КОДИРОВАНИЕ ИЗОБРАЖНИЙ ПО СХЕМЕ L2L НА ОСНОВЕ ЦЕЛОЧИСЛЕННОГО ДКП-ОДКП ПРЕОБРАЗОВАНИЯ

к.т.н. Ключеня В. В., проф., д.т.н. Петровский А. А.

Белорусский государственный университет информатики и радиоэлектроники ул. П. Бровки, 6, БГУИР, каф. ЭВС,220013, Минск Беларусь, e-mail: vitaly.kliuchenia@gmail.com, palex@bsuir.by

Аннотация – данная работа посвящена экспериментальным исследованиям системы трансформационного кодирования изображений, работающей по принципу lossless-to-lossy (L2L), на основе предложенной архитектуры универсального 2D ДКП-ОДКП процессора, которые показали, что вычисление в режиме lossless является обратимым «целое к целому» преобразованием и соответствует необходимым условиям трансформационного кодирования цифрового изображения по схеме L2L, а в режимах lossy изображения восстанавливаются без видимых артефактов и для изображений с относительно сильными высокочастотными компонентами целочисленное 2D ДКП-ОДКП преобразование имеет выше эффективность – от 1 до 3 дБ по сравнению с аналогичными преобразованиями.

Введение

В настоящее время особый интерес представляют схемы компрессии изображений, работающие по принципу L2L (lossless-to-lossy), – осуществляющих сжатие и восстановление цифровых изображений как без потерь (режим lossless – декоррелирующее преобразование обратимо и реализуется в целочисленной арифметике), так и с контролируемым внесением артефактов (режим lossy). Кодирование по принципу L2L унифицирует схемы сжатия цифровых изображений в режимах lossy и lossless, когда требуется высокое качество и степень компрессии. Это обеспечивает возможность широкого применения схем кодирования изображений в соответствии с мультимедийными приложениями. Например, в стандартах JPEG, JPEG-LS и JPEG2000 режимы lossless и lossy не имеют между собой совместимости, так как декоррелирующие преобразования оптимизированы для работы в своем режиме. В стандарте JPEG XR поддерживается схема L2L, однако эффективность кодирования не достаточная особенно для изображений, у которых много высокочастотных компонент. Системы трансформационного кодирования изображения, называются системами трансформационного кодирования и сжатии результатов преобразования изображения, называются системами трансформационного кодирования (рисунок 1).

Рисунок.1. Схема трансформационного кодирования изображений на основе 2D ДКП-ОДКП

На сегодняшний день широко распространены мобильные мультимедийные системы, которые используют стандарты H.261/3/4/5, MPEG-1/2/4 и JPEG для кодирования/декодирования видео, аудио и изображений. Ядром этих стандартов является дискретное косинусное преобразование (ДКП) І, ІІ ІІІ ... VIII типов. Широкая поддержка в огромном количестве мультимедийных приложений формата JPEG схемотехническими и программными решениями и необходимость кодирования изображений по схеме L2L обуславливает актуальность проблемы создания декоррелирующего преобразования на основе ДКП и методов быстрого прототипирования процессоров вычисления целочисленного ДКП на программируемых системах на кристалле ПЛИС/FPGA. При этом, во внимание принимаются такие характеристики, как структурная регулярность, модульность, высокий вычислительный параллелизм, малая латентность и

потребляемая мощность. Прямое и обратное преобразование должно осуществляться по схеме обработки «целое к целому» с сохранением перфективной реконструкции исходного изображения (коэффициенты представляются целыми или двоичными рациональными числами; число операций умножения минимально, по возможности они исключаются из алгоритма). Известные целочисленные ДКП (BinDCT, IntDCT) не дают полного обратимого бит в бит преобразования.

Преобразователь L2L на основе 2D ДКП-ОДКП процессора

Вычисление и кодирование по принципу L2L (lossless-to-lossy) или на основе блочной лестничной структурной параметризации (БЛСП) хорошо «ложится» на структуру системы компрессии на основе общего универсального модуля ДКП-ОДКП и будет иметь вид, представленный на рисунке 2.

Рисунок.2. Структура преобразователя L2L на основе 2D ДКП-ОДКП процессора

Если посмотреть на таблицу 1, то видно, что предлагаемая реализация требует в два раза меньше аппаратных затрат в сравнении с аналогичной, описанной в [1], и в несколько раз меньше занимает площади кристалла в сравнении с [2, 4, 9], где представлена реализация только одного прямого ДКП. По скорости работы предлагаемая реализация не на много уступает решениям в [1, 4].

