул и сферу проектирования печатных плат, которые благодаря своему функционалу могут конкурировать с профессиональными САПР. Выполнение процесса проектирования печатной платы в облачной виртуальной лаборатории практически соответствует настольным приложениям и может включать в себя создание схемы электрической принципиальной и ее моделирование, создание и редактирование библиотек компонентов, проектирование печатной платы, ее компоновку, трассировку, пред- и посттопологический анализ, моделирование на воздействие дестабилизирующих факторов.

Главными отличительными особенностями облачных технологий при применении САПР [3] являются:

- распределяемая виртуализованная инфраструктура, что предполагает объединение требуемых средств в единую систему из аппаратных и программных компонентов САПР, а также информационных баз данных и других составляющих, необходимых-для эффективного решения определенной поставленной задачи;
- доступ с использованием сервисов для авторизованных пользователей, которые с помощью соответствующих порталов могут самостоятельно запрашивать необходимые ресурсы для дальнейшего их использования;
- ориентация на пользователя. Внутренняя механика облака скрыта от студента, который видит только необходимый и доступный ему для работы интерфейс.

Облачная виртуальная лаборатория должна содержать описание работы реальной установки или объекта, виртуальную модель объекта и его описание, необходимые теоретические сведения по данной теме, возможность записи результатов. Некоторые производители виртуальных САПР печатных плат предоставляют пользователю постоянную возможность консультирования у специалиста и готовые образцы работ.

Основной подход в использовании облачных лабораторий для проектирования печатных плат при дистанционном обучении заключается в виртуализации аппаратных и программных ресурсов. При этом базовая САПР подвержена значительно меньшему количеству изменений. Наиболее трудной задачей при реализации облачной версии САПР является организация удаленного доступа к рабочему столу с насыщенной графикой, которая характерна при прорисовке топологии современных многослойных печатных плат. Данная проблема может быть решена при использовании более производительных видеокарт на основе мощных графических процессоров.

2. Применение дистанционной виртуальной среды при обучении проектированию печатных плат

Анализ имеющихся САПР сквозного проектирования печатных плат показывает, что в качестве облачных виртуальных лабораторий в целях дистанционного обучения можно использовать уже адаптированные программные пакеты.

EasyEDA - полнофункциональная облачная система проектирования печатных плат, не требующая инсталляции на локальный компьютер, у которой имеется достаточный функционал, надежность, стабильность и скорость работы, простой и понятный интерфейс, богатый набор библиотек компонентов с функцией автоматического обновления, возможности импорта проектов из других систем проектирования [4]. В состав системы входят редактор

схем, симулятор смешанных сигналов с использованием SPICE-моделей и схем, редактор многослойных печатных плат с автотрассировщиком и системой подготовки плат к производству. Кроме того, к системе EasyEDA, обладающей функционалом профессиональных инструментов разработки печатных плат, добавляются преимущества, характерные для облачных сервисов: автоматическое обновление библиотек элементов (для редактора схем, SPICE-симулятора и редактора печатных плат), возможность делиться своими разработками и библиотеками, доступ к огромной коллекции профессиональных (ореп source) модулей, оперативная техническая поддержка и связь с разработчиками системы.

Более продвинутым вариантом для использования в дистанционном обучении является облачная виртуальная лаборатория PADS Maker от одного из ведущих мировых производителей САПР проектирования печатных плат - Mentor Graphics® (Siemens®) [5]. Возможно использование как бесплатной версии PADS Maker, так и платной PADS MakerPro. В состав обеих версий входят интерактивный трассировщик и автотрассировщик, поддерживающие иерархические схемы и 3О-рендеринг собранных плат. Имеется также доступ к облачному симулятору PADS AMS и PartQuest - интерфейсу огромного каталога крупнейшего мирового поставщика радиоэлектронных компонентов Digi-Key.

