ВЗАИМОСВЯЗЬ ЭЛЕКТРОФИЗИИЧЕСКИХ ПАРАМЕТРОВ В ТРАНЗИСТОРНОЙ МОП-СТРУКТУРЕ С 2D-КАНАЛОМ

Маковская Т.И., Кривошеева А.В., Шапошников В.Л., Данилюк А.Л.*

Белорусский государственный университет информатики и радиоэлектроники, 220013 Минск, П. Бровки 6

*danilyuk@nano-center.org

Прогресс в применении полевых транзисторов, связанный в первую очередь с повышением эффективности и быстродействия, достигается при использовании двумерных кристаллических полупроводниковых материалов. Такие транзисторы лишены некоторых отрицательных эффектов, проявляющихся в традиционных МОП-транзисторах при уменьшении их размеров [1]. Наибольший практический интерес представляют двумерные (2D) кристаллы из дихалькогенидов тугоплавких металлов (ДТМ) толщиной в один или несколько мономолекулярных слоев. Они обладают, в зависимости от состава и толщины, запрещённой зоной $E_g = 1-2$ эВ и подвижностью электронов $u_0 = 60-500$ см²/(В·с), что при их использовании в качестве канала МОП-транзистора обеспечивает эффективную работу таких приборов в СВЧ-диапазоне и при повышенных температурах. Существующие проблемы использования двумерных кристаллов связаны как с технологией их создания, так и с режимами их функционирования [2,3].

В данной работе исследованы взаимосвязи электрофизических параметров в однозатворной транзиторной структуре с каналом из 2D-кристалла и проведено моделирование электрических переходных и выходных характеристик такой структуры с учетом выявленных взаимосвязей. Расчеты по предложенным моделям выполнены для 2D-ДТМ, характеризующихся шириной запрещенной зоны от 0,25 до 2,1 эВ: MoS₂, MoSe₂, WSe₂, ZrSe₂, HfSe₂, PtTe₂[4]. Объектом рассмотрения является МОП-транзисторная структура, включающая расположенные на плоской подложке исток, 2D-кристалл в качестве канала, полевой затвор на нем, отделенный оксидным диэлектриком, и сток.

Концентрация носителей заряда определяется с помощью выражения [2]

$$n_e = \int_{E_c}^{\infty} D(E) f(E - \mu) dE, \tag{1}$$

с плотностью состояний $D = 4\pi m/h^2$, где m - эффективная масса носителя заряда; h - постоянная Планка; $f(E-\mu) - функция Ферми-Дирака; <math>E_c - энергия$ минимума зоны проводимости. Значение химического потенциала μ определяется из условия электронейтральности с учетом наличия внешних электрических полей. Для структуры с одним полевым электродом условие электронейтральности может быть записано при отсутствии заряженных дефектов в подзатворном диэлектрике и при постоянной плотности поверхностных состояний (ПС) на границе подзатворного диэлектрика и 2D-кристалла, в следующем виде [3]

$$\mu = \frac{C_{ox}}{C_{ox} + C_{ii}} (qV_G - qV_{G0} - qV) - \frac{qQ_S}{C_{ox} + C_{ii}},$$
(2)

где V – электростатический потенциал, V_G – потенциал полевого электрода, V_{G0} – потенциал плоских зон, Q_s – удельный заряд в канале, C_{ox} – удельная емкость подзатворного диэлектрика, q – заряда электрона, C_{it} – удельная ёмкость ПС.

Важными параметрами транзистора с каналом из 2D-кристалла являются емкость истокзатвор $C_G = (C_Q + C_{it})/[1 + (C_Q + C_{it})/C_{ox}]$ (емкость затвора) и емкость канала $C_{CH} = C_Q/[1 + (C_Q + C_{it})/C_{ox}]$. Здесь $C_Q = qdQ_s/d\mu$ – квантовая емкость.

Для описания передаточных и выходных характеристик транзистора используем диффузионно-дрейфовую модель. Конкретизация выражения для тока канала зависит от механизмов насыщения. Для структур с длинным (L > 1 мкм) каналом насыщение тока обусловлено механизмом электростатического запирания потока носителей заряда. В этом случае ток в канале при постоянной температуре может быть выражен через градиент химического потенциала [2,3]. Полученное выражение для тока канала имеет вид

$$J_{D} = \frac{W}{L} u_{0} \left[\kappa \frac{m(kT)^{2}}{\pi (h/2\pi)^{2}} \left(\frac{E_{c}(\mu_{D} - \mu_{S})}{(kT)^{2}} + Li_{2} \left(-\exp\left(\frac{\mu_{D}}{kT}\right) \right) - Li_{2} \left(-\exp\left(\frac{\mu_{S}}{kT}\right) \right) \right) - \frac{1}{C_{ox}} \left(Q_{SD}^{2} - Q_{SS}^{2} \right) \right], \quad (3)$$

где $Li_2(z)$ – дилогарифм аргумента z; $\kappa = (C_{ox}+C_{it})/C_{ox}$, μ_D , μ_S – химические потенциалы канала, определяемые из уравнений (1,2) при $V = V_D$ и $V = V_S$ соответственно; Q_{SD} и Q_{SS} – заряды в канале, определяемые из уравнения (2) соответственно при $\mu = \mu_D$ и $\mu = \mu_S$, W – ширина канала, k – постоянная Больцмана, T – температура.