Архитектура	из [2]	из [4]	из [9]	из [1]	Предлагаемая
Функция	ДКП	ДКП	ДКП	ДКП-ОДКП	ДКП-ОДКП
4 input LUTs	2990	10310	2618	2237	1109
Slices	1872	5729	2823	1352	627
Slice Flip Flops	1837	3736	3431	1170	887
Frequency (MHz)	99	149	107	168	120
Max. Delay (ns)	10.1	6.7	9.3	6.2	8.3

Таблица 1. – Реализаций вычисления 2D ДКП и модулей ДКП-ОДКП на Spartan-2 XC2VP30

Преобразователь L2L состоит из памяти X размером $N \times N$, где хранится исходное изображение, мультиплексоров, процессорного модуля вычисления ДКП и ОДКП, памяти 1 для хранения промежуточных вычислений 1D или 2D ДКП или ОДКП размерностью $M \times M$, памяти 2 для хранения результатов вычислений ошибки округления в виде **SIB**-блока (side information block) размерностью $M \times M$, памяти 3 как дополнительного буфера для хранения результатов вычислений предыдущего цикла блоков s_{ik} размерностью $M \times M$, сумматора, памяти Y размером $N \times N$ для хранения закодированного изображения в виде блоков размерностью $M \times M$ и управляющих сигналов для настройки работы преобразователя согласно блочной лестничной структурной параметризации в трех режимах:

первый, режим без потерь (lossless), на основе БЛСП с использованием дополнительного нулевого информационного блока **SIB** для накопления ошибки целочисленного округления на каждом шаге лестничной структуры, производит вычисления по формуле (1) и алгоритму на рисунке 3:

$$\begin{bmatrix} \mathbf{y}_{0} \\ \vdots \\ \mathbf{y}_{n-1} \\ \mathbf{s}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{2D} & \cdots & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \mathbf{C}_{2D} & \vdots \\ 0 & \cdots & \cdots & \mathbf{D}_{2D}^{n} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{0} \\ \vdots \\ \mathbf{x}_{n-1} \\ \mathbf{s}_{0} \end{bmatrix}; \begin{bmatrix} \mathbf{x}_{0} \\ \vdots \\ \mathbf{x}_{n-1} \\ \mathbf{s}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{D}_{2D} & \cdots & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \mathbf{D}_{2D} & \vdots \\ 0 & \cdots & \cdots & \mathbf{C}_{2D}^{n} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{0} \\ \vdots \\ \mathbf{y}_{n-1} \\ \mathbf{s}_{n} \end{bmatrix}, \quad (1)$$

где $\mathbf{C}_{2D}\mathbf{x}_i \triangleq \left(\mathbf{C}(\mathbf{C}\mathbf{x}_i)^{\mathrm{T}}\right)^{\mathrm{T}} = \mathbf{C}\mathbf{x}_i\mathbf{C}^{\mathrm{T}}$ и $\mathbf{D}_{2D}\mathbf{x}_i\triangleq \left(\mathbf{D}(\mathbf{D}\mathbf{x}_i)^{\mathrm{T}}\right)^{\mathrm{T}} = \mathbf{D}\mathbf{x}_i\mathbf{D}^{\mathrm{T}}, \quad \mathbf{s}_n \neq 0$ из-за ошибки целочисленного округления в каждой лестничной ступени.

Рисунок. 3. – Алгоритм вычисления БЛСП на 2D целочисленных ДКП-ОДКП с информационным **SIB**-блоком для (*N/M*)² блоков изображения

второй, режим с потерями (lossy) на основе БЛСП 2D ДКП-ОДКП, вычислительное ядро которого представлено на рисунке 4 и вычисление происходит по формулам (2 – 3), перфективное целочисленное двумерное трансформационное преобразование ДКП на основе блочной лестничной структурной параметризации ДКП-ОДКП определяется следующими разложениями:

– прямое преобразование (рисунок 4а)

- обратное преобразование (рисунок 4б)

$$\begin{bmatrix} \mathbf{C}_{2D} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_{2D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{D}_{2D} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{2D} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{C}_{2D} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{D}_{2D} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{C}_{2D} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{0} & -\mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix},$$
(3)

где C_{2D} и D_{2D} – матрицы прямого и обратного двумерного целочисленного ДКП.

