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1 Introduction

Observation of the behavior of charged particles in electric and magnetic fields was made possible
after enhancements by Crookes of Geissler’s tube. Effect of a magnetic field on charged particles
fairly easily was discovered as early as in 1821 by H. Davy ([1]-[2]) and confirmed by J. Plücker
in 1858, [3], W. Hittorf in 1869, [4], W. Crookes and E. Goldstein in 1880 ([5], [6]), as well as
in 1878 it was discovered the action of a magnetic field on electric current in conductors (the
Hall effect, [7]). Before the discovery of the electron, physicists hardly interested in trajectories
of charged particles. May be mentioned the solution of the equation of motion of charge in a
homogeneous static magnetic field by E. Ricke in 1881, [8], which wrote it down in a vector form
with force, whose expression was later obtained by O. Heaviside (in quaternion form, [9]) and
H. A. Lorentz (in vector form, [10], p. 443; [11], p. 81), and named the Lorentz force. Ricke
has shown that a projection of particle trajectory onto the plane perpendicular to the field is a
circle. In 1895 J. Perrin experimentally proved the assumption of Crookes and J. J. Thomson
on the corpuscular nature of cathode rays, [12], and showed that the negatively charged cathode
particles are moving along the helical line around the direction of a homogeneous magnetic field
([13], p. 497).

The action of the electric field on the cathode rays was discovered by J. J. Thomson only in
1897, [16]. The failure of the earlier experiments of H. Hertz ([16], p. 298) for the detection of
this was due to the fact that electrons of cathode rays have a very high speed, roughly measured
by Thomson in 1894, which lowered pressure within the vacuum tube by means of a powerful
vacuum pumps, [14]. Precise measurements of the velocity of cathode rays were performed
independently by E. Wiechert and J. J. Thomson in 1897 ([15], [16]), which was the decisive
proof that the cathode rays are electrons flow.

In 1901-1906 W. Kaufmann carried out a series of experiments on measuring of specific
charge for the Becquerel β-rays ([17]-[22]). After that M. Planck has analyzed Kaufmann’s data
and has shown that they actually speak in favor of predictions of the Lorentz-Einstein theory
rather than the theory of Abraham, who has disagreed with this conclusion ([23], [24]). Detailed
analysis of Kaufmann experiments can be found in [25]. Henceforward most researches accept
the point of view of Lorentz-Einstein. But this theory in any way does not take into account
electron spin, which should be manifested also at the classical level.

An attempt to take into account spin in classical equations of motion has been undertaken in
a series author’s articles, where the equations of motion, generalizing the Lorentz theory, were
obtained. One of the conclusions is that the electric charge of particles should be interpreted
as their helicity, [26]. From this point of view, therefore, we consider that such theories of the
electron with proper angular momentum as the Abraham theory, where charge is distributed
in the volume of rigid sphere or ellipsoid, [27], or the Bucherer theory, where the electron is
rotating charged sphere deformed in the oblate ellipsoid at constant volume when moving, [28],
are not quite adequate.

This research consists of several parts, the first part of which, [29], contains derivation of
the equations of motion of spinning particles in an arbitrary external field, as well as their
solutions for free particles are found under the assumption that potential function depends
only on the velocity of particle relative to its center of inertia. The next challenge is to find
solutions for particles moving in the electric and magnetic fields. The second part, [30], considers
the motion in a stationary homogeneous magnetic field. This article is the third part, which
aims to describe the motion of spinning particles in a stationary homogeneous electric field and
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compare the results with known results of the Lorentz-Einstein theory. In Sec. 2 the equations
of motion of spinning particles in an external field are written in the Frenet-Serret basis, which
allows considering the motion both in stationary and non-stationary fields. In Sec. 3 we study
the behavior of both non-relativistic and relativistic spinless particle in a constant electric field.
Sec. 4 includes solving the equations of motion and finding of trajectories of spinning particles in
a constant homogeneous electric field at different orientations of spin. Assuming the longitudinal
polarization of spin of free massive particle is to be conserved when the field is switched on, we
consider acceleration of spinning particles in an electric field in Sec. 5, and deflection of particles
in electric field corresponding to Kaufmann’s experiments in Sec. 6, and deflection of particles,
which are flying into the magnetic field perpendicular to the field in Sec. 7. In the concluding
Sec. 8 we note some problems and make a conclusion that the use of ideas of special relativity
is not mandatory when considering the motion of objects.

2 Equations of motion of spinning particle in electric field

in moving reference frame

We start from the equations of motion of a spinning particle in an arbitrary external field
([26], [29])

d

dt

(

m0V − ∂U

∂V
+ ς[s× V̇] + [Sext × V̇]

)

= E+ [V × (B+ ςΩ2
0s)] , (2.1)

where

E = −∂U

∂R
, (2.2)

U = −
∫

(E · dR) + u(t,V, V̇, ..., V̇(N)) = ϕ(t, R) + u , (2.3)

ϕ(t, R) = −
∫

(E · dR) (2.4)

is an electric potential of the particle at the point R, which depends only on the relative distance
R in the case of constant field E.

In what follows we assume as a first approximation that function u depends only on the ve-
locity of particle, u = u(V ), what ensures conservation of total energy.

Spin components are constant in the Frenet-Serret basis ([26], Appendix A). Therefore,
decomposing vectors in this basis, we arrive at the equation ([29], eq. (2.7)), which at Sext = 0,
B = 0 takes the form

[

d

dt

(

m0V − du

dV

)

− ςsb(3V V̇ K + V 2K̇)− Eτ

]

eτ+

+

[(

m0V − du

dV

)

V K − ςsτV
3KT + ςsnV V̇ T + ςsb(V̈ +Ω2

0V − V 3K2)−En

]

en+

+
[

ςsτ (2V V̇ K + V 2K̇)− ςsn(V̈ +Ω2
0V ) + ςsbV V̇ T − Eb

]

eb = 0 .

(2.5)

Herewith total energy is

E =
m0V

2

2
− V

du

dV
+ ϕ+ u− ςsbV

3K . (2.6)
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Unit vectors of the Frenet-Serret basis eτ , en, eb are associated with unit vectors eX , eY , eZ
of the absolute coordinate system by relations ([29], eqs. (2.9)-(2.11)), which, when choosing
binormal direction to be fixed (ėb = −V Ten = 0, substituting Θ → π/2−Θ) take the form







eτ = sinΘ(t) cos ΦeX + sinΘ(t) sinΦeY + cosΘ(t)eZ ,
en = cosΘ(t) cos ΦeX + cosΘ(t) cos ΦeY − sinΘ(t)eZ ,
eb = − sinΦeX + cosΦeY ,

(2.7)

where Φ̇ = 0. The choice Φ = Φ0 = 0 corresponds to the motion that occurs in the XZ-plane,
whereas Φ = Φ0 = π/2 corresponds to the motion in the YZ-plane. Inverse relations have the
form







eX = sinΘ cos Φeτ + cosΘ cos Φen − sinΦeb ,
eY = sinΘ sinΦeτ + cosΘ sinΦen + cosΦeb ,
eZ = cosΘeτ − sinΘen .

