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Previously it was shown that in electrodynamic context the Lobachevsky geometry
can simulate an effective medium acting as an ideal mirror, oriented perpendicularly
to the axes z. In the present paper, an analogue of that effect is investigated for spin
1/2 fields. Solutions of the Dirac equation are constructed which describe waves in
space which are reflected from an effective potential barrier without penetrating it.
The depth of penetration into the medium is determined by characteristics of the
quantum states and by the curvature radius of the Lobachevsky space; for waves
with k1 = 0,ke = 0 the effective reflecting barrier vanishes. Results are valid for
Majorana fermions as well, some relevant details are specified. It is shown that for
Weyl fermions, the reflecting effect vanishes. So, effects of non-Euclidean geometry

can substantially depend on the type of a fermion.
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1. Introduction

Non-Euclidean geometry can be seen as a base for modeling effective medias in the
electrodynamic context [1]. In particular, the Lobachevsky geometry while using quasi-
Cartesian coordinates, effectively simulates an electrodynamic medium with the following
constitutive law
0
0

1
D' = ¢e*E}, | B; = pop*H" | elk(a:) = ,ulk(a;) =10 : (1)
0

oS = O

6—22

the medium is non-homogeneous along the direction z. The Maxwell flat space equations
in such a medium may be reduced [2, 3] in the end to a single differential equation of the
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form
(dd—; +e— U(z)) p(2) =0 (2)

that can be associated with a Schrodinger-like equation with potential U(z) = (a®+4b%)e?.
This potential describes effective repulsing force acting on a ’particle’:

F, = —2(a* + b*)e*,

In the context of quantum mechanics, that equation describes the motion of a particle
in potential field tenting to infinity by exponential law, the particle is reflected by this
potential without penetrating through it.

Thus, the Lobachevsky geometry effectively acts as (spreading in space) an ideal mirror.
The depth z; of the penetration into that medium is determined by parameters of solutions
and by the curvature radius of the Lobachevsky space [2], [3]. Note that at a = k; =
0, b = ks = 0 the barrier vanishes.

That analysis was extended [4] to the case of non-relativistic scalar particle; the main
reflection features are the same. Some preliminary and non-complete study was performed
in [5-7] for a relativistic Dirac particle: formal solutions in Lobachevsky space were
constructed in terms of confluent hypergeometric functions though the reflection effect
was not explicitly described [5-7].

In the present paper, the effects of Lobachevsky geometry are investigated for three
types of spin 1/2 particle: Weyl, Dirac, and Majorana’s. It is proved the effect of reflection
for Dirac and Majorana particles and is demonstrated the absence of such an effect for
Weyl particle.

2. Majorana spinor field

Let us fix the Majorana basis by the following transformation [8] from spinor one:

—_

+ 7
\/5 )
7. (3)

1—72
V2

=" = M= W=

Uy =AU T9 =AyA"", A= CAT =

w

Explicitly, the matrices are given by

0—i 00 i 0 0 0 00 0 i 0400
. lio ool 0700/ , |00 0| 5 |iooo0
MW= 0 0™ | 00 —iol"™ |o-iool ™ |00l ¥

00 —io0 000 i i 0 00 00i0

these matrices are purely imaginary. Therefore, in this representation, the Dirac wave
operator becomes explicitly real

<z’7a% — m) Wy =0;

in other words there exist independent equations for real and imaginary parts of the Dirac

wave function:
Uy =ReV+ilm¥U =V, +WV_|
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0 0
(w axa—m)\Ier:O, (w%—m>‘ll:0; (5)
they describe so-called Majorana fermions, W, and W_, with charge parity respectively

+1 and —1.
For six generators

1 a 1(1 a a
0" = —(1"" =" = 59, 0% = —a™;
4 2
we have
01 0 0 0 0 —1 0 10 00
o _L[100 0| g 1/0 0 0 -1 4 1/0-100
2100 0 -1/’ T 21=-10 0 0}’ 210 0 =10/’
00 -1 0 0 -1 0 0 00 0 1
0 0 01 0100 00 —10
110 0 10 1{-10 0 0 110 0 0 1
12 13 23
_ 1 _ ' i . 6
7910 1000”7 T2l000 11’7 T2/10 00 (6)
—-10 00 0 0-10 0-10 0

o

As known, bispinor Lorentz transformations in an arbitrary basis are determined by

the formula (for more details see in [8])