а – прямое преобразование; б – обратное преобразование

Рисунок. 4. Схема вычисления двумерного трансформационного преобразования ДКП на основе БЛСП: ДКП-ОДКП (кружок обозначает операцию округления)

третий, режим с потерями (lossy) работает как в стандарте JPEG и вычисления происходят по формуле (4):

$$\boldsymbol{y} = ([\mathbf{C}]_{m,n} ([\mathbf{C}]_{m,n} \boldsymbol{x})^{\mathrm{T}})^{\mathrm{T}} = [\mathbf{C}]_{m,n} \boldsymbol{x} ([\mathbf{C}]_{m,n})^{\mathrm{T}},$$
(4)

где \mathbf{x} – блок исходного изображения; \mathbf{y} – результат обработки; $[\mathbf{C}]_{m,n}$ – матрица прямого преобразования ДКП и $[\mathbf{C}]_{m,n}^{\mathrm{T}}$ – транспонированная матрица или матрица обратного преобразования ДКП (ОДКП) $[\mathbf{D}]_{m,n} = ([\mathbf{C}]_{m,n})^{-1} = ([\mathbf{C}]_{m,n})^{\mathrm{T}}$ размера N, $[\mathbf{C}]_{m,n} = \sqrt{\frac{2}{M}} c_m \cos\left(\frac{m(n+\frac{1}{2})\pi}{M}\right)$; $[\mathbf{D}]_{m,n} = \sqrt{\frac{2}{M}} c_n \cos\left(\frac{n(m+\frac{1}{2})\pi}{M}\right)$, где $0 \le m, n \le M - 1$; $[\mathbf{C}]_{m,n}$ – матрица прямого ДКП II типа; $[\mathbf{D}]_{m,n}$ – матрица ДКП III типа, являющаяся обратной для ДКП II типа; m – количество строк; $M = 2^n (n \in N)$; $c_m = 1/\sqrt{2}$ для m = 0 и $c_m = 1$ при $m \ne 0$; $c_n = 1/\sqrt{2}$ для n = 0 и $c_n = 1$ при $n \ne 0$.

Экспериментальные исследования

Протестируем и оценим данную систему компрессии в режимах без потерь (lossless) и с потерями (lossy) на 8-битных изображениях размером 512×512 пикселей, блоки преобразования будут 8×8, разрядность коэффициентов преобразования прямого (матрица C_{2D}) и обратного (матрица D_{2D}) ДКП будет 12 бит. Для того чтобы убедится, что происходит перфективное преобразование в режиме lossless сравним блок 8×8 исходного и реконструированного монохромного изображения "Lena" (рисунок 5а).

Рисунок.5. Преобразование «целое к целому» (a), производительность процессора по стандарту JPEG (lossy mode DCT) и 2D БЛСП (lossy mode L2L) с разным битрейтом от 0,1 до 8 bpp (б, в)

Как можно заметить из рисунка 5а, данные исходного и реконструированного блока изображения совпадают «бит в бит» в шестнадцатеричном виде, что доказывает возможность данного процессора осуществлять преобразования «целое к целому» в режиме без потерь (lossless). Проанализировав полученные реконструированные изображения в режимах с потерями данных и построив графики зависимости пикового отношения сигнал/шум (PSNR [дБ]) от битрейта (Bit Rate [bpp]) для изображения "Lena" (рисунок 5б), "Gold Hill" (рисунок 5в), можно заметить, что для высокого битрейта от 6,5 до 8 bpp (малым коэффициентом сжатия) целесообразно использовать режим сжатия с потерями данных на основе прямой двумерной БЛСП, так как получаем реконструированные изображения более качественными и с высоким PSNR, чем при кодировании обычным двумерным ДКП. Это объясняется свойством блочной лестничной структурной параметризации лучше восстанавливать высокочастотные составляющие. Режим сжатия с потерями на основе двумерного ДКП по стандарту JPEG (рисунок 5 б,в) выгодно применять при низкого битрейта от 0,1 до 6.5 bpp (высоким коэффициентом сжатия).

