
Principles of organization and automation of
the semantic computer systems development

Vladimir Golenkov, Daniil Shunkevich, Irina Davydenko, Natalia Grakova
Belarussian State University Informatics and Radioelectronics

Minsk, Belarus
golen@bsuir.by, shunkevich@bsuir.by, davydenko@bsuir.by, grakova@bsuir.by

Abstract—The work is devoted to the principles of devel-
opment of semantic computer systems of a new generation
based on the Open Semantic Technology for Intelligent
Systems Design (OSTIS Technology). The advantages of the
transition from traditional computer systems to semantic
computer systems from the point of view of the design
process are substantiated, and the advantages of implemen-
tation of automation tools for design activities as semantic
computer systems are considered.

Keywords—design automation tools, semantic technology,
semantic network, knowledge base, problem solver, ontol-
ogy, multi-agent system

I. INTRODUCTION

At the present stage of development of computer
technologies, various types of design automation systems
(CAD systems) are widely used in almost all production
areas. The use of systems of this kind is relevant both in
the production of material objects and in the development
of computer systems. Modern CADs allow automating
many processes related to both directly designing an
object and its development and implementation, and, as a
result, can significantly reduce production time and cost
of the product, as well as minimize the number of errors
associated with human factors. An important direction
of the development of CADs is their intellectualization,
which imposes fundamentally new requirements on the
development of CAD technologies.

In a number of previously published works, the authors
proposed the concept of the Open Semantic Technology
for Intelligent Systems Design (OSTIS Technology) [1],
[2], focused on the development of computer systems
of the new generation (first of all – hybrid intelligent
systems [3]) which will be called semantic computer sys-
tems or ostis-systems, if it is necessary to emphasize their
compliance with the standards of OSTIS Technology.
The model of hybrid knowledge bases of ostis-systems
and models for representing various types of knowledge
within the framework of such a knowledge base [4], as
well as model of a hybrid problem solver, which allows
to integrate various problem solving models [5], were
also proposed.

The main requirement for OSTIS Technology is to
ensure the possibility of joint use within the ostis-systems
of various types of knowledge and various problems

solving models with the possibility of unlimited expan-
sion of the list of knowledge used in ostis-system and
problem solving models without significant labor costs.
The consequence of this requirement is the need to
implement the component approach at all levels, from
simple components of knowledge bases and problem
solvers to whole ostis-systems.

To meet these requirements, the most important task
is not only the development of appropriate ostis-systems
models and their components, but also the development
of an integrated methodology and appropriate tools for
automating the construction and modification of ostis-
systems.

Thus, within the framework of this work, attention is
paid to the principles of organizing and automating the
development process ostis-systems, which underlie the
relevant methodology and tools, including the principles
of regulation and stimulation of activities aimed at de-
veloping ostis-systems and their components, and also
considered the main advantages of the transition from
traditional computer systems to ostis-systems from the
point of view of the design process and maintenance of
such systems.

However, the transition from traditional computer sys-
tems to ostis-systems will allow not only to obtain a
number of advantages associated with such key proper-
ties of ostis-systems, such as hybridity, modifiability and
learnability, which are discussed in detail in the above
works, but it will also allow to bring to a fundamentally
new level the processes of designing and maintaining
of computer systems and the degree of automation of
such processes. In this case, it is assumed that the build-
ing automation and modification tools for ostis-systems
should be implemented as a ostis-system themselves and
integrated with the system being developed, which will
give a number of additional benefits.

Thus, within this work attention is paid to the prin-
ciples of organizing and automating the development
process of ostis-systems, which underlie the relevant
methodology and tools, including the principles of regu-
lation and stimulation of activities aimed at ostis-systems
and their components developing, and also considered
the main advantages of the transition from traditional

53

computer systems to ostis-systems from the point of view
of the design process and maintenance of such systems.

II. INTELLECTUALIZATION OF DESIGN AUTOMATION
TOOLS

Much attention in modern literature is given to var-
ious approaches to the construction of intelligent CAD
systems. Unfortunately, in many cases, intellectualization
refers to adding the simplest adaptive functions («in-
telligent cursor», «intelligent menu», etc.), however, an
analysis of the sources revealed key areas in the field of
the intellectualization of CADs, within which there are
significant results.

One of the most important and most promising areas in
the field of building intelligent CAD is generative design
[6], which assumes that the computer system itself acts
as an active participant in the design process. According
to the concept of generative design, the designer sets the
required minimal description of the parameters of the
designed object, after which the system independently
generates the initial version of the designed object model,
which is further refined and updated in dialogue with the
human designer. Important for the development of this
direction was the introduction at first of CNC machines,
and then 3D printing technologies into mass production,
making it possible to manufacture objects of a much
more complex shape based on their detailed model.
Taken together with the development of computing pow-
ers this made it possible to solve various optimization
problems using CAD, in particular, the problem of topo-
logical optimization (eliminating unnecessary material
from a part while maintaining key properties such as
maximum load).

Autodesk Dreamcatcher [7] is the most advanced and
currently popular tool implementing the concept of gen-
erative design, which allows to develop designs of parts
for various products based on the design intent expressed
by people in natural language and then modify projects
to simplify their production on a specific equipment.

Another important area of CADs intellectualizatio,
which is significantly less developed in comparison to
the one discussed earlier, is the direction suggesting
that CAD should also perform the learning system [8]
functions. It is important to note that both the learning of
the designer and the learning of the system itself in the
process of work are considered. In turn, the designer’s
learning can also be considered in two aspects: learning
in working with CAD systems, that is, studying the
functionality and principles of working with a particular
system, as well as learning in the actual subject domain
in which the design is carried out, that is, studying the
detailed aspects of the designed objects, their purpose,
design features, etc. It is obvious that the development
of this direction imposes additional requirements on the
technologies underlying such systems, in particular, re-

quires the coordinated use of heterogeneous information
and various models of information processing.

Another important area of intellectualization is sim-
ulation modeling. Simulation can be widely used at
different stages, in particular:
• modeling the behavior of the object of development

under the influence of various factors, in a variety
of external environment, etc., which is especially
important when developing complex expensive sys-
tems designed to work in unpredictable conditions;

• project management modeling, which can be used
for training or testing personnel, assessing potential
risks when choosing a specific management strat-
egy, working out certain practices and skills under
conditions similar to a real project [9];

Obviously, to realize the possibility of comprehensive
simulation, it is necessary to have tools that allow, on the
one hand, to describe in details complex heterogeneous
objects from different points of view, i.e. in fact, integrate
within the framework of a unified system various types
of knowledge, as well as various approaches to the
interpretation of such descriptions. In addition, it is
necessary to have the ability to easily modify the existing
models, in particular, it should be easy to change the
number and types of influencing factors, it should be
easy to change the principles of behavior of objects of
the environment and the simulated objects themselves,
etc.