1 1
Sk, k") = 5(1{30 + k§) — 5(1{30 — k3)75 + kl(am + i023) + k:i‘(am — icr23) +

12)_

I

+kao (0% +i0™) + k3(0% —i0®) + k3(0® +i0'?) + K5 (0” —io
where complex 4-vector parameter k, is used. With the notation k, = m, — in,, the
previous formula reads

S(Ma, 1) = (Mo + ngin®) + (M0 + meo® +m30”) + (n10% + neo® + nzo'?) . (7)

We see that in Majorana basis this bispinor transformations are real, so the Majorana
particle are Lorentz invariant objects.

To describe interaction of the Majorana particles with gravitational fields it suffices to
restrict the Dirac covariant equation to Majorana components in any chosen Majorana
basis:

{iv*(2) (0o + La(z)) —m} ¥(z) =0,
1) = (), Tale) = 5 0% e Va (chya) ®
Due to the properties
(i7" =75 (080)" =405z, (i93)" = +7is -

the covariant Dirac wave operator is real

[i7*(2) (Oa + Tal@)) = m]" =[iv"(2) (0a + Talz)) — m] ; (9)

this means existence independent equations for both Majorana components. W, and ¥_:
[i7*(2) (0o + Tafx)) — m]¥, =0, (10)

[i7*(x) (O + Ta(x)) — m]¥_=0. (11)
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3. Separating the variables

Let us consider the spin 1/2 particle on the background of Lobachevsky geometry in
quasi-Cartesian coordinates (¢, x,y, z are dimensionless; it is convenient to start with the
Dirac case):

dS? = dt* — e *(da* + dy*) — d2*, J—g=e**, z€ (—00,+00). (12)

The most simple form of the covariant Dirac equation in orthogonal coordinates is (see
in [8])

i (g + 3 V) ) — m] W) =0 (13)

in the diagonal tetrad efa) = diag (1,€%,€e* 1), eq. (13) takes the form
0 0 0 0
— — — —1 v =0. 14
[27 0t+w€0 +weay+w (82 ) } (14)

There exist three operators: i0;, —id,, —i0, commuting with the wave operator in (14);
so solutions are searched in the form

;

ekiky _ =it jikiz ikoy fa(z

U = ()| (15)
(2)

With the use of the spinor representation for Dirac matrices, we get 4 equations for
fi(2), i =1,2,3,4 (we simplify notation: k; = a, ko = b; also it is convenient to separate
the simple factor: f; = e*F;):

—tely —iae®Fy — be* Fy — dileg +wm F; =0,
—iely —iae® Fy + be* F3 + dile4 +im Fy =0,
—iel +iae® Fy + be* Fy + d%*Fl +imF; =0,
—ieFy + iae*Fy — be*Fy — d%Fg +imF, =0. (16)

There exists yet other commuting (generalized helicity) operator

_1 z23g z318 a
2—2(6v78+6776+7782) (17)

From eigenvalue equation X ¥ = p ¥ we get
. . d . .d
ae’Fy — ibe* Fy — Zd—Fl =plFy, ae’Fy+ibe*Fy + zd—FQ = pky
z z

d d
CLGZF4 — ibGZF4 - Zd—Fg = ng N CLGZFg + z'beng + Zd—F4 = pF4 . (18)
z z
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Considering two set of equations on F; jointly, we derive algebraic equations for Fj:

— iEFg — Zng + szl =0 s —i€F4 — ZpF4 + sz2 =0 s
—iGFl + ipFl + ZmFg =0 N —’iEFQ + ipFQ + Z’ITLF4 =0. (19)

Further we get two values for p and respective linear restrictions on Fj:

p:j:\/GQ—mZ, nge_pFl, F4:€_pF2. (20)
m m
Taking into account (20), instead of four equations (16) we get only two ones:
d d
z 2

the corresponding wave functions are

F1 Z)
PoubA = gt giav iby s A%Ez; CA=—E p=xve (22)
)\Fg(Z)

Let us detail transition to Weyl fermions. In accordance with spinor structure of the
Dirac wave function

| €@ €@ @) ”
iﬂ(ﬂf) - ’ n(l,) ) f(:C) - §2(I) ) 77(33) - n2<x> ) ( )
we obtain substitutions Weyl 2-spinor ¢ (anti-neutrino) and 7 (neutrino):
__ _—iet _tax _iby _z Fl (Z) __ _—tet _tax _iby _z F3(Z)
E=e"" e e Fy(2) | n=-e """ e e%e Fu) | (24)