(2.8)

Formulae (2.7) correspond to representation of the velocity and electric force as

V(t) = V (t)eτ = V (t) [sinΘ cos Φ0eX + sinΘ sinΦ0eY + cosΘeZ ] , (2.9)

E = Eτeτ + Enen +Ebeb = EXeX + EY eY + EZeZ , (2.10)

where






EX = Eτ sinΘ cosΦ0 + En cosΘ cos Φ0 − Eb sinΦ0 ,
EY = Eτ sinΘ sinΦ0 + En cosΘ sinΦ0 + Eb cos Φ0 ,
EZ = Eτ cosΘ− En sinΘ ;

(2.11)







Eτ = EX sinΘ cos Φ0 + EY sinΘ sinΦ0 + EZ cos Φ0 ,
En = EX cosΘ cosΦ0 + EY cosΘ sinΦ0 − EZ sinΦ0 ,
Eb = −EX sinΦ0 +EY cos Φ0 .

(2.12)

Eq. (2.9) leads to the trajectory equation

R(t) = R(0) +

∫ t

0
V (t) sinΘ(t)dt(cos Φ0eX + sinΦ0eY ) +

∫ t

0
V (t) cosΘ(t)dteZ . (2.13)

Because the torsion T vanishes, and the curvature is K = Θ̇/V , the equation (2.5) is sim-
plified and looks like

[

d

dt

(

m0V − du

dV

)

− ςsb(V Θ̈ + 2V̇ Θ̇)− (EX cos Φ + EY sinΦ) sinΘ− EZ cosΘ

]

eτ+

+

[(

m0V − du

dV

)

Θ̇ + ςsb(V̈ +Ω2
0V − V Θ̇2)− (EX cosΦ + EY sinΦ) cosΘ + EZ sinΘ

]

en+

+
[

ςsτ (V Θ̈ + V̇ Θ̇)− ςsn(V̈ +Ω2
0V ) + EX sinΦ− EY cos Φ

]

eb = 0

(2.14)
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in the Frenet-Serret basis, or

{

d

dt

[(

m0V − du

dV

)

sinΘ

]

cos Φ−
[

ςsτ (V Θ̈ + V̇ Θ̇)− ςsn(V̈ +Ω2
0V )

]

sinΦ

}

eX+

+
{

ςsb

[

(V̈ +Ω2
0V − V Θ̇2) cosΘ− (V Θ̈ + 2V̇ Θ̇) sinΘ

]

cosΦ− EX

}

eX+

+

{

d

dt

[(

m0V − du

dV

)

sinΘ

]

sinΦ +
[

ςsτ (V Θ̈ + V̇ Θ̇)− ςsn(V̈ +Ω2
0V )

]

cos Φ

}

eY+

+
{

ςsb

[

(V̈ +Ω2
0V − V Θ̇2) cosΘ− (V Θ̈ + 2V̇ Θ̇) sinΘ

]

sinΦ− EY

}

eY+

+
d

dt

[(

m0V − du

dV

)

cosΘ

]

eZ−

−
{

ςsb

[

(V̈ +Ω2
0V − V Θ̇2) sinΘ + (V Θ̈ + 2V̇ Θ̇) cos Θ

]

+ EZ

}

eZ = 0

(2.15)

in the Cartesian coordinates.
Let us choose the coordinate system so that the Z-axis to be directed along the field,

i. e. E = EZeZ , EX = EY = 0, EZ > 0. Then Θ is the angle between the velocity V and
the field E, (V · E) = V Eτ = = V EZ cosΘ, and the electric potential is ϕ = −

∫

EZdZ.
Equation (2.15) is equivalent to the system of three equations

d

dt

(

m0V − du

dV

)

− ςsb(V Θ̈ + 2V̇ Θ̇) = EZ cosΘ , (2.16)

(

m0V − du

dV

)

Θ̇ + ςsb(V̈ +Ω2
0V − V Θ̇2) = −EZ sinΘ , (2.17)

sτ (V Θ̈ + V̇ Θ̇)− sn(V̈ +Ω2
0V ) = 0 (2.18)

in three unknowns u(V ), V (t), Θ(t). It is easy to see that eqs. (2.16)-(2.17) are equivalent to

d

dt

[(

m0V − du

dV

)

cosΘ− ςsb
d

dt
(V sinΘ)−EZt

]

− ςsbΩ
2
0V sinΘ = 0 , (2.19)

d

dt

[(

m0V − du

dV

)

sinΘ + ςsb
d

dt
(V cosΘ)

]

+ ςsbΩ
2
0V cosΘ = 0 . (2.20)

Substitution of eq. (2.17) into eq. (2.16) leads to

ςsb

[

d

dt

(

V̈ +Ω2
0V

Θ̇

)

+ V̇ Θ̇

]

= EZ

(

Θ̈ sinΘ

Θ̇2
− 2 cosΘ

)

= −2EZ
√

Θ̇

d

dt

sinΘ
√

Θ̇
, (2.21)

which together with eq. (2.18) specifies functions V (t) and Θ(t). Then eq. (2.17) specifies the
function u(V ).

The equation of motion of spin

s = sτeτ + snen + sbeb = sXeX + sY eY + sZeZ =

= (sτ sinΘ cosΦ0 + sn cosΘ cos Φ0 − sb sinΦ0)eX+

+ (sτ sinΘ sinΦ0 + sn cosΘ sinΦ0 + sb cos Φ0)eY + (sτ cosΘ− sn sinΘ)eZ

(2.22)



5

looks like

ṡ = [ΩD × s] = Θ̇(−sneτ + sτen) = Θ̇(sτ cosΘ− sn sinΘ) cos Φ0eX+

+ Θ̇(sτ cosΘ− sn sinΘ) sinΦ0eY − Θ̇(sτ sinΘ + sn cosΘ)eZ ,
(2.23)

i. e. spin precesses with angular velocity

ΩD = Θ̇eb = Θ̇(− sinΦ0eX + cosΦ0eY ) (2.24)

around the binormal direction eb.
Eqs. (2.16)-(2.18) does not contain any hints as to what values can take spin components.

Therefore, we consider below different possible cases.