It is important to note that simulation modeling can
be the basis for the use of other models and methods of
artificial intelligence. For example, the possibility of a
large number of simulation launches and the accumula-
tion of certain information about these simulations can
be the basis for their further analysis and application of
machine learning methods.

The next stage in the development of production
systems in general is the transition from CADs to
more general PDM-systems (Product Data Management),
and further to complex PLM-systems (Product Lifecy-
cle Management) [10], as well as CALS-systems and
technologies (Continuous Acquisition and Lifecycle Sup-
port).

The construction of such integrated information sys-
tems requires the unification (standardization) of hetero-
geneous information. To solve this problem, the onto-
logical approach is currently widely used both in the
development of software systems [11], [12], and in other
areas [13], [14].

Thus, various kinds of intellectualization of design
automation tools require solving the compatibility prob-
lem of various information representation and processing
models, a specific list of which for different systems
may differ significantly, since it depends on the design
object, requirements for functionality of the tools, etc. In
addition, the development of such funds, including those

54

associated with changes in the design object, requires a
reduction in the laboriousness of modifying these tools,
which is also currently a serious problem.

In this paper, it is proposed to solve these problems by
using unified models for the representation and process-
ing of information proposed in the OSTIS Technology, in
particular, models of hybrid knowledge bases and hybrid
problem solvers. Next, we consider in more detail the
principles of building automation tools that implement
these principles.

III. ARCHITECTURE AND FEATURES OF THE
DEVELOPMENT OF SEMANTIC COMPUTER SYSTEMS

A. Architecture of semantic computer systems

Lets consider the features of the ostis-systems archi-
tecture, affecting the design process and the principles
of appropriate automation tools constructing.

As a basis for knowledge representation in the frame-
work of OSTIS Technology, a unified version of coding
information of any kind based on semantic networks is
used, named SC-code [1]. Elements of SC-code text (sc-
texts) are named sc-elements, among which, in turn, are
sc-nodes, sc-arcs and sc-edges. As part of the technology,
several universal variants of visualization of SC-code,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant).

Each ostis-system consists of a complete model of this
system, described by means of SC-code (sc-model of
computer system) and sc-model interpretation platform,
which in general can be implemented both in software
and in hardware [2]. This ensures complete platform
independence of ostis-systems.

In turn, the sc-model of computer system is con-
ventionally divided into sc-model of knowledge base,
sc-model of problem solver and sc-model of computer
system interface (including user interface, interface with
the external environment and interface with other ostis-
systems), as well as the model of abstract semantic
memory (sc-memory), in which the SC-code constructs
are stored, and, accordingly, all the listed sc-models
(figure 1).

The principles of building of sc-models of knowledge
bases and sc-models of problem solvers are discussed in
more detail in the papers [4] and [5], respectively.

The sc-model of knowledge base is based on such
basic principles as the distinguish of the hierarchical
system of subject domains and ontologies (including the
presentation level meta-ontology and the family of top-
level ontologies that are part of each developed ostis-
system), as well as the distinguish of structures (signs
of entire fragments of the knowledge base), which can
be subsequently described in the same knowledge base.
The use of these and other principles provides such
important properties as the ability to represent knowledge
of various types in the knowledge base, ease of making

sc-models interpretation platform

ostis-system

sc-memory

sc-model of
knowledge base

sc-model of problem
solver sc-model of interface

sc-model of ostis-system

Figure 1. Ostis-system architecture

changes to the knowledge base, including the possibility
of expanding the set of knowledge types used, as well as
the possibility of structuring the knowledge base accord-
ing to an arbitrary set of features and the possibility of
representation in the knowledge base of meta-knowledge
of an arbitrary level.

The sc-model of problem solver is based on the
principle that the solver is treated as a hierarchical system
of agents that react to situations and events in sc-memory
(sc-agents) and interact with each other exclusively by
specification of the information processes performed by
the corresponding agents in the sc-memory. Such sc-
agents can be atomic, i.e. those for which the program
of their actions is specified and non-atomic, i.e. those
that are decomposed into simpler sc-agents. Classes
of functionally equivalent sc-agents are called abstract
sc-agents. Each abstract sc-agent has a corresponding
specification that contains, at a minimum, the initiating
condition of sc-agent and the sc-agent implementation
description depending on whether it is atomic or non-
atomic sc-agent.

Further, speaking about the knowledge base, problem
solver and user interface, we assume that we are talking
about the sc-model of knowledge base, sc-model of prob-
lem solver and sc-model of user interface, respectively.

The sc-model separation into components is rather
conditional, since an important architectural feature of
ostis-systems is the fact that both the solver and the
system interface are in fact part of its knowledge base.
This is achieved through the following principles:
• all agents that are part of the solver (including the

programs of agents), all the information processes
they perform are described in the knowledge base
by means of SC-code. This possibility, in turn, is
achieved due to the presence within the framework
of OSTIS Technology of programming language
SCP, the programs of which are written using SC-
code;

• the ostis-system interface is treated as a subsystem
built according to the same principles, that is,

55

having its own sc-model of knowledge base and sc-
model of problem solver, which in turn are based
on the corresponding principles discussed above.

Thus, the most important feature of the development
of ostis-systems is that development of ostis-system
actually comes down to development of its knowledge
base. When developing the components of the problem
solver and the interface, their features are taken into
account, however, the general mechanism for making any
changes to the ostis-system becomes unified.

B. General typology of project actions of semantic com-
puter systems developers

In the general case, when developing ostis-systems (as
well as many other computer systems), the following
types of project activities can be performed:
• synthesis (generation) of components and systems

with specified properties
•• search for the closest components in compo-

nents library;
•• adjustment of the specified (for example, found)

component in order to obtain the specified prop-
erty

•• assembly of large parts;
• integration of the developed component into the

system for which the component is intended;
• analysis of the developed component or system
•• analysis of correctness (absence of errors and

contradictions);
•• analysis for compliance with the required char-

acteristics, including testing and test generation;
•• integrity analysis (completeness);
•• clearness analysis (absent of excesses);
•• value analysis;
•• evaluation of the project workload;

• specification (description, documentation) of the
developed component or system;

• control of project discipline (adherence to work
schedule);

• design management (assignment of performers and
deadlines for specific project tasks);

• developer coordination;
• version control;
• analysis of the contribution of each developer to the

overall result;
• stimulation of project activities.