Correspondingly, we have two independent subsystems:
d d
— iGFg — ianF4 — b€ZF4 — d—Fg = 0, —i€F4 - iae‘ng + beng + d_F4 =0 s (25)
z z
and
: -2 z d - -2 z d
—ZEF1+Za€ F2+b€ F2+d—F1:O, —Z€F2+ZCZ€ Fl—be Fl_d_FQZO (26)
z z
Helicity operator is diagonalised on these (Weyl’s) subsystems as follows:

—iek3 —ipk3 =0, —ieFy —ipFyF, =0 =— p=-1; (27)

—ieFy +ipFy =0, —ieFy+ipF, =0 = p=-+1; (28)

neutrino and anti-neutrino are eigenfunctions of the helicity operator with opposite eigen-
values.

Now, let us consider transition to Majorana particles. Decomposition of quasi-flat
Dirac waves into the sum of Majorana’s waves ¥ = W, + W_ in spinor basis is given by
the formulas

¥
77*

v+we  U—ye

_0.27,]*
+ ;
2 2

0.25*

0 2
Te = 20" — h (‘)’ L U=, +T_ =
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\Ij+:

§+:(§—0277*)/2‘ U - f—:(§+0277*)/2’
Ny =m+026")/2|"’ o= —of)/2|

With shortening notation

Fi(z)
Fy(z)

AFi(2)

_ AFY(2)
) 77_90‘)\172(2)

AF3(2)

§=<P‘ , &=y =

Y

where
0= e—mt ezaz 6zbyez , 90* — (e—zst ezax ezbyez)*’

we present needed decompositions in the form

©F + 1" \FS ©Fy — 10" \FS

U ©Fy — 1" \FY U - ©Fy + 1" \FY
T QAR — it Fr | T | oA it Fy
OANFy il OAFy — 1" FY

These formulas for Majorana components are referred to spinor basis. The Majorana
nature of these solutions becomes the most evident after translating the formulas to
Majorana basis by the following rule

2

O O =

1 —
D —

U, =
ﬂi

. (30)

Sl
[\

O == O
O = SO
_ o O

In this way, we get

(pFy 4+ 19 * AFy) — i(pAFy + i@FY) Re oFy + A Im pF,
.- (0Fy — i@* AFY) + i(pAFy —i9*Fy) | | RepF, — A 1m oFy
T i(pFy — i AFY) + (pAF) — i FY) A Re pFy, — Im @F, |
—i(@Fy + ip*AF5) 4+ (pAFy +ipFY) A Re oFy + Im pF,
(0Fr — ig"\FS) —i(pAFy —ig"F7) | | Tm Fy — A Re oF
v (PFy + 1" AFY) + i(AFy + ip* Fy) _; Im ¢F, + A Re pF; (31)
B i(Fy + 10" AFY) + (pAFy + i FY) Am @Fy + Re ¢F; |

—i(@Fy —ip*AFy) + (pAFy — ip* FY) AlIm pF, — Re oFy

So, it suffices to find solutions of the Dirac equation, and then to restrict ourselves to
Majorana particles.

4. Constructing and analyzing the Dirac solutions

Let us turn back to egs. (21) and transform them to the variable Z = e*, Z € (0, +00):

d ip , , B d ip . . B
(E_E) Fi+i(a—ib)F, =0, <dZ+ Z)FQ—Z(G+Z5)F1—0- (32)

These give two 2-nd order equations

d2 2—|—i d2 2_2'
(i Tt ) R=0, (it r) R0 @
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We note the symmetry with respect to complex conjugation; together with any solution

of (32), its conjugate will be a solution as well:
Fy
I (34

Iy
Y Fl*

Egs. (33) both have one regular point Z = 0 and one irregular of the rank 2 in Z = oo
(at a® + b* # 0); this means that we deal with the confluent hypergeometric equation.
Because equations in (33) relate to each other by complex conjugation, it suffices to detail
only one of them.

For F(Z) we use the following substitution F}(Z) = Z4ePZF(Z) , this results in

2AB _ <A(A— 1) +p2+ip

_ 2A _ n 2 2 2\
F{/+(7+2B)F{+ 7 Fy+ 73 72 )F1+[B — (@ +b)]F1 =0.