3 Spinless particle in constant electric field

Let us consider the classic case of absence of spin sτ = sn = sb = 0. Equation (2.1) with taking
into account of u = u(V ) leads to

(

m0 −
du

V dV

)

V −Et = m0γ0V0 = const , γ0 = const , (3.1)

wherefrom

m0V − du

dV
= ±

√

m2
0γ

2
0V

2
0 + 2m0γ0(V0 ·E)t+E2t2 . (3.2)

Eq. (3.2) can be solved, if we know the dependence of the function u(V ) on the velocity. Apart
from the theories of Abraham and Bucherer, we know two cases of such dependence, corre-
sponding to: 1) non-relativistic motion, u = 0, γ0 = 1, and 2) relativistic motion in the Lorentz-
Einstein theory, in which we have to put

m0 −
du

V dV
= m0γL(V ) =

m0
√

1− V 2/c2
, (3.3)

from which we find

u(V ) =
m0V

2

2
+m0c

2
√

1− V 2/c2 . (3.4)

I.1. In the non-relativistic case u = 0 and eq. (3.1) becomes V(t) = V0 + Et/m0, which
yields the vector equation of trajectory

R(t) = R(0) +V0t+Et2/2m0 , (3.5)

or in parametric form







X(t) = X(0) + V0t sinΘ0 cosΦ0 ,
Y (t) = Y (0) + V0t sinΘ0 sinΦ0 ,
Z(t) = Z(0) + V0t cosΘ0 + EZt

2/2m0 ,
(3.6)

where Θ0, Φ0 are angles at the initial time t = 0. If we choose the coordinate axes so that
the initial position of the particle has coincided with the origin, i. e. R(0) = 0, and get rid of
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the parameter t in eq. (3.6), then we obtain the trajectory in the form of canonical equation of
parabola

X2 + Y 2 + 2A
√

X2 + Y 2 = W 2 −A2 = BZ , (3.7)

where

W =
√

X2 + Y 2 +A , A =
m0V

2
0 sin 2Θ0

2EZ
, B =

2m0V
2
0 sin2 Θ0

EZ
. (3.8)

Note that in the case of classical Lorentz force in eq. (2.1) we use the electric force E and
the magnetic vector B instead of conventional expressions eE and eB, where e is electric charge,
and E and B are electric field strength and magnetic field (magnetic flux density), respectively.
Therefore, one should put EZ = eE in eqs. (3.6)-(3.8) for the classical solution. Hence the
trajectory of the particle with opposite charge (i. e., the opposite helicity) is obtained from
eqs. (3.6)-(3.8), if Z replaced by −Z.

I.2. In the relativistic case u(V ) is given by eq. (3.4), and eq. (3.1) becomes

m0γLV = m0γL
dR

dt
= m0γ0V0 +Et =

m0V0
√

1− V 2
0 /c

2
+Et , (3.9)

from whence we obtain for the Lorentz factor

γL =

√

E2

m2
0c

2
t2 +

2γ0(V0 · E)

m0c2
t+ γ20 =

EZ

m0c

√

(t+ t1)2 + t22 , (3.10)

where

t1 =
m0γ0(V0 · E)

E2
, t22 =

m2
0c

2γ20
E2

(

1− (V0 · E)2

c2E2

)

, t21 + t22 =
m2

0c
2γ20

E2
. (3.11)

The substituting of eq. (3.10) into eq. (3.9) and subsequent integration gives the vector equation
of the trajectory

R(t) = R(0) + γ0V0

∫ t

0

dt

γL
+

E

m0

∫ t

0

tdt

γL
= R(0) +

cE

EZ

[

√

(t+ t1)2 + t22 −
√

t21 + t22

]

+

+
m0cγ0[E× [V0 ×E]]

E3
Z

ln

[

1 +
t

t1 +
√

(t+ t1)2 + t22

]

,

(3.12)

or in parametric form



































X(t) = X(0) +
m0cV0γ0

EZ
sinΘ0 cos Φ0 ln

[

1 +
t

t1 +
√

(t+ t1)2 + t22

]

,

Y (t) = Y (0) +
m0cV0γ0

EZ
sinΘ0 sinΦ0 ln

[

1 +
t

t1 +
√

(t+ t1)2 + t22

]

,

Z(t) = Z(0) + c
[

√

(t+ t1)2 + t22 −
√

t21 + t22

]

.

(3.13)

I.3. Assuming that the function u(V ) is non-zero and does not determined by the relation
eq. (3.4), and trying to define it from eqs. (2.16)-(2.18), it is easy to see that at zero spin
eq. (2.18) becomes an identity, and eqs. (2.16)-(2.17) are equations for three unknown functions
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u(V ), Θ(t) and V (t). Therefore zero spin, and hence the Lorentz equations of motion, does not
give possibility to determine the dependence of the function u(V ) on the velocity.

Substituting eq. (2.17) into eq. (2.16) at sb = 0, we get

d

dt

(

m0V − du

dV

)

= −EZ cosΘ + EZ
Θ̈ sinΘ

Θ̇2
= EZ cosΘ , (3.14)

whence
Θ̈

Θ̇
=

d(ln Θ̇)

dt
= 2Θ̇ cotΘ =

d(ln sin2 Θ)

dt
, Θ̇ = λ sin2 Θ , λ = const , (3.15)

Θ(t) = arctan−1 (cotΘ0 − λt) , (3.16)

and

sinΘ =
1

√

1 + (cot Θ0 − λt)2
, cosΘ =

cotΘ0 − λt
√

1 + (cotΘ0 − λt)2
. (3.17)

Substituting eqs. (3.15), (3.17) into eq. (2.17) and introducing the function γ(V ) instead of
u(V ), we arrive at equation

m0V − du

dV
= m0γV = −EZ

λ

√

1 + (cot Θ0 − λt)2 (3.18)

for two unknowns V (t) and u(V ) (or γ(V )). If

λ = − EZ

m0γ0V0 sinΘ0
, (3.19)

then eq. (3.18) describes both non-relativistic case (u = 0, γ = γ0 = γL(0) = 1) and relativistic
one (eq. (3.4), γ = γL(V )). When the initial velocity is directed along (Θ0 = 0) or antiparallel
the field E (Θ0 = π), then λ = −∞.

4 Spinning particle in constant electric field

Let us now find the particle trajectory, if its spin components (2.22) do not equal zero.
II. sτ = 0, sn = 0, sb 6= 0. Here eq. (2.18) becomes an identity, so that as a result we

have two equations (2.16) and (2.17) relative to three unknown functions u(V ), Θ(t) and V (t).
Hence, the definition of two functions is impossible, if the third function is unknown. In the
limit sb = 0 the solution should reduce to eq. (3.5), when u = 0, or to eq. (3.12), if u is given in
eq. (3.4).

Eqs. (2.16)-(2.18), which can be conveniently represented in Cartesian coordinates, is reduced
to a system of three equations

d

dt

[(

m0 −
du

V dV

)

VX

]

+ ςsb cos Φ0(V̈Z +Ω2
0VZ) = 0 , (4.1)

d

dt

[(

m0 −
du

V dV

)

VY

]

+ ςsb sinΦ0(V̈Z +Ω2
0VZ) = 0 , (4.2)

d

dt

[(

m0 −
du

V dV

)

VZ

]

− ςsb(V̈(XY ) +Ω2
0V(XY )) = EZ , (4.3)
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only two of which are independent. Indeed, multiplying eqs. (4.1) and (4.2) by sinΦ0 and cosΦ0,
and then adding and subtracting the results, we will come to equations

d

dt

[(

m0 −
du

V dV

)

V[XY ]

]

= 0 , (4.4)

d

dt

[(

m0 −
du

V dV

)

V(XY )

]

+ ςsb(V̈Z +Ω2
0VZ) = 0 , (4.5)

where

V[XY ](t) = VX(t) sin Φ0 − VY (t) cos Φ0 , V(XY )(t) = VX(t) cos Φ0 + VY (t) sin Φ0 , (4.6)

and eq. (4.4) becomes an identity, forasmuch as VX , VY and VZ are expressed in terms of V (t),
Θ(t) and Φ0 according to eq. (2.9).