IV. EXISTING APPROACHES TO THE ORGANIZATION
OF THE COMPUTER SYSTEMS DEVELOPMENT

Despite the architectural features, each ostis-system
is a computer system, and therefore, when designing
ostis-systems, it is necessary to take into account current
trends in the development of computer systems and the
requirements for the corresponding automation tools.

In this section, we consider existing approaches to
the organization of the development process of computer
systems depending on the type of development object:

• general methodologies for developing computer
systems, the object of development in general is any
computer system, including the semantic computer
system;

• means of automating the computer systems de-
velopment, the object of development is a com-
puter system built on the basis of traditional com-
puter technologies. Many approaches implemented
in such tools can also be used in the development
of semantic computer systems; however, in a ready-
made form, these tools are not focused on the
development of such systems and do not take into
account their features;

• tools for developing knowledge bases and ontolo-
gies, the object of development is the components
of knowledge bases, first of all, ontologies;

• means of component development of intelligent
systems, the object of development is intelligent
computer systems.

A. Modern general methodologies for computer systems
development

With the development of information technologies in
the last decade, the Agile [15], [16] family of software
development methodologies has gained the most popu-
larity. Most Agile methodologies belong to the so-called
lightweight methodologies and are contrasted with the
classic heavyweight, such as, for example, the cascade
(waterfall) model. It can be said that modern Agile
methodologies actually integrate the best of the ideas
underlying the more traditional methodologies (spiral,
iterative, cascade, etc.), taking into account the pecu-
liarities of the current stage of software systems de-
velopment, first of all - the need for substantial more
rapid adaptation ever-changing requirements, as well as
the need for relevant workable versions of the system
being developed. These features are fully valid for ostis-
systems, however, due to their architectural features,
many principles of Agile methodologies for such systems
can be implemented easier than for traditional computer
systems, which will be discussed in more detail below.

B. Existing automation tools for the development of
computer systems

Most modern computer-aided design tools do not limit
users to using any particular methodology (although there
are tools that implement a specific methodology, for
example, Trello).

In this section, we briefly review the main classes of
tools aimed at solving some particular problems in the
field of computer systems development.

56

1) Version control systems: Version control systems
are currently used in the development of almost any
software systems and give developers the following main
features:
• save project versions with the ability to rollback to

any previous version if necessary;
• fixing the authorship of each change, the date and

time of the change, as well as the ability to specify
the sense and reason for the change;

• access control and the possibility of making changes
to the main project for different developers;

• many version control systems allow to create dif-
ferent versions of the same document, if necessary.

An overview of modern version control systems and
their comparative analysis is given, for example, in [17].

2) Issue tracking systems, bug-tracking systems: Sys-
tems of this class allow developers to fix current project
tasks (including errors correcting and other problems),
assign performers and deadlines for tasks, indicate the
status and priority of tasks. Modern systems of this class
provide wide opportunities for discussing tasks, assessing
the contribution and activity of developers, etc.

A comparative analysis of systems of this class is given
in [18].

3) Project management systems: Project management
systems are in many ways similar to bug tracking sys-
tems, but unlike them, as a rule, they are not focused
on developing only software products. In addition, the
key difference in developed project management systems
is the availability of tools for estimating project devel-
opment deadlines, development of plan implementation
monitoring tools, visualization of project activities in the
form of generally accepted diagrams, etc., that is, the
emphasis in such systems is transferred to management
and control design process.

A list of popular systems of this class with a brief
description of their capabilities is given in [19].

4) Verification automation systems: Verification au-
tomation systems can be divided into the following
classes:
• continuous integration systems that integrate with

the version control system, build a project for each
new version or according to a schedule, automati-
cally perform a number of embedded tests, and if
errors occur, immediately inform the developers;

• test automation systems that allow to automate
part of the manual work in the process of testing of
the developed product and its components.

Lists of systems of this class with specifications are
given, for example, in [20], [21].

5) Project hosting systems: Project hosting systems
give developers the opportunity to place repositories with
the code of their projects in the cloud, and administer
them. Each system of this kind is a complex system ca-
pable of working with at least one version control system,

and also, as a rule, integrates the auxiliary systems of all
the classes listed above (project management, tracking
errors and tasks, automatic verification). Many systems
of this kind also provide ample opportunity for project
documentation.

A comparative review of the most popular systems of
this class today is given, for example, in [22].

Thus, the systems of these classes solve problems that
are relevant in the development of computer systems of
any kind, including ostis-systems. Due to this the task of
developing tools that would solve these problems when
designing ostis-systems taking into account the specifics
of such systems becomes urgent. The implementation
of such tools on the basis of OSTIS Technology will
significantly simplify the integration of subsystems that
solve different tasks, which, in turn, will expand the
functionality of such tools, which will be discussed in
more detail below.

C. Knowledge base and ontology development method-
ologies

As mentioned earlier, the development of the ostis-
system comes down to the development of its knowledge
base, and therefore it is advisable to consider existing
approaches to the development of knowledge bases, as
well as appropriate tools. At the same time, in modern
literature, when analyzing methods for knowledge bases
development, the focus is on analyzing methodologies
for developing ontologies, which are the basis of mod-
ern knowledge bases, including knowledge bases ostis-
systems.

There are many papers devoted to the review of various
approaches and methodologies for ontology design [23],
[24].

In [25], a variant has been proposed for the classifi-
cation of existing methodologies for the development of
ontologies, based on the most essential features, which
include:
• team development support;
• degree of dependence on the toolkit;
• type of ontology life cycle model used;
• possibility of formalization;
• ability to reuse knowledge base components;
• strategy for distinguishing of subject domain con-

cepts;
• ability to support compatibility of developed ontolo-

gies.
Among the main methodologies that have been most

developed to current date and have become basic in
the field of creating ontologies of subject domains,
the following can be singled out: Ushold and King’s
skeletal methodology [26], Gruninger and Fox method-
ology (TOVE) [27], METHONTOLOGY [28], [29],
On-To-Knowledge (OTK) [30], KACTUS [31], DILI-
GENT [32], SENSUS [33] and UPON [34]. Their com-

57

parative characteristics in accordance with the above
classification are given in [25].

Analysis of the reviewed methodologies shows that
none of them is complete enough, and all proposed
solutions are not unified. Most methodologies do not
support the joint development of knowledge bases, the
compatibility support for the knowledge bases being
developed and, as a result, the support for the reuse of al-
ready developed knowledge bases and their components.