Let us fix parameters A and B as
A=+ip, 1 —ip, B=+Va>+0b?,

then we get
ZF! +(2A+2BZ) F| +2ABF, = 0.

Without loss of generality, take the values A = +ip, B = —v/a? 4+ b? . Translating the
last equation to y:

2BZ = —y, y = +2Va® + b%** |

we obtain
d? _ d — _
y_Fl + (2A — y)d—yFl — AFl = O >

it is the confluent hypergeometric equation
"+ (y—y)d —ad=0, a=A=ip, y=2A=2ip.
We may take the following two linearly independent solutions [9]:

FO(y) = ®(a, ) = (ip, 2ip; y) »
FOUy) =y 10(a— v+ 1,2 — 7;y) = ¥ 2P0(1 — ip, 2 — 2ip;y) (35)

they provide us with two respective complete functions Fy(Z) = Z4eB? Fy:
FY = yPe ™ (ip, 2ipry) . FY =y~ 7e ¥ @1 —ip,2 - 2ip;y) . (36)
Now, applying the above mentioned symmetry, we obtain similar results for Fy:
Fy) =y e o1+ ip 2+ 2ipry) . FY =y e @(—ip, —2ipsy) . (37)
It should be stressed that the question on relating four functions

(0, EO; £, 517)

in pairs can be solved only with the use of the first order equations (32). We state the
answer and after that prove them.
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Below we will need to follow two possibilities depending on the sign of A: +A, —A):

I+ FY = e v/2 A (A, 24,y) = f |
B = Le v/ A 0(1+ A2+ 24,9) =g,

It F® = Le v/ 401 — A2 - 24,y) = ¢*
Ff® = e /2y Ap(— A, —2A,y) = f*; (38)

I FiW = e /24 9(— A, —24,y) = f*,
By W = Lre Py A1 - A2 - 24,y) = ",

I, F7® = Le 2y A0 (1 4+ A,2 4 24, )

=9,
Fy® = ey 0(A,24,4) = f . (39)
Let us find numerical relative coefficient L. The functions Fj, F5 obey the first order
equations
d A el d A el
— —— |+ —F,=0 — + — | F: F,=0;
(dy y) PR (dy+y) 2yl
where , ,
o . a—1b Cin . a+1b
=, = .

We are to prove that needed pairs are the following ones:

FY = eyt o(A24,9) = f, FY = Le Py 401+ 4,2424,y) =y,
and
B = ey (-4, 2Ay) = 1, FO = Le v (1 A2 - 24.y) =g

In fact, it suffices to consider the first pair only. Substitution these two functions into
the first equation

d A "“
(_ - ‘) eVt B(A24,y) + S Le Py D14 4,24+ 24,y) = 0,

dy y

we get
1
_ée*yﬂy%(/x, 2A) + Ae Y2y 1D(A, 2A)+
A
eyt S B(A 1,24 4 1) — Ae Pyt B(A, 24)+
—i—%Le‘y/ZyHA D1+ A,2+24) =0
or

—®(A,24) + P(A+ 1,24+ 1) + “Ly®d(1+ A, 2+ 24) =0 .
It is readily checked (by studying several first terms of the series) the identity

—@(A,QA)+<I>(A+1,2A+1)::¢2 P(A+1,24+2);

1
2A+1)
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so we arrive at a needed relationship

, e~ i1 a+ib
ar — S I =— = — . 40
204+1) ¢ 22A+1) 22A+1V2+1 (40)
Now, let us describe asymptotic behavior of the functions f(z) abd g(z) at z —
—oo(y — 0):

f ~ yA — (2, /a2 + bQ)Zpewz
frey = (Ve ) e (41)

g L = 1 (V) e 0,
1—-ip )
g* ~ y_A =L (2 va? + b2> 6(1_”))2 — 0 (42)

In turn, with the use of the known asymptotic formula

d(a,v,z) = e“(2)*, Rez — +o0

we obtain behavior of these functions at z — +o0 (y =— +00) :

. 1T(22 .
I'(ip)
1_ip U'(2ip +2)
L(ip+1)

The last two relations mean that constructed solutions f, g do not have needed behavior

g~ Le ¥y eyt 5 00, gF— 0.

in the region z — +00, so we cannot interpret them as referred to the reflection effect.