By differentiating eqs. (4.3) and (4.5), and multiplying them by m0, and combining the
resulting equations, we come to differential equations

d

dt

[

d2

dt2

(

du

V dV
VZ

)

+Ω2
0

du

V dV
VZ − m0

ςsb

d

dt

(

du

V dV
V(XY )

)]

+

+ ςsb

[

V
(4)
(XY ) + 2Ω2V̈(XY ) +Ω4

0(V(XY ) − V1)
]

= 0 ,

(4.7)

d

dt

[

d2

dt2

(

du

V dV
V(XY )

)

+Ω2
0

du

V dV
V(XY ) +

m0

ςsb

d

dt

(

du

V dV
VZ

)]

−

− ςsb

[

V
(4)
Z + 2Ω2V̈Z +Ω4

0VZ

]

= 0 ,

(4.8)

where

Ω2 = Ω2
0 + ω2

0 , ω2
0 =

m2
0

2ς2s2b
, V1 = − EZ

ςsbΩ
2
0

. (4.9)

In general, it is very difficult to analyze the system (4.7)-(4.8). However, it is easy to make for
u = 0. Then the general solution of eqs. (4.7)-(4.8) is determined by the roots of characteristic
equation

λ4 + 2Ω2λ2 +Ω4
0 = 0 , (4.10)

which are imaginary

λ1,2 = ±i

√

Ω2 +
√

Ω4 − Ω4
0 = ±iΩ+ , λ3,4 = ±i

√

Ω2 −
√

Ω4 − Ω4
0 = ±iΩ− . (4.11)

Hence, the general solution of eqs. (4.7)-(4.8) is

V(XY )(t) = V1 + V +
XY cos (Ω+t+ φ+) + V −

XY cos (Ω−t+ φ−) , V ±

XY = const , (4.12)

VZ(t) = V +
Z cos (Ω+t+ ϕ+) + V −

Z cos (Ω−t+ ϕ−) , V ±

Z = const . (4.13)

Substituting eqs. (4.12)-(4.13) into input equations to determine correlation between the
integration constants, we find that the system (4.1)-(4.3) (at u = 0) has a nontrivial solution
only at sb = 0. Consequently, there are no trajectories at sτ = 0, sn = 0, sb = 0, u = 0.
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Apparently, this also occurs when u 6= 0. Proof of the existence or absence of trajectories is not
currently feasible.

III. sτ 6= 0, sn = 0, sb = 0. It is shown in [29] that the spin of free massive particle is
arranged parallel or antiparallel to the velocity. Assuming this polarization is to be conserved
when the field is switched, from eq. (2.18) we obtain V Θ̈ + V̇ Θ̇ = 0, from where Θ̇ = λV0/V ,
where λ 6= 0 is an integration constants. As a result, the function Θ(t) depends on time according
to eq. (3.16). From eqs. (2.9), (3.15) and (3.17) we find

V (t) =
V0

sin2 Θ(t)
= V0[1 + (cot Θ0 − λt)2] , (4.14)

V(t) = V0

√

1 + (cotΘ0 − λt)2 [cosΦ0eX + sinΦ0eY + (cotΘ0 − λt)eZ ] . (4.15)

The solution (4.15) can be represented as eq. (3.9), where λ is given in eq. (3.19), but γ(V )
in contrast to the Lorentz factor γL(V ) in eq. (3.3) depends on the velocity by the law

γ(V ) = 1− du

m0V dV
=

γ0 sinΘ0
√

V/V0

= − EZ

λm0

√
V0V

, (4.16)

which can be derived also from the equation for function u(V ), obtained by substitution of
eqs. (3.16) and (4.14) into eq. (2.17)

du

dV
= m0V +

EZ

Θ̇
sinΘ = m0V +

EZ

λ

√

V

V0
, (4.17)

wherefrom

u(V ) =
m0V

2

2
+

2EZV
3/2

3λ
√
V0

+ u(0) . (4.18)

The dependence (4.16) shows that the effective mass decreases when the velocity increases.
Thus, the trajectory equation differs from eq. (3.12) and looks like

R(t) = R(0) − V0

2λ

[

(cot Θ0 − λt)
√

1 + (cotΘ0 − λt)2 − cosΘ0

sin2 Θ0

]

(cos Φ0eX + sinΦ0eY )−

− V0

2λ
ln

{

sinΘ0

1 + cosΘ0

[

cotΘ0 − λt+
√

1 + (cot Θ0 − λt)2
]

}

(cos Φ0eX + sinΦ0eY )+

+
V0

3λ

[

1

sin3Θ0
−
[

1 + (cot Θ0 − λt)2
]3/2

]

eZ .

(4.19)

Spin s = sτeτ , being always directed along the tangent to the path, is moving around the
binormal direction (Y-axis) with angular velocity ΩD(t) = λV0/V .

IV. sτ 6= 0, sn = 0, sb 6= 0. Just as in the case III from eq. (2.18) we have V Θ̈ + V̇ Θ̇ = 0,
Θ̇ = λV0/V . Then eq. (2.21) reduces to the equation for function Θ(t)

d

dt

[ ...
Θ

Θ̇3
− 2Θ̈2

Θ̇4
− Ω2

0

Θ̇2
+ ln Θ̇

]

=
2EZ

ςsbλ
√

Θ̇

d

dt

sinΘ
√

Θ̇
, (4.20)
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which has solution if we put

Θ̇ = iΩ0 sinΘ , λ = − iEZ

ςsbΩ0
. (4.21)

Then

cosΘ(t) =
sinΩ0t+ i cosΘ0 cos Ω0t

cosΘ0 sinΩ0t+ i cos Ω0t
=

cosΘ0 − i sin2 Θ0 sinΩ0t cos Ω0t

cos2Θ0 sin
2 Ω0t+ cos2Ω0t

, (4.22)

whence it follows that eq. (4.20) has a real solution only if the imaginary part of eq. (4.22)
vanishes, i. e. sin2Θ0 = 0, corresponding to either Θ(t) = Θ0 = 0 or Θ(t) = Θ0 = π. As a result
eq. (2.17) takes the form V̈ +Ω2

0V = 0 with solution

V (t) = V0 cos (Ω0t+ ϕ0) . (4.23)

Therefore,
V(t) = V0 cosΘ0 cos (Ω0t+ ϕ0)eZ , (4.24)

R(t) = R(0) +
V0 cosΘ0

Ω0
[sin (Ω0t+ ϕ0)− sinϕ0] eZ . (4.25)

Eq. (2.16) gives

du

dV
= m0V − EZt cosΘ0 = m0V − EZ cosΘ0

Ω0
[arccos (V/V0)− ϕ0] , (4.26)

u(V ) =
m0V

2

2
− EZ cosΘ0

Ω0
V [arccos (V/V0)− ϕ0] +

EZ cosΘ0

Ω0

√

V 2
0 − V 2 , (4.27)

γ(V ) = 1− du

m0V dV
=

EZ cosΘ0

m0Ω0V
[arccos (V/V0)− ϕ0] . (4.28)

So, the particle with spin s = sbeY + sτ cosΘ0eZ , flying into electric field E, is moving
parallel (Θ0 = 0) or antiparallel (Θ0 = π) to the field, making thus oscillate along the direction
of the field with an amplitude r0 = V0/Ω0 about the initial position of the particle.

