МАТЕРИАЛЫ

УДК 621.315.592

ЗОЛЬ-ГЕЛЬ СИНТЕЗ И ФОТОЛЮМИНЕСЦЕНЦИЯ ВИЛЛЕМИТА

И.А. НИКОЛАЕНКО¹, Е.А. СТЕПАНОВА¹, Т.И. ОРЕХОВСКАЯ¹, К.В. АРТЕМЬЕВА¹, ТХЭКВОН КИМ¹, Н.В. ГАПОНЕНКО¹, А.В. МУДРЫЙ²

¹Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

²Научно-практический центр Национальной академии наук Беларуси по материаловедению П. Бровки, 19, Минск, 220072, Беларусь

Поступила в редакцию 3 ноября 2009

Золь-гель методом синтезирован виллемит (α-Zn₂SiO₄), активированный ионами марганца. Методом растровой электронной микроскопии обнаружено присутствие ксерогеля виллемита в порах анодного оксида алюминия. Наличие фазы виллемита подтверждено методом рентгенофазового анализа. Для порошка виллемита и структур ксерогель/пористый анодный оксид алюминия характерна интенсивная фотолюминесценция (ФЛ) в зеленом диапазоне при комнатной температуре.

Ключевые слова: виллемит, люминесценция, пористый анодный оксид алюминия.

Введение

Виллемит (α -Zn₂SiO₄), активированный ионами марганца, относится к числу наиболее перспективных люминофоров, возбуждаемых как ультрафиолетовым, так и рентгеновским излучением и обладающих высокой химической стабильностью. Имеются отдельные сообщения о синтезе виллемита золь-гель методом с типичным размером зерна ~5 мкм [1, 2]. Преимущество золь-гель метода состоит в использовании низких температур синтеза и однородном распределении компонентов, что позволяет избежать сегрегации нежелательных фаз и повысить эффективность люминесценции.

Для технологии изготовления преобразователей излучения представляет значительный интерес уменьшение зерна люминофоров. На наш взгляд, золь-гель синтез в матрицах с мезоскопическими порами ~100 нм [3–5] может уменьшить размер зерна и повысить разрешение изображения, формируемого при возбуждении люминесценции виллемита.

Известно, что анодирование алюминия в определенных электролитах позволяет вырастить на его поверхности пленку пористого оксида, представляющую собой гексагонально упакованные самоорганизованные ячейки с порами диаметром в десятки-сотни нанометоров, ориентированными перпендикулярно фронту анодирования [6–8]. Показана возможность синтеза пленок оксидов кремния и титана золь-гель методом в пористом анодном оксиде алюминия [3–5]. В данной работе осуществлен синтез виллемита золь-гель методом и исследована фотолюминесценция в порошках, пленках на кремнии и структурах кремний/пористый анодный оксид алюмния/виллемит.

Экспериментальная часть

Схематично маршрут изготовления порошка виллемита приведен на рис 1. На начальной стадии требуемые количества нитрата цинка (Zn(NO₃)₂·6H₂O), ацетата марганца

2010

 $((CH_3COO)_2Mn \cdot 4H_2O)$ и мочевины (NH₂CONH₂), растворяли в этиловом спирте, после чего в полученный раствор добавили необходимое количество тетраэтоксисилана Si(OC₂H₅)₄. После этого полученный раствор постоянно перемешивали в течение 5 ч для обеспечения однородности, затем в него добавили необходимое количество воды и HNO₃ для поддержания pH=3. Золь сохранял устойчивость в течение одного месяца [1, 2].

Полученный золь использовался как для формирования пленок, так и для получения порошка. Пленки формировали на монокристаллическом кремнии и пористом анодном оксиде

алюминия методом центрифугирования при скорости 2700 об/мин длительностью 30 с и с последующей термообработкой при температуре 1000°С в течение 30 мин. Пленки состояли из трех слоев, формируемых последовательно центрифугированием и сушкой каждого слоя.

Для получения порошка полученный золь медленно нагревали и выдерживали при температуре 110°С до полного испарения спирта. Полученный гель затем прокаливали при 300°С на протяжении 5 ч, после чего сформированный порошок нагревали при 1000°С в течение 5 ч на воздухе.