С помощью системы уравнений (1-3) рассчитаны зависимости химического потенциала, концентрации электронов, квантовой емкости, емкостей затвора и канала от потенциала затвора, а также передаточные и выходные характеристики транзисторной структуры, оценены ее крутизна и коэффициент усиления по напряжению.

В рамках предложенной модели установлены самосогласованные связи между электрохимическим потенциалом и шириной запрещенной зоны материала канала, концентрацией носителей заряда и заряда в нем, квантовой емкости, емкости канала и затвора, потенциала полевого электрода, емкости подзатворного диэлектрика и емкости поверхностных состояний. Показано, что для такой структуры характерен рост и выход на насыщение химического потенциала, концентрации электронов и заряда канала с увеличением потенциала полевого электрода. При этом величина потенциала полевого электрода, при которой происходит переход в область насыщения, растет с увеличением ширины запрещенной зоны и уменьшением емкости подзатворного диэлектрика. Для квантовой емкости наблюдается пороговый характер зависимости от потенциала полевого электрода без видимого насыщения. Емкости канала и затвора также имеют пороговый характер, но в отличие от кантовой емкости, переход к насыщению резко выражен.

Полученные закономерности выхода химического потенциала на насыщение с ростом потенциала полевого электрода определяются с одной стороны тем, что рост концентрации электронов (соответственно заряда канала) с увеличением химического потенциала ограничен статистикой Ферми-Дирака. С другой стороны, увеличение заряда канала с ростом заряда полевого электрода (с ростом потенциала V_G) также ограничено величиной химического потенциала канала. В последнем случае разность зарядов полевого электрода и канала регулируется химическим потенциалом канала. Это приводит к взаимосвязи зарядов полевого электрода и канала через химический потенциал. Таким образом, химический потенциал выполняет двоякую роль – управляет зарядом канала в соответствии со статистикой Ферми-Дирака и регулирует зарядовый баланс структуры через условие электронейтральности. Влияние ширины запрещенной зоны состоит в уменьшении концентрации электронов в канале, т.е. уменьшении его заряда, что и приводит к соответствующему росту химического потенциала при прочих равных условиях.

Проведены расчеты и проанализированы зависимости, характеризующие взаимосвязи электрофизических параметров. Установлена самосогласованная взаимосвязь заряда канала и химического потенциала (рисунок 1а). Показано, что зависимости квантовой емкости,

емкостей канала и затвора, крутизны и коэффициента усиления по напряжению от заряда канала при варьировании ширины запрещенной зоны вырождаются в одну кривую (стягиваются в одну зависимость) (рисунок 1б). Вырождение указанных зависимостей при варьировании ширины запрещенной зоны обусловливается наличием в рассматриваемой системе полной компенсации снижения заряда канала с увеличением E_g за счет роста химического потенциала. Таким образом, полученные зависимости отражает наличие в системе самосогласованного изменения электрофизических параметров.

Рисунок 1. Взаимосвязь заряда канала Q_s с химическим потенциалом (а) и квантовой емкостью (б): $E_g = 0.26 \ \text{эB}$ (1), 0.52 эВ (2), 0.78 эВ (3), 1.04 эВ (4), 1.56 эВ (5), 2.08 эВ (6).

Результаты анализа влияния заряда канала на крутизну передаточной характеристики и коэффициент усиления транзистора подтверждают вывод о наличии самосогласованной зарядовой взаимосвязи электрофизических параметров с электрическими характеристиками. Выполненные расчеты крутизны передаточной характеристики и коэффициента усиления такой транзисторной структуры показали, что при типичной ширине запрещенной зоны материала канала из дихалькогенидов тугоплавких металлов в диапазоне 0,25-2,1 эВ они могут достигать 0,1 мА/В и 1000 соответственно, что согласуется с экспериментальными данными [5]. Это делает перспективным данный вид транзисторных структур для применения в цифровой электронике.

[1] Q.H.Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano. Nat. Nanotechnol. 7, 699 (2012).

[2] W. Cao, J. Kang, W. Liu, K. Banerjee. IEEE Trans. Electron Dev. 61, 4282 (2014).

[3] D. Jiménez. Applied Physics Letters 101, 243501 (2012).

[4] A.V. Krivosheeva, V.L. Shaposhnikov, V.E. Borisenko, J.-L. Lazzari, N.V. Skorodumova, B.K. Tay. Int. J. Nanotechnol. 12, 654 (2015).

[5] T. Finge, F. Riederer, M.R. Mueller, T. Grap, K. Kallis, J. Knoch. Ann. Phys. (Berlin) 529, 1700087 (2017).