In addition, the overwhelming majority of knowledge
base development methodologies describe the develop-
ment process in general terms, not regulating the actions
of participants at each stage of ontology development, not
specifying the principles of matching new concepts with
existing ones, the subjective influence of developers is
high. Thus, the problem of compatibility of components
of knowledge bases remains relevant when using even
the most developed methodologies.

D. Knowledge base and ontology development tools and
knowledge base development projects

Let us consider in more detail some of the most
common knowledge base development tools available
today.

Wiki-technology
Wiki-technology allows to accumulate knowledge that

is presented in an interoperable form, providing navi-
gation through knowledge. It is possible to use Wiki-
Technology for projects of any scale and thematic fo-
cus (from open electronic encyclopedias, to reference
systems of various enterprises and educational institu-
tions) [35], [36].

Wiki-Technology provides its users tools for storing
and structuring text, hypertext, files and multimedia.
Wiki-Technology uses the MediaWiki [37] platform as
a tool, which allows to perform information interaction,
providing access to information resources to all partic-
ipants in the system development process, organizing
management and monitoring of the development [38].
The advantages of this technology include the simplicity
of Wiki markup, communication capabilities that are
realized through joint editing of pages, as well as through
electronic discussions in the Wiki or additional media
such as chat or forum, the design nature of the work,
cooperation, the formation of a single product of joint ac-
tivities meaningful interaction, knowledge sharing, eval-
uation and continuous improvement of work [35].

The influence of the Semantic Web on such projects is
constantly increasing, as a result, Wiki-sites engines have
been created that support the ontological representation
of knowledge and semantic markup of resources using
Semantic MediaWiki [39]. These tools allow you to
include semantic annotations in Wiki markup in the form
of OWL and RDF and explicitly separate structured and
unstructured information [35].

In addition to these advantages, the Wiki as a technol-
ogy has several disadvantages: duplication of information
on different pages, the impossibility of structuring knowl-
edge due to the lack of a hierarchy of hyperlinks and the
lack of unification of the presentation of information,
the lack of automatic verification. In addition, Wiki-
Technology is currently designed to work only with
structured natural-language texts, thus, based on this
technology, it is not possible to build knowledge bases
of intelligent systems, since informal text is unsuitable
for automatic processing to the extent necessary for
solving various problems, for example, logical inference
problems.

However, many ideas of Wiki-technology can be
adapted for the collective development of knowledge
bases.

Software environments for ontology construction
Existing software for building knowledge bases (on-

tologies) are conditionally divided into three [40] groups:
1) Ontology creation tools. This class of tools supports

the process of creating a knowledge base ”from scratch”.
In addition to editing and browsing, tools provide support
for ontology documentation, ontology import/export into
various formats and languages, and ontology library
management.

These include: Protégé [41], NeON [29], Co4 [42],
Ontolingua [43], OntoEdit [30], OilEd [44], We-
bOnto [45] etc. A brief description of these and other
tools can be found in [46], [47], [48].

2) Tools for displaying, aligning and combining of
ontologies. This class of tools helps users find the sim-
ilarities and differences between the original ontologies
and create a resultant ontology that contains elements of
the original ontologies. The author [47] divides them into
subgroups according to the following features:
• to combine two ontologies in order to create the

new one (PROMPT [49], Chimaera [50], On-
toMerge [51]);

• to determine the conversion function from one on-
tology to another (OntoMorph [52]);

• to define the mapping between concepts in two
ontologies, finding pairs of corresponding concepts
(for example, OBSERVER [53], FCA-Merge [54]);

3) Ontology-based annotation tools. The most impor-
tant condition for implementing the goals of the Semantic
Web is the ability to annotate Web resources with meta-
information. For this reason, recently ontology engineer-
ing tools include ontology-based annotation tools. These
include: MnM [55], SHOE Knowledge Annotator [56],
etc.

In the context of solving the tasks set in the framework
of this work, it makes sense to consider in detail only
the first class of tools.

In ontological engineering, any ontology is considered
as the result of coordinated activities of a group of

58

specialists on a model of a certain field of knowledge.
Based on this, with the development of methods and
tools in the field of knowledge engineering, an increasing
attention has been paid to the instrumental support of the
process of collective development of ontologies, within
which there are several basic tasks [57], [58]:
• management of interaction and communication be-

tween developers;
• access control to current results of joint design;
• copyright fixation for expert knowledge passed to

the public;
• design error detection and error correction manage-

ment;
• competitive change management.
Currently, to solve these problems, there are already

several fairly well-developed approaches and appropriate
tools. Among them are the following:
• Collaborative Protege [59];
• NeOn project [29];
• infrastructure for joint development of consistent

knowledge bases Co4 [42].
The main disadvantages of the considered tools in-

clude:
• the lack of developed tools for automatic editing

and verification of knowledge bases, including the
assessment of completeness and redundancy;

• lack of a single mechanism for the collective cre-
ation of knowledge bases, including means of co-
ordinating changes between developers of different
levels of responsibility, a typology of developer
roles;

• insufficient level of extensibility of development
tools.

E. Analysis of the means of component development of
intelligent systems

The use of ready-made components is the most im-
portant way to reduce the time and complexity of the
development of computer systems, and reduce the pro-
fessional requirements for their developers.

The issues of component design of intelligent systems
and, in particular, knowledge bases and problem solvers
are discussed in the works [60], [61], [62], [63]. When
creating the first systems based on knowledge, it was
assumed that these systems would ideally solve the
problem of reusable components, however, developers
faced a number of problems that are relevant to date [64].

Many researchers and developers determine the avail-
ability of ontological libraries as an important com-
ponent of the Semantic Web [65] infrastructure. The
first libraries and collections of ontologies were devel-
oped within such projects as Ontolingua server [43],
DAML [44], Protégé ontology library [41], Ontaria
ontology directory [66] and SchemaWeb [67]. Many
of these projects are not currently supported, but they

are being replaced by a new generation of ontology
libraries [68].

However, as shown in [69], [70], the majority of
ontologies developed based on the Semantic Web stan-
dards are not consistent with each other and, therefore,
cannot be reused as components of knowledge bases, as
was supposed by the developers of the Semantic Web
standards.

The problems in the component design of knowledge
bases include the following:

• many components use the developer’s language
(usually English) to identify concepts, and it is
assumed that all users will use the same language.
However, for many applications, this is unaccept-
able – developer-only identifiers should be hidden
from end users, who should be able to choose a
language for identifiers that they see [64];

• lack of unification in the principles of representing
different types of knowledge within one knowl-
edge base, and, as a result, the lack of unifica-
tion in the principles of identifying and specifying
reusable components leads to incompatibility of
components developed in the framework of different
projects [60];

• lack of search engine components that meet the
specified criteria.

