УДК 621.391

ОЦЕНКА РЕЗУЛЬТАТОВ СЕГМЕНТАЦИИ ИЗОБРАЖЕНИЙ АТОМНОЙ СИЛОВОЙ МИКРОСКОПИИ НА ОСНОВЕ ИНДЕКСА СТРУКТУРНОГО ПОДОБИЯ

¹В.В. РАБЦЕВИЧ, ¹В.Ю. ЦВЕТКОВ, ²А.С. БАЙКЕНОВ

¹Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

> ²Алматинский университет энергетики и связи Казахстан

Проведена оценка результатов сегментации изображений атомной силовой микроскопии со сложной топологией с помощью индекса структурного подобия.

Ключевые слова: сегментация изображений, наращивание областей, водораздел, индекс структурного подобия.

Введение

Сегментация изображений со сложной топологией, формируемых атомным силовым микроскопом (далее – ACM-изображений), является актуальной задачей обработки данных. Она направлена на представление изображения в упрощенном для последующего анализа виде. Результаты сегментации имеют множество практических применений в распознавании отпечатков пальцев и лиц, выделении объектов на снимках, диагностике медицинских изображений и т.д. Целью статьи является оценка основных алгоритмов сегментации на примере ACM-изображений с помощью индекса структурного подобия (*SSIM*).

Индекс структурного подобия

Индекс структурного подобия используется при определении схожести двух изображений и формируется в результате их сопоставления по яркости, контрасту и структуре. Два сравниваемых изображения можно представить в виде $x = \{x_i | i = 1, 2, ..., N | \}$ и $y = \{y_i | i = 1, 2, ..., N | \}$, где N – количество пикселей.

Средняя оценка яркости производится по формулам $\mu_x = \frac{1}{N} \sum_{i=1}^N x_i$ и $\mu_y = \frac{1}{N} \sum_{i=1}^N y_i$ для двух изображений. Далее для определения контраста используется стандартное отклонение (квадратный корень дисперсии) $\sigma_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \mu_x)$ и $\sigma_y^2 = \frac{1}{N-1} \sum_{i=1}^N (y_i - \mu_y)$. Коэффициент корреляции определяется как $\sigma_{xy} = \frac{1}{N-1} \sum_{i=1}^N (x_i - \mu_x)(y_i - \mu_y)$, геометрически коэффициент корреляции соответствует косинусу угла между векторами $x - \mu_y$ и $y - \mu_y$.

После объединения полученных значений получается индекс структурного подобия, который рассчитывается по формуле $SSIM(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$, где $C_1 = (k_1L)^2$, $C_2 = (k_2L)^2$, L – динамический диапазон, $k_1 = 0,01$, $k_2 = 0,03$ – коэффициенты.

2018

Значения индекса структурного подобия лежат в диапазоне [-1,1], где 1 – соответствует полному совпадению двух изображений.

Данный метод является усовершенствованием методов среднеквадратичной ошибки (MSE) и пикового отношения сигнала к шуму (PSNR) [1]. Анализируемые изображения представляются в формате uint16 из-за большого количества сегментов.

Особенности формирования АСМ-изображений

В настоящее время атомно-силовая микроскопия находит множество практических применений в таких различных областях науки, как биология, материаловедение, радиоэлектроника, медицина и др. Атомный силовой микроскоп сканирует поверхность исследуемого образца с помощью зонда, который закреплен на конце кантилевера. При движении зонда возникают силы, которые вызывают изгиб кантилевера. Далее с помощью детектора происходит измерение этих сил. На основании этих данных получаем, в зависимости от способа измерения, получаются изображения топографии образца, отклонения или скручивания зонда [2].

Для анализа были подобраны изображения, полученные при контактном методе сканирования в режимах отклонения (рис. 1. *a*, *c*, *ж*, *й*), топографии (рис. 1, *б*, *d*, *s*, *к*) и скручивания (рис. 1, *e*, *e*, *u*, *л*). Данные ACM-изображения представляют собой сложные поверхности: решетка (рис. 1, *a*, *б*, *b*), группу однородных связанных элементов (рис. 1, *c*, *d*, *e*), группу однородных одиночных элементов (рис. 1, *ж*, *s*, *u*) и полосы (рис. 1, *й*, *к*, *л*).

Рис. 1. АСМ-изображения, полученные в режимах: *а*, *г*, *ж*, *й* – отклонения; *б*, *д*, *з*, *к* – топографии; *в*, *е*, *и*, *л* – скручивания

Результаты применения SSIM к оценке результатов сегментации АСМ-изображений

Далее представлены результаты функционирования разработанного алгоритма регрессивного волнового выращивания областей (рис. 2) [3], алгоритма маркерного

морфологического водораздела без участия оператора (рис. 3) [4–7] и водораздела по классическому алгоритму Винсента–Солли (рис. 4) [8, 9].