It should be noted that in the above listed solutions (38)-(39) we see evident symmetry
(34). In fact, solutions of the type (—) are conjugate to these of the type (+). Difference
between the types (+) and (—) is associated with two different states of polarizations for
Dirac particle.

We will consider the function F} as main one; we will construct needed solutions for
this main function, and then will find their counterparts F5.

Above we have used quite definite pair of linearly independent solutions of the confluent
hypergeometric equation (with tow possibilities for A: +A, —A)

YT =®(A4,24,y), YT =¢17240(1 - A,2 - 24,y) ;
YW =d(—A,—24,y), YO =y"*Mp(14+ A2+ 24,y). (43)

To construct solutions with needed asymptotic, we need yet other two linearly independent
solutions [9] (again with different A: +A, —A):

VIO S W(A,24,), YD = 0D(4,24, )
Y6 = W(—A,—24,y), Y D =eVl(—A,—24, —y). (44)
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These sets of solutions (43) - (44) relate to each other by the Kummer formulas [9]:

(1 - 24) P24 - 1)
v o TA=24) ) TRA-D) L
Y T(1— A4) Ty Y
g LA =24) oy TRA-D) L)
T(1— A) () ’
y-  LA+24) o g T(=24-1) o 0
T(1+ A) T A) !
y-m _LA+24) ) T(=24-1) o
1+ A) T A) '

After multiplying them by y4e~%/2 (an respectively by y~“4e~%/2) we derive
P(1—24), T(2A—-1) 1

(6) _ *
R = T(1— A) ) 7
i T-24) TEA-11 ,
S VTR VS VO VR AL (43)

~(3) _ F(l + 214) N F(—QA — 1) 1

B =Tara ! T ey
o D(1+24) , T(-24-1)1
R R M "

The functions F ) and F ) at z — —00 behave as

FHO) _ L(1—24) <2 m) e,

I'(1-A)
FFO = % (2\/ 21 b2) etivs (47)

The functions F ) and F ) at 2 —» —00 behave as

_ I'(l1+2A
O (1+ )(2m> e

I'(1+ A)
_ ['(1+42A4) —ip
LY oW i
LT TR ay VO e 48)
Now let us find asymptotic behavior of Fli )2 at 2 = 4oo. Applying the known

formulas [9]
Ys = \D(Aa 2A7 y) ~ y_A7

we get (y — 400 (2 = +00))
F1+(5) = yAe_y/2 y_A ~ e_y/2 ~ exp (—\/ a? 4 b%e*
Ff(5) — A2yt Y2 exp <_\/mez

Analogously, applying the formula

— 0,

~

— 0. (49)

Yr = eV (A, 24, —y) ~ eyy_A,
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we find at y — +o0 (z = +00):
F1+(7) -~ yAefy/2 ey~ ~ et/ ~ exp (—H/ a? + b2ez) — 00
F1_(7) ~ oy eV eyt eV L exp (—f—\/ a? + b2ez> — 00. (50)

The most interesting are solution of the type +(5), because they tend to zero at z —
whereas the behave as flat wave at z — —o0.
Let us define new combination of the solutions F and F

—1 +1
= (2va@+12) RO+ (2var ¢ b2> O m=H,
= (2va+ %) T EO - (2va b2) O 6 =-G. (51)

They behave as follows

I(1-24) .. T(1+24) . '
Hi(z = —0) Ti—4) e Tt A4) e P* Hy(z = +00) ~0;
(1 —2A) ipz ['(1+2A) ipz
G1(z = —o0) Ti—A) e T+ A) e, Gi(z = 400)~0. (52)

For such solutions we can define the concept of reflection coefficient

-~ [T LIEY .
remind that A = +ip, A* = —a. With notation
%:p—l—ia, %:p—w (54)
these two types of standing waves are described as follows:
Hi(z - —00) = 2(pcospz — osinpz) ,
G1(z = —o0) = 2i(o cospz + psinpz) . (55)

The first is real, the second is imaginary. The choice of complex (and conjugate) coef-
ficients when constructing the functions F, G in (51) influences only the total amplitude
od standing waves and their phase shifts.