To date, a large number of knowledge bases have
been developed in the different subject domains [71].
However, in most cases, each knowledge base is devel-
oped separately and independently from the others, in the
absence of a unified formal basis for the presentation of
knowledge, as well as unified principles for the formation
of systems of concepts for the described subject domain.
In this connection, the developed bases are, as a rule,
incompatible with each other and not suitable for reuse.

In turn, in the development of problem solvers there
are a large number of specific implementations, but the
compatibility issues of different solvers for solving one
problem are practically not considered in the literature.

There are a number of works that solve problems of ac-
cumulation and reuse of components of problem solvers
[60], as well as the development of a unified platform
for integrating various models of problem solving [72],
but the problem of their compatibility is still relevant.

Thus, the problem of the development of common
unified principles for the distinguishing and specification
of reusable components of intelligent systems and the
formation of a library of such compatible components
is still relevant. In this case, reusable components of
different levels of complexity can be distinguished - from
specifications of single concepts and single knowledge
processing agents to reusable ontologies, ontology sys-
tems, and problem solvers.

59

V. REQUIREMENTS FOR THE METHODOLOGY AND
DEVELOPMENT TOOLS FOR SEMANTIC COMPUTER

SYSTEMS

This section considers the requirements formulated on
the basis of the analysis of modern methods and tools
for developing computer systems, as well as modern
approaches to the development of intelligent systems, and
in particular, knowledge bases.

Given that the development of ostis-system comes
down to the development of its knowledge base, the
requirements for ostis-systems development automation
tools include:
• refusal to edit the source code of the knowledge

base (in any external languages) in favor of directly
editing the knowledge base stored in the sc-memory
by means of the appropriate editors. The main
advantages of this approach are as follows:
•• the ability to automate the verification and edit-

ing of the knowledge base stored in memory;
•• the possibility of automating the process of inte-

grating new knowledge (first of all, identifying
and eliminating synonymous fragments) into the
knowledge base being developed;

•• the ability to edit the knowledge base (as a
result, the problem solver) directly during the
operation of the system;

•• possibility during the collective development to
allocate, if necessary, fragments of the knowl-
edge base of arbitrary configuration and appeal
to them in the process of discussion and agree-
ment;

• there should not be any fundamental restrictions on
the top level development methodology used, the
nomenclature of the distinguished roles of devel-
opers, models of organization and management of
the development process. At the same time, due
to its openness, OSTIS Technology is focused on
the development of primarily open-source projects,
which also have a number of features from the point
of view of the designing organization [16];

• possibility of joint development of a knowledge
base by the development team (including distributed
teams), including the possibility of discussing
(agreeing on) and administering the changes, if
necessary, the ability of third-party subject domain
experts help in need to solve some contradictions.
In addition, with an increase of the knowledge base
size, it becomes important to organize the hierar-
chical administration of the knowledge base, with
indicating the responsibilities of each administrator;

• the possibility, when experts have opposing points
of view, in the process of agreeing on any fragments
of the knowledge base to fixate and/or resolve these
contradictions. This problem is particularly relevant
in scientific projects where the truth of certain

judgments can be confirmed or refuted for a long
time;

• independence of the methodology and knowledge
base development tools (except for external lan-
guage editors) on which external language is used
to develop the current knowledge base fragment
(SCn, SCg, etc.), as well as on which identification
language of sc-elements (English, Russian, etc.) is
currently in use;

• availability of convenient and accessible tools of
manual editing of the knowledge base using external
languages;

• fixations of the entire history of changes in the
knowledge base with the obligatory indication of
authorship and the time of making each change,
including both changes to its subject part (intended
for the end user), and any changes associated with
the development process, including commenting,
approval or rejection of the proposed knowledge
base changes, etc.;

• ensuring the integrity (consistency) of the knowl-
edge base being developed at each point in time
during its development, while in the early stages
of development of automation tools, the degree of
human participation in integrity ensuring can be
significant and subsequently decrease. This require-
ment is largely due to the pursuit of the ideas of
Agile-methodologies;

• reflexivity of the ostis-system development process,
suggesting that the developed ostis-system itself
becomes an active participant in the development
process, that is, it can analyze current project tasks,
processes aimed at its development and any related
information.

In addition, when developing ostis-systems, the fol-
lowing requirements stay valid, which are valid when
developing computer systems of any kind:

• availability of means for assessing the contribution
of each participant to the development process,
which allows calculating the amount of material
remuneration of the development process partici-
pants, taking into account the overall activity of
various participants when determining their roles
and privileges within the hierarchy of developers,
etc.;

• availability of tools and mechanisms to implement
the process of material incentives for developers, in
particular, investing in certain areas of development,
micro-investment;

• availability of design management tools, including,
at a minimum, means of current tasks fixation, their
priorities, dependencies, deadlines and performers,
tools of controlling the process of performing tasks,
etc.;

• focus on the use of reusable components of dif-
60

ferent degrees of complexity, involving both the
organization of the accumulation process, the spec-
ification and the search for components within the
relevant library, and the organization of the process
of integrating components from the library into the
system being developed, as well as including new
components into the library;

VI. THE PROPOSED APPROACH TO THE
ORGANIZATION OF SEMANTIC COMPUTER SYSTEMS

DEVELOPMENT

Taking into account the formulated requirements, the
following basic principles were used as the basis for the
proposed approach to the development of ostis-systems
and the means of automation of this process:
• tools for the ostis-systems development process

automation are also implemented as ostis-systems
and are built according to the same principles. This
principle allows:
•• to ensure the modifiability of the tools them-

selves, as well as the hybridity of such tools,
which is expressed in the possibility of com-
bining within such tools different approaches
(methodologies) to the development and verifi-
cation of the knowledge base;

•• provide information support to developers and
their learning directly in the process of working
with automation tools due to the possibility of
presenting in the knowledge base of such tools
the information about the project, development
methods, architecture and principles of oper-
ation of the tools themselves in a structured
manner, as well as the ability to ask different
questions;

•• the possibility of implementing tools for analyz-
ing information about a project with the possi-
bility of permanent expanding the functionality
of such tools if necessary;

•• the possibility of implementing tools of vari-
ous kinds of modeling with the possibility of
permanent expanding the functionality of such
tools if necessary;

• development process automation tools ostis-systems
are embedded as a subsystem in the developed
ostis-system, thus the knowledge bases and problem
solvers of the developed system and automation
tools are integrated. This ensures the reflexivity of
the development process, that is, the possibility of
the participation of the developed system in the
development process itself. Due to this principle the
following advantages appear:
•• eliminating the need to use the source code of

the knowledge base and eliminating the stage
of assembling and deployment of the system, as
well as the need to restart the system to make

changes. Thus, at any time there is a working,
serviceable version of the ostis-system, which
fully complies with the principles of Agile;