V. sτ = 0, sn 6= 0, sb = 0. Just as in the previous case eq. (2.18) has solution (4.23),
eq. (2.21) reduces to eq. (3.15) with solution (3.16), and eq. (2.17) leads to eqs. (3.18), (3.19).
By expressing the time t from eq. (4.23) and substituting it into eq. (3.18), we obtain the
equation for function u(V )

du

dV
= m0V +

EZ

λ

√

1 +

(

cot Θ0 +
λ

Ω0
ϕ0 −

λ

Ω0
arccos

V

V0

)2

, (4.29)

from which we find

u(V ) =
m0V

2

2
+

EZ

λ

∫ V

0

√

1 +

(

cotΘ0 +
λ

Ω0
ϕ0 −

λ

Ω0
arccos

V

V0

)2

dV , (4.30)

γ(V ) = 1− du

m0V dV
= − EZ

m0Ω0V

√

Ω2
0

λ2
+

(

arccos
V

V0
− ϕ0 −

Ω0

λ
cot Θ0

)2

. (4.31)
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The velocity and radius vector of the particle are given by

V(t) =
V0 cos (Ω0t+ ϕ0)
√

1 + (cotΘ0 − λt)2
[cos Φ0eX + sinΦ0eY + (cot Θ0 − λt)eZ ] , (4.32)

R(t) = R(0) + ρ0 sinΘ0I1(t) [cos Φ0eX + sinΦ0eY ] + ρ0 [cosΘ0I1(t) + I2(t)] eZ , (4.33)

where

I1(t) =

∫ t

0

cos (Ω0t+ ϕ0)dt
√

t2 + 2τ0t cosΘ0 + τ20
, I2(t) =

1

τ0

∫ t

0

t cos (Ω0t+ ϕ0)dt
√

t2 + 2τ0t cosΘ0 + τ20
, (4.34)

τ0 = τ(V0) = − 1

λ sinΘ0
=

m0γ0V0

EZ
, ρ0 = V0τ0 =

m0γ0V
2
0

EZ
. (4.35)

Unfortunately, eqs. (4.30) and (4.33) contain the integrals (4.34), which cannot be expressed
in terms of known functions, except for the case Ω0 = 0, when

I1(t) = cosϕ0 ln
t+ τ0 cosΘ0 +

√

t2 + 2τ0t cosΘ0 + τ20 (1 + cos2 Θ0)

τ0
[

cosΘ0 +
√
1 + cos2Θ0

] , (4.36)

I2(t) =
cosϕ0

τ0

[

√

t2 + 2τ0t cosΘ0 + τ20 − τ0

]

− I1(t) cos Θ0 . (4.37)

Spin

s = snen =
sn

√

1 + (cot Θ0 − λt)
[(cotΘ0 − λt)eX − eZ ] (4.38)

of the particle flying into electric field E under the angle Θ0 precesses with angular velocity

ΩD = Θ̇eb = − EZ sinΘ0

m0V0γ0
[

sin2 Θ0 + (cosΘ0 − λt sinΘ0)2
]eb (4.39)

around the binormal direction eb.

VI. sτ = 0, sn 6= 0, sb 6= 0. Just as in the previous case eq. (2.18) has solution (4.23),
eq. (2.21) reduces to the equation for Θ(t)

2

Θ̇
√

Θ̇

d

dt

sinΘ
√

Θ̇
=

ςsbΩ0V0

EZ
sin (Ω0t+Θ0) , (4.40)

the solution of which is a linear function of time

Θ̇ = Ω0 , Θ(t) = Ω0t+Θ0 + π/2 , (4.41)

where

Ω2
0 = − 2EZ

ςsbV0
> 0 . (4.42)

Substituting eq. (4.41) into eq. (2.17) gives the equation for function gives the equation for
function u(V )

(m0 − ςsbΩ0)V − du

dV
= −EZ

Ω0
cos (Ω0t+Θ0) = − EZ

Ω0V0
V , (4.43)
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from which we find

u(V ) =
1

2

(

m0 − ςsbΩ0 +
EZ

Ω0V0

)

V 2 , (4.44)

γ(V ) = 1− du

m0V dV
=

ςsbΩ0

m0
− EZ

m0Ω0V0
= const . (4.45)

Note that when sb = 0 the expression (4.44) is a limiting case of eq. (4.30), when V << V0

and Θ0 = π/2.
Thus,

V(t) = V0 cos (Ω0t+Θ0) [cos (Ω0t+Θ0)(cos Φ0eX + sinΦ0eY )− sin (Ω0t+Θ0)eZ ] , (4.46)

from which we have equation of trajectory (Fig. 1)

R(t) = R(0) +
V0

4Ω0
[2Ω0t+ sin 2(Ω0t+Θ0)− sin 2Θ0] (cos Φ0eX + sinΦ0eY )+

+
V0

4Ω0
[cos 2(Ω0t+Θ0)− cos 2Θ0] eZ .

(4.47)

 

 

s 

E 

V0 

Z 

Y 

sb 

sn 

WD 

X 

V 

Fig. 1. An example of trajectory (4.47) of the electron in electric field at Φ0 = 0, Θ0 = 0

According to eq. (2.23) spin of the particle in the coordinate system, where Φ0 = 0,

s = −sn sin (Ω0t+Θ0)eX + sbeY − sn cos (Ω0t+Θ0)eZ (4.48)

is perpendicular to the direction of motion and precesses around the binormal direction (Y-axis)
with angular velocity ΩD = Ω0. As seen in Fig. 1, the electron trajectory (or any charged
particle) has a rather strange “jumping” form.