Note that direct interpretation of the effect in terms of ’ barrier - reflection’ finds
difficulty because in eqs. (33) we see the complex potentials:

d2 2+- d2 2 _ s
(@-F%_(GQ—FZJQ))PH:O, <ﬁ+%—(a2+b2))ﬁ’2:0. (56)

The structure of these equations assumes relationship Fy, = F}'. With this fact in mind,
we can derive for functions

H=cF+cF, G=cF—cFy.
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other equations which contain real potentials. Indeed, we get

d2 2 ;
(—+p——(a2+b2)>H+QG:0,

dz? 72 A
e pt ip
<ﬁ+ﬁ—(a —i—b))G-FﬁH: . (57)

In the coordinate z = In Z they read (to eliminate term with the first derivative let us
separate a special factor, H = ¢*/?H, G = ¢*/?G):

(——I—p ———(a2+b2)62z)H—|—ipG:0,

d? 1
(—+p2—1—(a2+b2)62z)G—i—z’pH:O.

We easily find the critical point zy, on the right of with the function should fall dawn

to zero:
2 p2 - 1/4
PLolfA= (KR €0 = =y [T (58)

In vicinity of this point zy, equations become simpler:

2 2

d
SH G =0, G +ipH =0. (59)

Their solutions may have only exponential form:
H = MeV(Z_ZO), G = Neu(z—zo) :

at this we obtain algebraic equations with four solutions

V2 ip || M 141 144
. =0 = v=—" P +— /D 60
ip V2 ‘N' \/5 \/ﬁ \/5 \/]3 ( )

Two first with negative real parts are what we need
Note that in usual units the critical point zj is giveb=n by

E2_M24 22_142
Zo:pln\/( ) = /Ap (61)

(KT + K3) ’

where K, K5 are the wave numbers; p stands for the curvature radius of the Lobachevsky
space Note that when K7, K5 tends to zero, the depth of penetrating z; tends to infinity.

Having constructed the needed main functions — solutions of equations for Fi, let us
find the form of relevant functions — solutions of equation for F3. To this end, let us turn
back to solutions:

—i +i
o= (Ve +8) O+ (W) RO = o s o
—i +i
G = (2Va2 +12) PEre) (2ve?+7?) "FO Z RO o ® . (62)
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Substitute here expressions for FljE ),
. (T(1—24), T(A-1)1 , L(T(1+24) . T(-24-1)1
Hl_C(F(l—A) ey - ) ¢ (F(1+A) / T(—A) Zg)
. (T@—-24), T(A-1)1 , L(T(14+24) , T(—24-1)1
Gl_c(m—A)f+ rA) L+’ )_C (r<1+A)f+ [(—A) Zg)

(63)

Now, by these functions Hy, G| , we are to find relevant Hs, G5. Because we have linear
task — see (21):

d
H; :>H2, (E_Zp) H1+zez(a—zb)H2:0 ;

G1 :>G2, (i—lp) G1+i62<a—ib)G2 =0 ,

dz
we may use yet known results — see (38)-(39):
RY- = KO-y,
F1+(2) =g — F;‘(Q) = f*,
—(1 . —(1 .
Fl():f = F2():g7
—(2 —(2

In this way, we get

(1 — 24) 2A— 1)1 (1+24) , T(-24-1)1
H — * * * _
2 C(m—A)g+ f)+c< axa? " Trea o)
(1 - 24) 2A . 1 1 (1+24) , T(-24-1)1
G — C * C* * _ .
: (m—A)“ ) ( o ey o)
(64)
In fact, transition from (63) to (64)reduced to the change f <= g.
Allowing for asymptotic behavior of f,g at z — —oc:
fryt= (2\/ a? + bQ)Zp e'P?
[ry = (2\/ a? + b2) e ; (65)
g~ Lyttt = (2\/ a? + bz) etz 0
1 ,
g~y =1 (/@) e 0, (66)
we establish behavior of Hy, Ga:
C*’T(2A-1) _,. C?T(=2A—-1) ..
S L) I i s v Yl
Here, we see standing waves of two types:
Hy(z — —00) = 2(p' cospz — o' sinpz) |
Gy(z — —00) = 2i(0’ cospz + p' sinpz) . (67)
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5. Studying the Majorana case

To get results for Majorana particles, we start with the formulas (31)

Re oF1 + A Im oF5 Im ¢Fy — A Re pF

| RepFy, — A Im pF; | Im @Fy + A Re oF,
Ve = ARe oF) —Im pF, |’ Vo= Am F) + Re pFy |’ (68)