PADS AMS позволяет дистанционно моделировать аналоговые и сложные смешанные электрические схемы с использованием моделей SPICE или VHDL. PartQuest, в свою очередь, содержит в базе данных более 800 тыс. готовых посадочных мест радиоэлектронных элементов и их обозначений. Таким образом, студент, подобно инженеру, получает возможность сразу включиться в реальный процесс моделирования схемы и проектирования печатной платы с использованием современной элементной базы. Весь процесс обеспечен методическим обучающим материалом и видеоинструкциями.

Для обучения проектированию самых сложных электронных проектов в ресурсоемких САПР необходимо задействовать мощные серверы, которые по стоимости приближаются к цене лицензий на программное обеспечение. С учетом данных факторов использование в учебном процессе дорогостоящих САПР оказывается экономически невыгодным. Однако в случае необходимости решение задачи обучения сквозному процессу проектирования печатных плат для таких пользователей может быть обеспечено на основе внедрения интернет-технологий в рамках разработки распределенных версий топологической САПР [6].

Данный подход основывается на глубокой модернизации архитектуры системы с разделением на несколько относительно независимых уровней, каждый из которых включает совокупность подсистем, отобранных по функциональному назначению и допускающих автономное использование. В топологических САПР можно выделить два уровня:

- проектирующий, на котором решаются задачи размещения компонентов на печатной плате и ее трассировки;
- обслуживающий, отвечающий за графическое отображение топологии платы.

При реализации данной архитектуры в Интернете проектирующий уровень целесообразно размещать на веб-сервере (серверной части), а обслуживающий уровень поместить на рабочую станцию (клиентскую часть). С целью синхронизации взаимодействия клиентской и серверной частей и передачи данных между уровнями распределенную архитектуру САПР необходимо дополнять управляющим веб-приложением [7]. Создание распределенных версий топологических САПР позволяет использовать сеть центров фирмы-разработчика на основе мощного серверного оборудования с удаленным доступом. В учебном процессе можно использовать только клиентскую часть системы с более дешевой лицензией или оплачивать только время аренды САПР в составе центра разработки.

Среди недостатков использования виртуальных лабораторий можно указать отсутствие предметной наглядности и практических навыков работы с конкретным оборудованием.

Заключение

Развитие облачных виртуальных лабораторий происходит как в производственной сфере, так и в образовании. Благодаря новому принципу использования инженерных САПР студенты становятся все более мобильными и имеют больше возможностей для обучения на расстоянии с меньшими затратами, что особенно важно при дистанционном обучении. При этом концепция виртуальных лабораторий предусматривает высокий уровень интеграции в единое образовательно-информационное пространство вуза.

Таким образом, использование облачных технологий позволяет обеспечить дистанционное обучение процессу проектирования печатных модулей с использованием виртуальных лабораторий современных САПР и повысить качество такой формы получения высшего образования.

Список литературы

- 1. Виртуальные лаборатории в дистанционном обучении / А. В. Савкина [и др.] // Образовательные технологии и общество. 2014. № 4. С. 507-517.
- 2. Swart, A. J. Distance Learning Engineering Students Languish Under Project-Based Learning, But Thrive in Case Studies and Practical Workshops / A. J. Swart // IEEE Transactions on Education. 2016. Vol. 59, № 2. P. 98-104.
- 3. Обади, М. А. М. Исследование и разработка системы топологической трассировки печатных плат на основе облачных технологий: автореф. дис. ...

канд. техн. наук: 05.13.12 / М. А. М. Обади; СПбГЭТУ «ЛЭТИ». - СПб., 2018. - 18 с.

- 4. EasyEDA [Electronic resource]. Mode of access: https://easyeda.com. Date of access: 04.07.2018.
- 5. Personal automated design solutions [Electronic resource]. Mode of access: https://www.pads.com. Date of access: 04.07.2018.
- 6. Laristov, A. I. Information support of web-systems for printed circuit boards design / A. I. Laristov, Yu. T. Lyachek, A. M. O. Musaeed // 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM-2016), St. Petersburg, 25-27 May 2016- St. Petersburg, 2016.
- 7. Web service model for distance learning using cloud computing technologies / D. Cvetkovic [et al.] // 40 IEEE International Convention on Information and Communication Technology, Electronics and Microelectronics, Croatia, 22-26 May 2017. Opatija, 2017.