•• eliminating the need to document the system
being developed (which is also consistent with
the principles of Agile), since the knowledge
base itself contains all the necessary informa-
tion, which is accessed by the same tools as
when solving any other problem;

•• when forming project tasks and discussing
them, it becomes possible to appeal directly
to fragments of the system’s knowledge base,
which have an arbitrary configuration, which
makes it more flexible, for example, in the
process of specifying problem parts of the
knowledge base;

•• communication between developers is carried
out on the same principle as the solution of
problems by a team of agents, that is, all actions
performed (including actions for the formation
of natural language messages) are recorded in
a common memory. At the same time, the
authorship of the action, the object of the action,
if any, and any other necessary information is
indicated. This approach does not fully corre-
spond to the principle of personal communica-
tion adopted in Agile, however, on the one hand,
it does not exclude the possibility of personal
communication of developers, and on the other
hand, it makes it possible to develop a project
by a distributed team of developers, including
the case of open-source development;

•• it is possible not only to automatically detect
errors and problems, but also to automatically
generate tasks for correcting them within the
framework of automation tools;

•• it becomes possible to record in the knowledge
base not only the authorship of certain frag-
ments, but also the whole process of agree-
ing and discussing the changes made, and, if
necessary, even to have contradictory fragments
in the knowledge base, the truth of each of
which cannot be installed exactly. At the same
time, the opinions of various experts who took
part in the discussion, the arguments for and
against, etc. are recorded. At the same time,
solving problems in a knowledge base contain-
ing conflicting information remains possible by
specifying the solution context for each prob-
lem, that is, that area of the knowledge base
that is considered correct when solving a spe-
cific problem. Thus, the proposed approach not
only makes the discussion of the changes open
and transparent, but also makes it possible to
record in the knowledge base simultaneously

61

any points of view on the same fragments,
including contradictory.

The implementation of these principles implies the
implementation of subsystems of the ostis-systems de-
velopment automation tools, similar to all classes of
existing automation tools for the development process
of traditional computer systems. However, this task is
rather time-consuming, and it would be inappropriate
to make the possibility of ostis-systems development
dependent on it. At the present stage of development,
OSTIS Technology for solving many particular problems
related to ostis-systems design, traditional tools can be
used (some of mentioned advantages will be absent at
this stage), while with the development of technology
there will be a step-by-step transition from traditional
tools to automation tools built on the basis of OSTIS
Technology.

Besides the development automation tools ostis-
systems embedded in the system being developed,
IMS.ostis Metasystem [73] plays an important role in
the development process.

IMS.ostis Metasystem is also an ostis-system and
solves the following main tasks:

• informational support for ostis-systems developers,
which assumes that the knowledge base of the
metasystem in each current time is a complete
formal description of the current version of OSTIS
Technology (including a complete description of
the metasystem itself, all the main models used
in the technology, and also methods and tools for
developing components of ostis-systems), as well
as the availability of navigation tools in such a
knowledge base;

• the accumulation of ostis-systems development ex-
perience and the implementation of the component
approach, which is expressed by the presence of
libraries of reusable components ostis-systems, as
well as the means of component specification and
search tools components based on their specifica-
tions.

To implement the principles discussed earlier, it is
proposed to use an integrated ontological approach to
the design of computer systems, discussed in [74]. This
approach involves the construction of two ontological
models:

• ontological model of the design object, in this case,
ostis-system;

• ontological model of project activities aimed at the
development of appropriate design objects;

Ontological models of ostis-systems and their com-
ponents were considered in detail in the previously
mentioned works [74], [4], [5].

Building an ontological model of a project activity
aimed at ostis-systems development involves the devel-

opment of sc-models of the following subject domains
[4] and their corresponding ontologies (in SCn):

Subject domain of project activities
=> particular subject domain*:

Subject domain of actions of knowledge bases
sc-models developers
=> particular subject domain*:

Subject domain of actions of problem solvers
sc-models developers

<= particular subject domain*:
Subject domain of actions and tasks

Subject domain of problem fragments of knowledge
bases
=> particular subject domain*:

• Subject domain of incorrect fragments of
knowledge bases

• Subject domain of incompleteness in the
knowledge base

• Subject domain of information garbage

All the listed sc-models of subject domains and corre-
sponding ontologies are included in the relevant sections
of the knowledge base of IMS.ostis Metasystems.

Next, we will consider in more detail the library of
reusable components of ostis-systems, the ostis-systems
development methodology, based on the family of subject
domains and ontologies listed above, as well as the
corresponding automation tools.

VII. LIBRARY OF REUSABLE COMPONENTS OF
SEMANTIC COMPUTER SYSTEMS

Reuse of ready-made components is widely used in
many industries related to the design of various types
of systems, because it allows to reduce the complexity
of development and its cost (by minimizing the amount
of labor due to the absence of the need to develop
any component), to improve the quality of the created
content. The use of ready-made components assumes that
the distributed component is verified and documented,
and possible errors and limitations are eliminated or
specified and known.

The basis for the implementation of the component
approach within the OSTIS Technology is Library of
reusable components of ostis-systems, which is part of
the IMS.ostis Metasystem.

It is important to note that since the library is part of
the IMS.ostis metasystem, its replenishment is carried out
in the same way as any other section of the knowledge
base in accordance with the knowledge base editing
mechanism discussed below.

General structure of Library of reusable components
of OSTIS, presented in SCn-code:

Library of reusable components of OSTIS
= Library of OSTIS

62

= reusable components of OSTIS
= reusable components of intelligent systems, build on

OSTIS Technology
<= subdividing*:
{
• Family of sc-models of computer systems

interpretation platforms
• Library of reusable components of knowledge

bases sc-models
• Library of standard components templates of

computer systems sc-models
• Library of reusable components of problem

solver sc-models
• Library of reusable components of user

interfaces sc-models
• Library of typical subsystems of computer

systems developed by OSTIS Technology
}

Library of reusable components of OSTIS includes:

• set of such components;
• means of the specification of such components;
• tools of components search automation based on

their specifications.