A Re pFy 4+ Im pFy, Alm pF, — Re pF)

in which we should follow two different solutions (Hy, Hs) and G1, G3):

. L (T=24), TRA-1)1 |, L(T+24) , T(-24-1)1
Fl_Hl_C(ru—A)f+ F(A) L*g)+c (r(1+A)fJr I(—A) Lg)’
1—2A I'(24 — (1+2A4) . F(—2A—1)1 .
( F(A) ) ( I(1+A) I'(—A) Ef) ’
L F1—2A (2A—1 1+2A F(—2A—1)1
- < (1 F(A) ) ( T(1+A) T(—A) Zg) ’
B I(1— 2A F(2A F(l + 24) . F(—2A ~1)1
N (r( —A) F(A) ) (r 1+ A)7 T(—A) Ef)'
(69)
We will present these two solutions in short form:
Fi=H = (af +a"f)+ (V"¢ +79) = 2Re(af +vg), F =Fi,
Fy=Hy=(ag+a’g") + (V' f"+7f) =2Re(ag +~f) , Fy="Fy; (70)
=Gi=(af —a" )+ (Vg —v9) =2iIm(af —vg), F =-F,
Fy=Gy=(ag—a’g" )+ (V' f —vf) =2ilm(ag —vf), Fy=-F. (71)

Allowing for (70), we find expressions for Majorana solutions W related to (Hy, Hs):

Re ¢ X Re(af +vg) + A Im ¢ x Re(ag + vf)
Re ¢ x Re(ag +vf) — X Im ¢ x Re(af +vg)
A Re ¢ X Re(af +vg9) —Im ¢ x Re(ag + vf)
ARe ¢ x Re(ag +7f) +Im ¢ x Re ¢(af +v9)

Im ¢ x Re(af +vg) — A Re ¢ x Re(ag +7f)
. Im ¢ x Re(ag + vf) + A Rep x Re(af +v9)
AIm ¢ x Re(af +7vg) + Re ¢ x Re(ag + vf)
A Im ¢ x Re(ag +vf) — Re ¢ x Re(af +v9)

In the same manner, with the use of (71) we find expressions for Majorana solutions
U, related to (G1, Gy):

Reip x Im(af —vg) + A Im i x Im(ag — v f)

U, — Reip x Im(ag — vf) — A Im ip x Im(af — ~vg)
T ] AReip x Im(af —~g) — Imip x Im(ag —vf) |’
A Reip x Im(ag —vf) + Im i x Im(af — 7g),

‘Ij+:

U= (72)

Im i x Im(af —vg) — A Re ip x Im(ag — yf)
; Im iy x Im(ag — vf) + A Re i¢ x Im( )
AIm iy x Im(af —vg) + Re i x Im(ag — vf)
AIm iy x Im(ag — vf) — Re iy x Im( )

U= (73)

197



E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, V.V. Kisel, V.M. Red’kov

To get the asymptotic at 2 — —oo, we shoul take into consideratuin that non-is only
from function f(z):

g(Z),g*(z)——_>()’ f(z)___>€—ipz.
So, asymptotics for Majorana solutions related to (H;, Hy) are

Re ¢ x Re ae™®* + X\ Im ¢ x Re ye ?
Re ¢ X Re ye~* — X\ Im ¢ x Reae ?
A Re ¢ x Re ae™™? — Im ¢ x Re ye P?
A Re x Reve ™% +Im ¢ x Re ae™?,

@+:

Im ¢ x Re ae™®* — X\ Re ¢ x Reye ?
Im ¢ X Re v~ + )\ Rep X Re ae™ 7 |
AIm ¢ x Re ae™™? + Re ¢ x Re ye %% |’
A Im ¢ x Re ve~?* — Re ¢ x Re ae™?

v_ =

asymptotics for Majorana solutions related to (G, Gs) are

Re i x Im ae™% — X\ Im i x Imye P?
—Re ip x Imye™?* — X Im ip x Im ae™P?
A Reip x Im ae™P* + Im i@ x Imye™#*
—X Reip x Imye™P% + Im i@ x Im e P,

\II+:

Im i@ x Im ae™* + X Re ip x Imye "P?
—Im i x Imye™"* + X\ Re i@ x Im ae™?
A Im ip x Im ae™?* — Re ip x Imye P?
— X Im ip x Imye™?* — Re ip x Im ae™P?