Для возбуждения люминесценции использовалась ксеноновая лампа ДКСЭЛ-1000 (мощностью 1000 Вт) с набором оптических фильтров, обеспечивающих возбуждение в спектральной области 220–800 нм, в том числе и селективное возбуждение с ис-

Рис. 1. Схема процесса изготовления порошка виллемита

пользованием соответствующих интерференционных фильтров. Излучение, возникающее в области возбуждения образцов, собиралось в плоскости входной щели монохроматора при помощи сферического и плоского зеркал. В экспериментах использовался монохроматор МДР-23У с дифракционной решеткой 1200 штрихов/мм. Спектры возбуждения люминесценции регистрировались с использованием дополнительного монохроматора МДР-12. Оптический сигнал регистрировался с помощью фотоэлектронного умножителя R7400U-20 (Hamamatsu, Japan). Коррекция спектров люминесценции на спектральную чувствительность фотоумножителя не проводилась. Для сравнения спектров люминесценции по интенсивности измерения проводились в идентичных условиях возбуждения при комнатной температуре.

Рентгенофазовый анализ проводился на дифрактометре D8 Advance, где в качестве зондирующего использовалось CuK_{α} -излучение. Измерения проводились на отраженном пучке методом пошагового сканирования с шагом 0,1 град по углу 20. Все измерения проводились при комнатной температуре.

Результаты и их обсуждение

На рис. 2 приведены снимки пленок $Zn_{2(1-x)}Mn_xSiO_4$ (*x*=0,03) люминофора, полученные с помощью растрового электронного микроскопа. В порах наблюдаются включения ксерогеля, тогда как основная поверхность образца анодного оксида алюминия остается непокрытой. Основной объем пор остается незаполненным, как для температуры отжига 300 (рис. 2,*a*), так и 1000°C (рис. 2,*b*).

Рис. 2. РЭМ-изображения пленок $Zn_{2(1-x)}Mn_xSiO_4$ (x=0,03) люминофора нанесенных на пористый анодный оксид алюминия и прошедших термообработку: a — при температуре 300°С на протяжении 30 мин, δ — при температуре 1000°С на протяжении 30 мин; ϵ — нанесенных на монокремний и прошедших термообработку при температуре 1000°С на протяжении 30 мин

Проведенный для пленок и порошка ксерогеля, отожженных при температуре 1000°С, рентгеновский анализ показал, что наблюдаемые в спектрах линии по положению и относительной интенсивности совпадают для порошка с известными стандартами для структуры типа Zn_2SiO_4 (PDF Card No 01-079-2005) (рис. 3,*a*). При формировании пленок на кремнии наблюдаются также дополнительные линии, связанные с дифракцией на подложке кремния (рис. 3,*б*).

Рис. 3. Дифрактограммы: *а* — порошка ксерогеля, полученного из золя $Zn_{2(1-x)}Mn_xSiO_4$ (*x*=0,03) люминофора после термообработки при температуре 1000°С на протяжении 5 ч, *б* — пленки $Zn_{2(1-x)}Mn_xSiO_4$ (*x*=0,03) люминофора на монокристаллическом кремнии после термообработки при температуре 1000°С на протяжении 30 мин

В спектрах люминесценции порошков, пленок на кремнии и структур ксерогель/пористый анодный оксид алюминия, наблюдается один интенсивный пик с максимумом на длине волны 520 нм (рис. 4,*a*). В спектрах возбуждения люминесценции, полученных для длины волны возбуждения 520 нм как для порошков, так и для структур ксерогель/пористый анодный оксид алюминия/кремний наблюдается интенсивная полоса с максимумом при 270 нм (рис. 4, δ). Интенсивность сигнала ФЛ в пленочной структуре ксерогель/пористый анодный оксид алюминия значительно выше, чем для пленок, сформированных на кремнии. В то же время интенсивность сигнала ФЛ порошка ксерогеля приблизительно в 40 раз больше, чем пленочной структуры ксерогель/пористый анодный оксид алюминия (рис. 4,*a*).