Гаолица 2. – Сравнение аналогичных систем сжатия по показателю PSNR [Дб]										
Image	Bit rate	Предлагаемое	Suzuki	Komatsu	Fukuma	Tran	Chokchaitam			
512×512	[bpp]	ДКП-ОДКП в	[8]	[7]	[5]	[6]	[3]			
		режиме lossy								
"Lena"	0,25	28,79	31,86	31,83	31,40	29,03	31,80			
	0,50	35,78	35,56	34,38	34,41	32,25	35,40			
	1,00	40,53	39,12	36,68	38,70	35,52	38,82			
"Barbara"	0,25	25,12	26,95	26,93	26,94	23,70	26,69			
	0,50	32,42	30,68	30,65	30,67	27,14	30,32			
	1,00	39,05	36,03	35,88	35,97	31,18	35,73			

Таблица 2. – Сравнение аналогичных систем сжатия по показателю PSNR [дБ]

Как видно из таблицы 2, предлагаемая система компрессии (рисунок 1) на основе ДКП-ОДКП преобразователя, квантователя с оптимальным распределением бит по частотным субполосам и кодирования RLE+Huffman дает лучшие показатели производительности по PSNR на 0.5 bpp (сжатие 1:16) и 1 bpp (сжатие 1:8).

Таблица 3. – Восстановленное изображение "Baboon" при кодировании по схеме из рисунка 1

Заключение

1. Предложена архитектура универсального процессора вычисления 2D декоррелирующего преобразования для кодирования изображений по схеме L2L (2D ДКП-ОДКП), особенностью которой является параллельное выполнение прямого и обратного ДКП в цикле синхронизации процессора и сокращение аппаратных затрат по сравнению со стандартной архитектурой разделимого 2D декоррелирующего преобразования на основе ДКП в два раза.

2. Тестирование универсального процессора 2D ДКП-ОДКП вычисления 2D декоррелирующего преобразования изображений показало, что исходное изображение восстанавливается с точностью до бита, следовательно, преобразование 2D ДКП-ОДКП является обратимым «целое к целому» преобразованием (рисунок 5а) и соответствует необходимым условиям трансформационного кодирования цифрового изображения по схеме L2L.

3. В режиме кодирования цифровых изображений с потерями результаты сжатия 1:32, 1:16, 1:8 по объективному показателю PSNR сопоставимы с альтернативными преобразованиями (например, JPEG) и изображение восстанавливается без видимых артефактов «блочности» и «ореолов» (таблица 3), а для изображений с относительно сильными высокочастотными компонентами 2D ДКП-ОДКП преобразование имеет выше эффективность – от 1 до 3 дБ (таблица 2).

Литература

1. A High-Throughput and Area-Efficient Video Transform Core With a Time Division Strategy / Y.-H. Chen [et al.] // IEEE Trans. VLSI Syst. – 2014. – Vol. 22, – № 11. – P. 2268–2277.

2. Chen, Y. H. High throughput DA-based DCT with high accuracy error-compensated adder tree / Y. H. Chen, T. Y. Chang, C. Y. Li // IEEE Trans. VLSI Syst. – Apr. 2011. – Vol. 19, № 4. – P. 709–714.

3.Chokchaitam, S. A new unified 2D-DCT accelerator lossless/lossy image compression based on a new integer DCT / S. Chokchaitam, M. Iwahashi, S. Jitapunkul // IEICE Trans. Inf. Syst. – Feb. 2005. – Vol. E88-D, № 2. – P. 403_413.

4. Low-power and high-quality Cordic-based Loeffler DCT for signal processing / C. C. Sun [et al.] // IET Circuit, Devices & System. – December 2007. – Vol. 1. – P. 453–461.

5. Lossless 8-point fast discrete cosine transform using lossless Hadamard transform / S. Fukuma [et al.] // Tech. Rep. IEICE, DSP99-103. – October 1999. – P. 37–44.

6. Liang, J. Fast multiplierless approximations of the DCT with the lifting scheme / J. Liang, T. D. Tran // IEEE Transaction on Signal Processing. – Dec. 2001. –Vol. 49, № 12. – P. 3032–3044.

7. Komatsu, K. Reversible discrete cosine transform / K. Komatsu, K. Sezaki // Processing International Conference Acoustic, Speech, Signal Processing. – Seattle, WA. – May 1998. – P. 1769–1772.

8. Suzuki, T. Integer DCT Based on Direct-Lifting of DCT-IDCT for Lossless-to-Lossy Image Coding / T. Suzuki, M. Ikehara. // IEEE Transactions on image processing. – November 2010. – Vol. 19, № 11. – P. 2958–2965.

9.Tumeo, A. A pipelined fast 2D-DCT accelerator for FPGA-based SoCs/ A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, and D. Sciuto // in Proc. IEEE Comput. SoC. Annu. Symp.VLSI., 2007, pp. 331-336.