The reusable component of OSTIS is generally un-
derstood as a component of some ostis-system that can
be used in another ostis-system. For this, at least two
conditions must be met:

• it is technically possible to embed a component into
a child ostis-system by either physically copying,
transferring and embedding it into the designed
system, or using a component hosted in the original
system like a service, that is, without explicitly
copying and transferring the component. The com-
plexity of embedding depends, among other things,
on the implementation of the component;

• use of the component in any ostis-systems, except
for IMS.ostis Metasystem, is expedient, that is, a
component cannot be a particular solution oriented
to a narrow circle of tasks. It is worth noting,
however, that in the general case almost every
solution can be used in any other systems, the range
of which is determined by the degree of generality
and the domain dependence of such a solution.

From a formal point of view, each reusable component
of OSTIS is a structure that contains all those (and only
those) sc-elements that are necessary for the component
to function in the child ostis-system and, accordingly,
must be copied into it while including a component
into one of such systems. The specific composition of
this structure depends on the type of component and
is specified for each type separately. In essence, this
structure is a standard (or sample), which is copied when
the corresponding component is included in the child
system.

Each reusable component of OSTIS can be atomic
or non-atomic, that is, it can consist of simpler self-
contained components.

At any given time in the current state of the sc-
memory, each reusable component can be fully repre-
sented, that is, all sc-arcs of membership that connect
the structure corresponding to the component and all
its elements are clearly present in memory, or it can
be presented implicitly, for example, by setting the
decomposition of this component into more particular
ones.

A. Library of reusable knowledge base components

The main semantic classes of reusable components of
knowledge bases stored in the library of components of
knowledge bases include:

The main semantic classes of reusable components of
knowledge bases stored in the library of components of
knowledge bases include:

• semantic neighborhoods of various entities;
• ontologies of various subject domains;
• specifications of formal languages describing vari-

ous subject domains;
• sections of the knowledge base of various semantic

types (including non-atomic ones);
• knowledge base of entire subsystems that provide

solutions to various problems;
• knowledge bases of applied system;
• and others.

Each reusable knowledge base component must be
specified within the library. This specification includes
the following minimum required information:

• information about the authorship of the component,
i.e. the connection of the component with the sign
of the author (individual, team, etc.);

• information about the atomicity or non-atomicity of
the component;

• information about the semantic class of a compo-
nent by specifying that the component belongs to a
class of reusable components;

• information about the subject domain, a fragment
of which is described in the component;

• description of the purpose of the component, its
features;

• date the component was created and last modified;
• information about the dependent components for

this, that is, such components that cannot be used
separately from this. An example of such compo-
nents are the components describing the ontologies
of the subject domain of persons and the subject
domain of historical personalities, since the first
contains specifications of the concepts used to de-
scribe the objects of the second subject domain;

63

• information about the openness of the component
and the possibilities of its use in various systems
from the point of view of proprietary.

This list can be expanded if necessary.
An example of the specification of a reusable knowl-

edge base component is shown in the figure 2.
Integration of the reusable component of the knowl-

edge base into the system is reduced to merging of key
nodes by identifiers and eliminating possible duplications
and contradictions that could arise if the developer of
the child system manually made any changes to its
knowledge base.

To ensure the semantic compatibility of components
of knowledge bases, it is necessary to:
• match the semantics of all used key nodes;
• match the main identifiers of the key nodes used

in different components. After that, the integration
of all components that make up the library in any
combination is carried out automatically, without
intervention by the developer, using the mechanisms
proposed in [75].

Components automation tools include the following
sc-agents:
• agent of formation of a non-atomic component from

the atomic components – the task of this agent is
to explicitly form a structure containing all the sc-
elements that make up the indicated non-atomic
component;

• agent of dependency searching between components
– the task of this agent is to search for all com-
ponents, without which the use of the specified
component is impossible. In this case, the search
is performed recursively, taking into account the
dependence of other components;

• agent of search for all non-atomic components,
which include the indicated component;

• agent of component search, within which the indi-
cated concepts are described;

• agent of component search by specification frag-
ment.

The most important component of the library is
Knowledge base kernel, which is the basis for building
the knowledge base of any system, since it contains the
set of the top-level ontologies:
• Subject domain of sc-elements;
• Subject domain of entities;
• Subject domain of sets;
• Subject domain of structures;
• Subject domain of knowledge;
• Subject domain of semantic neighborhoods;
• Subject domain of subject domains;
• Subject domain of ontologies.
On the basis of the proposed knowledge base model,

ontologies of subject domains describing the types of

knowledge that are used in most intelligent systems were
developed:
• Subject domain of situations and events in sc-

memory;
• Subject domain of relations and connections;
• Subject domain of parameters and values;
• Subject domain of logical formulas and logical

ontologies;
• Subject domain of unified logical-semantic models

of computer systems;
• Subject domain of numbers and number structures;
• Subject domain of actions and tasks;
• Subject domain of information constructions that do

not belong to the SC-code;
• Subject domain of temporary entities;
• Subject domain of characters that are not elements

of SC-code texts;
• and others.
Together with the Knowledge base kernel, the ontolo-

gies of the specified subject domain make up Extended
knowledge base kernel.

B. Library of reusable components of problem solvers

Classification of reusable components of problem
solvers in SCn-code:

Library of reusable components of problem solvers
= reusable component of problem solvers
<= subdividing*:
{
• Library of reusable problem solvers
• Library of reusable atomic abstract sc-agents
• Library of reusable sc-text processing programs
}

The reusable abstract sc-agent means the component
corresponding to a certain abstract sc-agent that can be
used in other systems, possibly as part of more complex
non-atomic abstract sc-agents. The specified abstract sc-
agent is included in the corresponding structure under
the key sc-element’ attribute. Each reusable abstract sc-
agent must contain all the information necessary for
the operation of the corresponding sc-agent in the child
system.

Classification of reusable sc-agents in SCn-code:

Library of reusable abstract sc-agents
= reusable abstract sc-agent
<= subdividing*:
{
• Library of information search sc-agents
• Library of sc-agents of immersing integrable

knowledge in the knowledge base
• Library of sc-agents for align ontology of

integrable knowledge with the basic ontology of
the current state of the knowledge base

64

Figure 2. Example of the specification of a reusable knowledge base component

• Library of sc-agents for planning explicitly
defined tasks

• Library of sc-agents of logical inference
• Library of sc-models of high-level programming

languages and their corresponding interpreters
• Library of sc-agents of knowledge base

verification
• Library of sc-agents of knowledge base editing
• Library of sc-agents for knowledge developers

activity automating
}

For the convenience of working with the library of
reusable components, tools for automating the search

for components based on a given specification have also
been developed, which are implemented as non-atomic
sc-agent, which is decomposed into particular ones.