VII. sτ 6= 0, sn 6= 0, sb = 0. Equations (2.16)-(2.17) are reduced to eq. (3.15) with solution
(3.16). Substituting it into eq. (2.18), we get the equation for function V (t)

d2V

dx2
+

d(fV )

dx
+

Ω2
0

λ2
V = 0 , (4.49)

with
x = cotΘ(t) = cotΘ0 − λt , f(x) =

sτ
sn(1 + x2)

. (4.50)
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Trajectory equation according to eqs. (2.13) and (3.17) has the form

R(t) = R(0) +R1(t)(cos Φ0eX + sinΦ0eY ) +R2(t)eZ , (4.51)

where

R1(t) =

∫ t

0

V (t)dt
√

1 + (cot Θ0 − λt)2
, R2(t) =

∫ t

0

V (t)(cot Θ0 − λt)dt
√

1 + (cot Θ0 − λt)2
. (4.52)

In general, integrals (4.52) cannot be expressed in terms of known functions. However, if we
assume that spin s = sτeτ + snen precesses with constant angular velocity ΩD, it is necessary to
put Θ(t) = ΩDt+Θ0. Then eq. (2.18) is an equation of damped oscillations, which has solution

V (t) =

{

V0e
k1ΩDt cos (Ωt+ ϕ0) , if Ω2 = Ω2

0(1− k21) > 0 ;

V1e
Ω̃+t + V2e

Ω̃−t , if Ω2 = −Ω̃2 = Ω2
0(1− k21) ≤ 0 .

(4.53)

Trajectory equation looks like

R(t) = R(0) +
V0e

k1Ω0t cos Φ0

2Ω0

[

k1 sinΨ− − (k2 −
√

1− k21) cosΨ−

(k2 −
√

1− k21)
2 + k21

+

+
k1 sinΨ+ − (k2 +

√

1− k21) cos Ψ+

(k2 +
√

1− k21)
2 + k21

]

eX+

+
V0e

k1Ω0t sinΦ0

2Ω0

[

k1 sinΨ− − (k2 −
√

1− k21) cosΨ−

(k2 −
√

1− k21)
2 + k21

+

+
k1 sinΨ+ − (k2 +

√

1− k21) cos Ψ+

(k2 +
√

1− k21)
2 + k21

]

eY +

+
V0e

k1Ω0t

2Ω0

[

k1 cosΨ− + (k2 −
√

1− k21) sinΨ−

(k2 −
√

1− k21)
2 + k21

+

+
k1 cosΨ+ + (k2 +

√

1− k21) sinΨ+

(k2 +
√

1− k21)
2 + k21

]

eZ ,

(4.54)

where

k1 =
sτ

2sn

ΩD

Ω0
= k2

sτ

2sn
, ΩD = k2Ω0 , (4.55)

Ψ±(t) = Ω±t+ΦD ± ϕ0 , Ω± = ΩD ± Ω = (k2 −
√

1− k21)Ω0 , (4.56)

if Ω2 = Ω2
0(1− k22) > 0, or
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R(t) = R(0)+

+
V1e

Ω̃+t

Ω̃2
+ +Ω2

D

[

Ω̃+ sin (ΩDt+Θ0)− ΩD cos (ΩDt+Θ0)
]

(cos Φ0eX + sinΦ0eY )+

+
V2e

Ω̃−t

Ω̃2
− +Ω2

D

[

Ω̃− sin (ΩDt+Θ0)− ΩD cos (ΩDt+Θ0)
]

(cos Φ0eX + sinΦ0eY )+

+
V1e

Ω̃+t

Ω̃2
+ +Ω2

D

[

Ω̃+ cos (ΩDt+Θ0) + ΩD sin (ΩDt+Θ0)
]

eZ+

+
V2e

Ω̃−t

Ω̃2
− +Ω2

D

[

Ω̃− cos (ΩDt+Θ0) + ΩD sin (ΩDt+Θ0)
]

eZ ,

(4.57)

where

Ω̃± = (k1 −
√

k21 − 1)Ω0 , (4.58)

if Ω2 = −Ω̃2 = Ω2
0(1− k21) ≤ 0.

Trajectories (4.54) are rather complicated stellate type curves, whereas (4.57) are smooth
curves and similar to observable trajectories.

VIII. sτ 6= 0, sn 6= 0, sb 6= 0. Note that all cases I-III, V and VII satisfy to eq. (3.15),
for the case IV we have eq. (4.21), and eq. (4.41) for the case VI. All these equations can be
combined in single equation, corresponding to the general case under consideration, as

Θ̇ = Ω0(α1 sin
2Θ+ α2 sinΘ + 1) , (4.59)

whence it follows
Θ̈ = Ω0Θ̇(2α1 sinΘ + α2) cos Θ , (4.60)
∫ Θ

Θ0

dΘ

α1 sin
2Θ+ α2 sinΘ + 1

= Ω0t . (4.61)

Integration of eq. (4.61) gives

Ω0t
√

α2
2 − 4α1 =

1

1− x21
ln

x1x+ 1 +
√

(1− x21)(1 − x2)

x+ x1
−

− 1

1− x22
ln

x2x+ 1 +
√

(1− x22)(1 − x2)

x+ x2
,

(4.62)

where x = sinΘ > 0, α2
2 > 4α1,

x1,2 =
α2 ±

√

α2
2 − 4α1

2α1
. (4.63)

For the cases α2
2 < 4α1 and α2

2 = 4α1 the integral (4.61) is also expressed in terms of
elementary functions, but the final expressions are too bulky to introduce them here.

As concerns the expression (4.62), then, in spite of its relative simplicity, its transcendence
does not allows to find the explicit dependence of the function Θ(t) on time, which would make
it possible to find V (t) from eq. (2.18) and u(V ) from eqs. (2.19)-(2.20).
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In the simplest case α1 = α2 = 0 we find Θ(t) = Ω0t+ Θ0; eq. (2.18) becomes the equation
of damped oscillations. As a result, the trajectory equation looks like eq. (4.54), if 4s2n > s2τ , or
(4.57), if 4s2n ≤ s2τ , provided ΩD = Ω0.

5 Acceleration of electrons by an electric field

Let a charged particle flies into electric field E, directed along the Z-axis (Sec. 2) with initial
velocity V0 = eV0eZ , where V0 > 0, e = cosΘ0 = ±1, which corresponds to the motion either
along (Θ0 = 0) or against (Θ0 = π) the field. Then in classical and relativistic case we find from
eqs. (3.6) and (3.13)

Z(t) = Z(0) + eV0t+ EZt
2/2m0 , (5.1)

Z(t) = Z(0) + cτ0γ0

[
√

γ−2
0

t2

τ20
+ 2eβ0γ

−1
0

t

τ0
+ 1− 1

]

, (5.2)

respectively, where

τ0 =
1

λ0
=

m0c

EZ
, β0 =

V0

c
, γ0 = γL(V0) = (1− β2

0)
−1/2 . (5.3)

For the case III (sτ 6= 0, sn = sb = 0) it follows from eqs. (2.19)-(2.20)

m0V γ(V ) sinΘ = C1 , m0V γ(V ) cos Θ = EZt+ C2 , (5.4)

where γ(V ) is given by the first equality in eq. (4.16).
Since, according to eq. (2.9)

V(t) = V (t) [sinΘeX + cosΘeZ ] =
1

m0γ(V )
[C1eX + (EZt+ C2)eZ ] , (5.5)