Рис. 4. Спектры фотолюминесценции для длины волны возбуждения 270 нм (*a*); спектры возбуждения фотолюминесценции для длины волны излучения 530 нм (*б*) образцов $Zn_{2(1-x)}Mn_xSiO_4$ (*x*=0,03) люминофора после отжига при температуре 1000°С: *1* — порошок люминофора; *2* — трехслойные пленки на пористом анодном оксиде алюминия; 3 — трехслойные пленки на монокристаллическом кремнии

Спектры возбуждения, зарегистрированные при детектировании в соответствующих максимумах полос фотолюминесценции, существенно не отличаются для порошков, пленок на кремнии и структур ксерогель/пористый анодный оксид алюминия и характеризуются одной интенсивной полосой при 270 нм. Эксперименты показали, что с увеличением толщины люминофора интенсивность фотолюминесценции возрастает при возбуждении на длине волны 270 нм.

В отличие от легированных тербием структур ксерогель/пористый анодный оксид алюминия [3–5], формирование виллемита в порах не дает явного преимущества в интенсивности фотолюминесценции марганца по сравнению с пленками, сформированными на полированных подложках монокристаллического кремния. Для легированных тербием ксерогелей, сформированных в пористом анодном оксиде алюминия, наблюдаемый ранее рост интенсивности фотолюминесценции тербия на длине волны 543 нм для конфигурации 4fⁿ (терм ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$) обусловлен, на наш взгляд, многократным рассеянием возбуждающего излучения и поглощением в широкой полосе при 270–280 нм электронной конфигурации тербия 4fⁿ⁻¹5d.

Заключение

Таким образом, золь-гель методом синтезирован виллемит (α -Zn₂SiO₄), активированный ионами марганца. Присутствие ксерогеля виллемита в порах анодного оксида алюминия обнаружено методом растровой электронной микроскопии, а фаза виллемита подтверждена методом рентгенофазового анализа. Порошок виллемита и структуры ксерогель/пористый анодный оксид алюминия обладают интенсивной фотолюминесценцией в зеленом диапазоне при комнатной температуре. На наш взгляд, изготовление качественных структур виллемит/пористый анодный оксид алюминия представляет определенный интерес для создания преобразователей как оптического, так и рентгеновского излучения.

Авторы выражают благодарность профессору В.С. Кортову (Уральский государственный технический университет), за стимулирующие дискуссии.

SOL-GEL SYNTHESIS AND PHOTOLUMINESCENCE OF WILLEMITE

I.A. NIKOLAENKO, E.A. STEPANOVA, T.I. OREKHOVSKAYA, K.V. ARTEMYEVA, KIM THAEKWON, N.V. GAPONENKO, A.V. MUDRYI

Abstract

Manganese activated willemite (α -Zn₂SiO₄) was synthesized by sol-gel method. The presence of willemite xerogel in pores of anodic aluminum oxide was revealed by method of scanning electron microscopy. The presence of willemite phase was confirmed by X-ray diffraction analysis. Strong photoluminescence (PL) in the green range at room temperature is characterized for the willemite powder and xerogel / porous anodic alumina structures.

Литература

- 1. *Thiyagarajan P., Kottaisamy M., Ramachandra Rao M.S.* // J. of the Electrochem. Soc. 2007. Vol. 154, No. 4. P. H297-H303.
- 2. Kandarakis I., Cavouras D., Prassopoulos P. et al. // Appl. Phys. A. 1998. Vol. 67. P. 521-525.
- 3. Gaponenko N.V. // Synthetic Metals. 2001. Vol. 124, No. 1. P. 125–130.
- 4. Gaponenko N.V. // J. Appl. Spectroscopy. 2002. V. 69, No. 1. P. 1-17
- 5. Gaponenko N.V. // Acta Physica Polonica Vol. 112. 2007. P. 737-749.
- 6. Сокол В. А. // Докл. АН БССР. 1986. Т. 30. № 3. С. 243–246.
- 7. *Лыньков Л. М., Мухуров Н. И.* Микроструктуры на основе анодной алюмооксидной технологии. Минск, 2002.

^{8.} Позняк А.А. Модифицированный анодный оксид алюминия и композитные материалы на его основе. Минск, 2007.