U= (75)

Let us write down general structure of elementary blocks which enter the formulas
(74)—(75):

i(—et+ax+by) (AN

p=e =e, Rep=cosA, Im p=sinA,

ip, Reip=cos(A+m/2), Im ip=sin(A+7r/2),

Re ae™™* ~ ...cos(pz +...), Imae ™ ~ .. sin(pz+..),

Re ye ™ ~ ...cos(pz +...), Im~ye P ~ _.sin(pz+..).

All terms have similar general structure:

2sin(A + ..)cos(pz + ...) =sin(A +pz+...) +sin(A —pz + ...),

) sin
2cos(A + ..)cos(pz + ...) = cos(A + pz + ...) + cos(A —pz + ...) ,
) cos(

2sin(A + ..)sin(pz + ...) = cos(A —pz + ...) — A+pz+..),

2cos(A + .)sin(pz + ...) =sin(A +pz + ...) —sin(A —pz+ ...) .

Thus, for Majorana particle, at fixed (z,y) in A(t, z,y) we have standing waves (superpo-
sitions of two running waves in the variable z). In other words, for Majorana particle we
get the effect of complete reflection on effective barrier generated be Lobachevsky geome-
try. Also, it should be noted that Majorana components for solutions Hy, H; and Gy, Gs
represent standing wave (being real or imaginary) in the whole region of the variable z
(not only at z — —00).
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6. Weyl particles

Finally, we are to discuss the effects of Lobachevsky geometry on Weyl 2-component
fields. Recall equations for Weyl anti-neutrino

d d
(E —ie)Fy +ie*(a —ib)F, =0, (% +i€e)Fy —ie*(a+ib)Fy =0 (76)

and neutrino

d d

(d— +i€)F3 +ie*(a —ib)Fy =0, (d— —i€e)Fy —ie*(a+ib)F3 =0. (77)
z z

Both subsystems are symmetrical under complex conjugation: they have as solutions the

pairs

Al & o 5] L] ™
respectively. We may have used the known results for the system (21)
(% —ip)Fy +ie*(a —ib)Fy =0,
(% +ip)Fy —ie*(a+ib)F1 =0. (79)

Recall that p = £v/€2 — m?, so at m = 0 we have p = —e, +e. Therefore, eqgs. (79) when
p = —e coincide with (77) and refer to neutrino; at p = +¢ eqgs. (79) give eq. (76) and
refer to anti-neutrino. However, the point of prime significance is that for in Weyl case
it is forbidden to combine solutions of egs. (77) and (76). Therefore, only part of results
obtained for Dirac particle can be retained in Weyl case.

For definiteness, below let us follows the anti-neutrino (that is p = +¢; to get neutrino

case it suffices to make formal change p = —p = —¢). We have two 2-nd order equations
& pPtip 4 & pP=ip 5
(ﬁ‘i‘ Z2 —a —b)F1:O, (ﬁ—F Z2 —a —b)FgZO; (80)

they have the following asymptotic behavior:

2= —00, Fy~eP, 7P 50 By e P 0

/a2 2,2 /2 2.,z
Z — +00, FlNe:ta+be FQNeia+be.

Y

We see that if we cannot use solutions with opposite values of p, it is impossible to
construct solutions referred to reflecting process (it concerns both Fy and Fy)

In other words, the Weyl fields cardinally differ from Maxwell, Dirac or Majorana cases:
for Weyl fermions, the reflecting effect vanishes. General conclusion may be drawn that
effects of non-Euclidean geometry can substantially depend on the type of the fermion.
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7. Conclusion

Previously it was shown that in electrodynamic context the Lobachevsky geometry can
simulate an effective medium acting as an ideal mirror, oriented perpendicularly to the
axes z. In the present paper, an analogue of that effect is investigated for spin 1/2 field.
Solutions of the Dirac equation are constructed explicitly, they describe waves in space
which are reflected from effective potential barrier without penetrating it. The depth of
penetration into the medium is determined by characteristics of the quantum states and
by the curvature radius of the Lobachevsky space; for waves with k; = 0,ky = 0 the
effective reflecting barrier vanishes. Results are valid for Majorana fermions as well, some
relevant details are specified. It is shown that for Weyl fermions, the reflecting effect
vanishes. General conclusion may be drawn that effects of non-Euclidean geometry can
substantially depend on the type of the fermion.
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