V0 = V0 [sinΘ0eX + cosΘ0eZ ] =
1

m0γ(V0)
[C1eX + C2eZ ] = V0 cosΘ0eZ , (5.6)

then we have C1 = 0, C2 = em0V0γ(V0). Therefore eqs. (5.4) and (5.5) give Θ = Θ0 = 0, π and

γ(V ) = 1− du

m0V dV
= γ(V0) +

eEZt

m0V
= γ(V0) +

et

βτ0
, (5.7)

where β = V/c. This relation does not allow to find the explicit dependence of γ(V ), because
from eq. (5.4) function V (t) cannot be determined. While in the relativistic case the function
γ(V ) is the Lorentz factor, eq. (3.3), then here for its definition one needs to know the form of
function u(V ). Then the velocity is found from eq. (5.5), or

V(t) =
em0V0γ(V0) + EZt

m0γ(V )
eZ = c

eβ0γ(V0) + t/τ0
γ(V )

eZ , (5.8)

from where Z(t) may be found by integration.
In general, if V0, and V1 are initial and final velocity of the particle, then we have from the

law (2.6) of energy conservation

m0(V
2
1 − V 2

0 )

2
+ V 2

0

d(u/V )

dV

∣

∣

∣

∣

V=V0

− V 2
1

d(u/V )

dV

∣

∣

∣

∣

V=V1

+∆ϕ = 0 , (5.9)
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where ∆ϕ = ϕ1 − ϕ0 is accelerating potential difference. For the classical particle we get the
obvious relation at u = 0, and for relativistic one we find from eqs. (3.4) and (5.9)

m0c
2

√

1− V 2
0 /c

2
− m0c

2

√

1− V 2
1 /c

2
+∆ϕ = 0 . (5.10)

Thus, the relation (5.9) shows that the acceleration of particle by the electric field is deter-
mined only by the form of function u(v), but not its spin.

6 Deflection of electrons in a constant electric field

We assume, as in the papers of Kaufmann ([22], S. 525) and Planck [23], that the electron
is emitted by the radiation source, whose coordinates are R0 = (X0, Y0, Z0) = (0, 0, 0) in the
direction of the X-axis, then passes through the diaphragm aperture, whose coordinates are
R1 = (X1, Y1, Z1) = (X1, 0, 0), to the photographic plate, on which its coordinates become
R2 = (X2, Y2, Z2). The velocity of the electron, emitted from the diaphragm, we take as the
initial one, and initial time is denoted by t0. According to [29] free electron has a longitu-
dinal polarization of negative helicity and is moving with the velocity V = V(K′) + v, where
V(K′) = V0eX = (V0, 0, 0) = const, and v is given by eq. (3.10), or eq. (3.19) or v = 0 (with
cyclic substitute Z → X, X → Y , Y → Z), that corresponds to the Lorentz electron. Conse-
quently, if v 6= 0, then when approaching the aperture only those electrons will pass from it,
that have vanished transverse component of the velocity, v(t0) = 0, i. e. at

Ω0t0 + ϕ0 = (2k + 1)π/2 (6.1)

for eq. (3.10) from [29] or
FΩD

Ω2
D +Ω2

0

+ v0 cos (χt0 + ϕ0) = 0 (6.2)

for eq. (3.19) from [29]. In this case we have X1 = V0t0. After that the character of the electron
motion will be determined by a field in which it moves.

Let in the chosen coordinate system a constant electric force is directed along the Z-axis,
E = EZeZ , EZ > 0. Accordingly, the angle between the initial velocity and the field E is
Θ = Θ0 = π/2. In addition, we assume Φ = Φ0 = 0 that corresponds to the electron motion
in the XZ-plane. Then electric deflection Z2 of the electron is determined from eq. (3.6) for
classical electron, or from eq. (3.13) for the Lorentz-Einstein electron, or from eq. (4.19) for
spinning electron. In these equations t = t0, so that R(0) = R(t0) = R1 = (V0t0, 0, 0), as well
as Y2(t) = 0. Without loss of generality the origin of coordinate system can be placed on the
diaphragm, if putting t0 = 0. The distance that the electron passes along the X-axis, denoted
by L = X2 −X1.

We use the dimensionless coordinates of the electron at a time t, x(t) = X/L, z(t) = Z/L,
as well as dimensionless constants (5.3). Then from eq. (3.6) for classical electron we obtain

x(t) =
V0t

L
=

cτ0
L

β0
t

τ0
, z(t) =

EZt
2

m0L
=

cτ0
L

t2

τ20
, (6.3)

The corresponding curves in Figs. 2-3 are shown in red color.
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From eq. (3.13), where t1 = 0, γ0 = γL(0), for the Lorentz-Einstein electron it follows (blue
curves in Figs. 2-3)



























x(t) =
cτ0

L
β0γ0 ln



1 +
γ−1
0 t/τ0

√

γ−2
0 (t/τ0)2 + 1



 ,

z(t) =
cτ0

L
γ0

[

√

γ−2
0 (t/τ0)2 + 1− 1

]

.

(6.4)

Finally, assuming λ = τ−1
0 in eq. (4.19), we find (green curves in Figs. 2-3)































x(t) =
cτ0

L

β0

2





t

τ0

√

1 +
t2

τ20
− ln





√

1 +
t2

τ20
−

t

τ0







 ,

z(t) =
cτ0

L

β0

3



1−
(

1 +
t2

τ20

)3/2


 .

(6.5)

On the curves shown in Fig. 2 and representing electrostatic deflection in these three cases,
one can see that the deflection of the Lorentz-Einstein relativistic electron is faster at low speeds
(β0 = 0, 001) (Fig. 2a), and slower at higher speeds (β0 = 0, 99) (Fig. 2b) than deflection of
spinning electron. Fig. 3 shows corresponding curves near the value β0 ≈ 0, 55, when the
trajectory of spinning electron becomes similar to the trajectory of relativistic electron. This
means that the actual deflection of the electron can be described by eqs. (6.5) with another
initial velocity cβs and time of motion ts, whose correlation with β0, tL of the Lorentz-Einstein
electron may be found from two transcendental equations by equating the coordinates (6.5) and
(6.4):

β0γ0 ln

[

1 +
tL/τ0

√

(tL/τ0)2 + γ20

]

=
βs

2





ts

τ0

√

1 +
t2s
τ20

− ln





√

1 +
t2s
τ20

−
ts

τ0







 , (6.6)

√

(tL/τ0)2 + γ20 − γ0 =
βs

3



1−
(

1 +
t2s
τ20

)3/2


 . (6.7)

The initial velocity of the β-electrons is measured from magnetic deflections by using β-
spectrometers (see, e. g., [31]) and is usually calculated by the relativistic formulas. The first
experiments on magnetic deflection of cathode rays were carried by Lenard [32], and the behavior
of β-rays in magnetic field have studied by Kaufmann [17]. Because the actual velocity may
differ from that calculated by the Lorentz-Einstein theory in the next section we consider the
magnetic deflection using the proposed equations for spinning electron.
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Fig. 2. Electron trajectories at a) β0 = 0, 001; b) β0 = 0, 99

 

 0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

z x 

–0.2 

 

–0.4 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

z x 

–0.2 

 

–0.4 

 

0.1 

 

0.2 

 

0.3 

 

0.4 

 

0.5 

 

0.6 

 

z x 

–0.2 

 

–0.4 

 
a) b) c)
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7 Deflection of electrons in a constant magnetic field

Suppose, just as in the previous section, the conditions of passage of the electron through the
diaphragm are satisfied. In the case of magnetic deflection the photographic plate, on which
electrons fall, is located on the Y-axis, so that its coordinates are R2 = (0, Y2, 0). If we choose
the direction of the magnetic vector as the Z-axis, B = BzeZ = (0, 0, BZ ), BZ > 0, the motion
will take place in the XY-plane. The velocity of the electron is given by eq. (2.9), where Θ = π/2,
i. e.