Рис. 2. Результат работы регрессивного волнового алгоритма выращивания областей для ACM-изображений, полученных в режимах:

 $a, c, \mathcal{K}, \tilde{u}$ – отклонения; \tilde{b}, d, s, κ – топографии; b, e, u, n –скручивания

Рис. 3. Результат работы алгоритма маркерного морфологического водораздела для ACM-изображений, полученных в режимах: *a*, *e*, *ж*, *й* – в режиме отклонения; *б*, *d*, *з*, *к* – в режиме топографии; *в*, *e*, *u*, *n* – в режиме скручивания

Рис. 4. Результат работы водораздела по классическому алгоритму Винсента-Солли для АСМ-изображений, полученных в режимах: *а*, *г*, *ж*, *й* – отклонения; *б*, *д*, *з*, *к* – топографии; *в*, *е*, *и*, *л* – скручивания

На основе полученных результатов с помощью индекса структурного подобия выполнено сравнение каждого сегментированного изображения с исходным, представленным на рис. 1. Результаты сравнения сведены в таблице.

Алгоритм	Режим	1	2	3	4	Среднее значение
Волновой алгоритм	Отклонение	0,695	0,542	0,662	0,641	0,635
	Топография	0,573	0,369	0,291	0,295	0,382
	Скручивание	0,818	0,698	0,655	0,718	0,722
Маркерный водораздел	Отклонение	0,165	0,176	0,010	0,042	0,098
	Топография	0,047	0,454	0,139	0,047	0,172
	Скручивание	0,075	0,200	0,108	0,057	0,110
Водораздел по алгоритму Винсента– Солли	Отклонение	0,006	0,193	0,294	0,230	0,181
	Топография	0,315	0,377	0,178	0,050	0,230
	Скручивание	0,119	0,117	0,142	0,492	0,218

Оценка результаты работы алгоритмов сегментации с помощью SSIM

Из таблицы следует, что наибольшим индексом структурного подобия обладает разработанный алгоритм регрессивного волнового выращивания областей. Среднее значение указанного параметра в 4,6 раза больше, чем у алгоритма маркерного морфологического водораздела, и в 2,8 раза больше чем у водораздела по классическому алгоритму Винсета–Солли. Как видно из представленных данных, алгоритм волнового выращивания областей локальных максимумов дает возможность получить сегменты на исходном изображении с наибольшим индексом структурного подобия, водораздел по классическому алгоритму Винсента–Солли приводит к возникновению лишних сегментов, что уменьшает значение *SSIM*. Метод морфологического маркерного водораздела без участия оператора приводит, в свою очередь, к недостаточной сегментации изображений, что также уменьшает значение *SSIM*.

Заключение

Анализ результатов сегментации ACM-изображений показал, что методы на основе водораздела выделяют области с существенной ошибкой, связанной с избыточной или недостаточной сегментацией. Сегментацию с наибольшим индексом структурного подобия обеспечивает алгоритм волнового выращивания областей локальных максимумов. В среднем, этот индекс в 4,6 раза больше, чем у маркерного морфологического водораздела без участия оператора и в 2,8 раза больше, чем у водораздела по классическому алгоритму Винсента–Солли.

STRUCTURAL SIMILARITY INDEX METHOD FOR VARIOUS SEGMENTATION ALGORITHM OF ATOMIC FORCE MICROSCOPY IMAGES

V.V. RABTSEVICH, V.Yu. TSVIATKOU, A.S. BAYKENOU

Abstract

An estimation of different types of segmentation for atomic force microscopy images was made using the index of structural similarity.

Keywords: image segmentation, area building, watershed, structural similarity index.

Список литературы

- 1. Image quality assessment: From error visibility to structural similarity / Z. Wang [et al.] // IEEE Transactions on Image Processing. 2004. Vol. 13, № 4. P. 600–612.
- 2. *Gaskell K., Ramsdell D.* AFM Standart Operating Procedure. Surface Analyse Centre Department of Chemistry and Biochemistry, University of Maryland. 2013. P. 14–15.
- Рабцевич В.В., Цветков В.Ю. Алгоритм регрессивного волнового выращивания областей АСМ-изображений // Матер. междунар. науч.-техн. семинара «Телекоммуникации: сети и технологии, алгебраическое кодирование и безопасность данных». Минск, апрель-декабрь 2016 г. Ч. 2. С. 41–47.
- 4. *Gauch J.M.* Image segmentation and analysis via multiscale gradient watershed hierarchies // IEEE transactions on image processing. 1999. Vol. 8, № 1. P. 69–79.
- 5. *Khiyal M.S.H., Khan A., Bibi A.* Modified Watershed Algorithm for Segmentation of 2D Images // Informing Science and Information Technology. 2009. Vol. 6. P. 876–886.
- 6. Gonzalez R.C., Woods R.E. Digital Image Processing. Pearson Education, 2008.
- 7. Arindrajit Seal, Arunava Das, Prasad Sen. Analyzing the Image Quality in Various Applications using Segmentation Algorithms and Image recognition systems // Int. J. of Computer Science and Information Technologies (IJCSIT). 2015. Vol. 6, № 3. P. 2295–2297.
- 8. *Vincent L., Sollie P.* Watershed in Digital Spaces: an efficient algorithm based on immersion simulation // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991. Vol. 13. P. 583–598.
- 9. *Chang J.H., Fan K.Ch., Chang Y.L.* Multi-modal gray-level histogram modeling and decomposition // Image and Vision Computing. 2002. Vol. 20. P. 203–216.