V(t) = V (t)eτ = V (t) [cos Φ(t)eX + sinΦ(t)eY ] , (7.1)

so that the initial velocity of the electron which flies the aperture is directed along the X-axis,

V0 = V0eτ0 = V0eX = V0 [cos Φ0eX + sinΦ0eY ] . (7.2)

Initially, the spin (2.22) of the electron is parallel to the velocity. This corresponds to

sX0 = sτ cos Φ0 − sn sinΦ0 = es , sY 0 = sτ sinΦ0 + sn cos Φ0 = 0 , sb = 0 , (7.3)
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where cos Φ0 = e, Φ0 is an angle between initial velocity and spin, e = −1 for the electron and
e = +1 for the positron. Then eqs. (2.22) and (7.3) give sn = 0 and

s = es(cos ΦeX + sinΦeY ) . (7.4)

Solutions for the case sτ = sn = 0, obtained in [30], may be regarded as asymptotic. Here
we have sτ 6= 0. Therefore, taking into account great velocity of electrons, with high probability
one can be assumed that the time to the asymptotic behavior is much more than the time to
reach the deflection along Y-axis. Then equation of motion (2.1) of spinning particle in magnetic
field reduce to the system

d

dt

(

m0V − du

dV

)

= 0 , (7.5)

(

m0 −
du

V dV

)

Φ̇ +BZ = 0 , (7.6)

d

dt
(V Φ̇) = 0 , (7.7)

whence it follows

V Φ̇ = C1 = − BZV0

m0γ(V0)
, (7.8)

m0V − du

dV
= m0V γ(V ) = C2 , (7.9)

V = V0 =

√

−C1C2

BZ
= const , (7.10)

Φ̇ = ΩD =
C1

V0
= − BZ

m0γ(V0)
. (7.11)

Substituting eq. (7.11) into eq. (7.1) we find

V(t) = V0 (cos ΩDteX + sinΩDteY ) . (7.12)

Hence, the trajectory is given by

R(t) = R(0) +
V0

ΩD
[sinΩDteX + (1− cos ΩDt)eY ] , (7.13)

or

X(t) = X(0) +
V0

ΩD
sinΩDt , (7.14)

Y (t) = Y (0) +
V0

ΩD
(1− cos ΩDt) , (7.15)

where R(0) is aperture position. Magnetic deflection (7.15) is determined by condition

X(t)−X(0) =
V0

ΩD
sinΩDt = 0 , (7.16)

whence ΩDt = π. The equation for determining the initial velocity V0, if the magnetic deflection
is known, has the form

Y (t)− Y (0) =
2V0

ΩD
= 2ρ0 = −2m0V0γ(V0)

BZ
, (7.17)
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where ρ0 is the radius of the circle, along which the electron moves. In particular, in the classical
case γ(V0) = 1 and the velocity is

V0 = −ρ0BZ

m0
, (7.18)

and for the relativistic case, where γ(V0) = (1 − β2
0)

−1/2, we have

V0 =
−ρ0BZ

m0

√

1 +
ρ20B

2
Z

m2
0c

2

. (7.19)

To obtain the standard formulas for magnetic deflection the component of magnetic vector BZ

in eqs. (7.18)-(7.19) should be replaced by eBZ , where BZ is magnetic field, and e = −1 (or
e = −1, 6 · 10−19 C in SI) is a helicity (or charge) of the electron. In general, the value of V0

depends on the form of the function u(V ) according to eq. (7.17).
By the Kaufmann’s method the initial velocity V0 = cβ0 may be determined from equations

for electric and magnetic deflections ([22], S. 529, eqs. (14)-(15)), which in our notations can be
written as

y′ = Lz(t) =
e

m0

E

c2
1

β2
0γ(β0)

, (7.20)

z′ = Y (t)− Y (0) =
e

m0

M

c

1

β0γ(β0)
, (7.21)

where the electric field integral E may be taken as E = EZ , z(t) is given by eqs. (6.3),
(6.4) or (6.5), e is the generally accepted absolute value of the electron charge. Compari-
son of eq. (7.21) with eq. (7.17) shows that the magnetic field integral should be taken to be
M = 2m2

0c
2β2

0γ
2(β0)/BZ , rather than M = BZ , as it follows from Kaufmann’s analysis. This

means that M is dependent on the initial velocity. Thus, it can be concluded that the expres-
sions (6.4) and (7.17) for relativistic electron are incompatible with Kaufmann’s formulas (7.20)
and (7.21).

8 Conclusion

The results of this study, which cannot be considered totally exhaustive, show that the existence
of spin greatly affects the trajectory of a charged particle even in stationary homogeneous fields.
The incompleteness of the study is due not only with finding the solutions of some differential
equations, but above all with the problem of determining the potential, which depends on the
state of motion of spinning particle. Even in the simplest case, when the potential depends only
on the relative distance and velocity, consideration of motion may be carried out without of
using the ideas of special relativity, in which connection the speed limit to be possible in very
special cases. However, input equations can be easily written in covariant form in the space with
any number of spatial and temporal dimensions with any metric.

A special problem is the radiation of accelerated charged particles, which was not considered.
But as follows from the energy balance, such radiation, apparently, is possible only in the
presence of the relevant external fields.

Another problem is the equation of motion of spin that was used in the form (2.23). It was
shown in the case of two body problem, that it should be modified in the form ṡ = [Ω(t)×s]+m(t),
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where the additive m(t) is due to external field, [33]. Therefore, it should be taken into account
in Sec. 7 when considering the magnetic deflection. In this connection there has been suggested
that the time to the asymptotic behavior is much more than the time to reach the deflection,
allowing ignore m(t). Most likely, in strong fields this assumption will wrong.

Note also that the used equations of motion do not depend on the structure of spinning
particles, whose charge is determined by its helicity, while the structure should be manifested
in the interaction with other particles.
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vemants. // Archives néerl. sci. exact. et natur., 1892, XXV, no. 5, 363-551.
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