The following is the structure of such an agent in the
SCn-code:

Automation tools of library of reusable abstract
sc-agents
<= decomposition of sc-agent*:
{
• Abstract sc-agent of forming a non-atomic

component from atomic components
• Abstract sc-agent of search for all non-atomic

components of which a given atomic component
65

is part
• Abstract sc-agent search for all related

components
• Abstract sc-agent of sc-agent search by initiation

condition
• Abstract sc-agent of sc-agent search by the

result of work
• Abstract sc-agent of scp-program search by

input/output parameters
• Abstract sc-agent of sc-agents search for which

the elements of a given set are the key
sc-elements

}
The non-atomic component of problem solvers is un-

derstood as such a component in which it is possible to
select other components that can be used independently,
separately from the source component. Most often, non-
atomic sc-agents act as such non-atomic components, as
part of which can be isolated self-sufficient sc-agents
that can be used separately from the original non-atomic,
or scp-program that are common to several agents and
can be used not only as part of a non-atomic sc-agent.
Thus, the task of the Abstract sc-agent of forming a
non-atomic component from the atomic is the formation
of a structure containing the complete sc-text of the
non-atomic component, including the specifications of
all sc-agents in its composition, as well as the texts of
all the necessary scp-programs. The formation of such a
structure is necessary in order to simplify the process of
copying the specified component to other ostis-systems.

The related component is a component that is often
used in the ostis-system simultaneously with some other
component. Such a relationship between components is
specified explicitly with the help of the related compo-
nent* relation. Examples of such components are some
sc-agent and a user interface command that allows the
user to initiate the execution of the specified agent with
the given arguments. In this case, the sc-agent will
function even without the presence of such a command
in the system, however, to initiate it, it will be necessary
to form the corresponding structure in the sc-memory
manually.

Abstract sc-agent of sc-agents search for which the
elements of a given set are the key sc-elements plays an
important role when making changes in the knowledge
base, in particular, when redefining any concepts. The
specified sc-agent allows to identify those sc-agents that
may require changes in the algorithm of work due to
changes in the semantic interpretation of any concepts.

VIII. METHODS OF SEMANTIC COMPUTER SYSTEMS
DEVELOPMENT

As mentioned earlier, the development of the ostis-
system comes down to the development of its knowledge
base. In this section, we will take a closer look at the

principles for the development of knowledge bases of
ostis-systems, as well as some features specific to the
development of ostis-system problem solvers.

In accordance with the requirements formulated above,
the approach to the development of ostis-systems itself
does not limit the use of any specific methods for
the coordination of project activities. However, taking
into account the current goals of OSTIS Technology, in
particular, the need to develop the IMS.ostis Metasys-
tem, currently the development methodology of ostis-
systems and the corresponding tools implement an open-
source project coordination mechanism borrowing the
main ideas from
• traditional modern tools of collective development

of such projects, for example [76]
• modern approach to the review of scientific articles

adopted in the vast majority of scientific journals.
The most important features of the proposed method-

ology and tools are ensuring at each time point the
integrity and consistency of the current version of the
knowledge base directly during its operation, as well
as the transparency and openness of the agreement
mechanism, which are achieved through the previously
presented principles.

The proposed method involves two main stages – the
stage of creating the initial version of the developed ostis-
system, whose knowledge base is synthesized from the
components of the library of the reusable components
of the ostis-systems knowledge base, and the stage of
expanding and improving the knowledge base of the
ostis-system being developed. The initial version of the
ostis-system contains a set of knowledge and tools for
problems solving, sufficient for the further development
of the system.

The process of creating the starting version of the
ostis-system can be divided into next main stages:
• selection and installation of ostis-systems sc-models

interpreting platform;
• installation of Knowledge bases kernel from the

library of reusable components of knowledge bases;
• installation of Problem solver kernel from the

library of reusable components of problem
solvers [5], that is, a set of basic reusable
components of problem solvers necessary for the
starting version of the ostis-system;

• installation of Interface kernel [77], i.e. a set of ba-
sic reusable components of sc-models of interfaces
necessary for operation of the starting version of
the ostis-system;

• installation of support system for collective devel-
opment of knowledge bases.

After the basic configuration of the starting version of
the ostis-system is assembled, the stage of developing
the knowledge base begins, which is discussed in more
detail below.

66

A. Structuring knowledge base from the point of view of
the development process

To support the evolution of the ostis-system, it is
necessary to distinguish sections of the knowledge base
containing information on its development plans (the
future of the system), current development processes,
including the current processes for coordinating changes
to the knowledge base, as well as information on com-
pleted knowledge base development processes in order
to provide the ability to track and cancel changes to the
knowledge base.

Thus, from the point of view of the development
process, the knowledge base is conventionally divided
into overlapping areas, describing the part of the knowl-
edge base that is available for operation to the end user
(agreed part of the knowledge base), a section containing
information about the operation of the system, and a
section containing information about the evolution of the
system.

Figure 3 shows the structure of the knowledge base
from the point of view of the development process.

The agreed part of the knowledge base is the part
of the knowledge base that is agreed between all the
participants in the development at the current time. The
knowledge presented in this section of the knowledge
base is available to the end users of the system in the
operating mode of the system. The distinguishing of the
agreed part of the knowledge base is necessary in order to
be able to hide from the end user system information that
is not directly related to the operation of an intelligent
system.

In turn, agreed part of the knowledge base is divided
into subject part of the knowledge base, context of the
subject part of the knowledge base within the Global
Knowledge Base and computer system documentation
(figure 3).

By Global knowledge base we mean the global ab-
stract semantic space of all knowledge accumulated by
mankind to the current time [2].

Subject part of the knowledge base contains all infor-
mation about the subject domain (or several interrelated
subject domains within the same knowledge base) for
which the developed system is intended to work. For
example, the section describing Euclidean geometry in
the geometry intelligent reference system.

The context of the subject part of the knowledge base
within the Global knowledge base contains a specifica-
tion of objects that are not directly studied in the subject
part of the knowledge base of this system, but are related
to it, i.e. used for description of concepts studied in the
subject part of the knowledge base. For example, for the
IMS.ostis Metasystem, these could be such concepts as
artificial intelligence or intelligent system, for the system
according to Euclidean geometry - historical information
about Euclidean life, mathematics, etc.

The computer system documentation section contains
documentation of the ostis-system itself, at a minimum,
the specification of its knowledge base, problem solver
and interface, as well as all the necessary manuals that
provide the opportunity for learning in working with the
system.

Section history and current processes of computer
system operation includes the following sections:
• computer system operation history;
• current processes of computer system operation.
The computer system operation history section stores

the history of the system’s dialogue with its users.
The current processes of computer system opera-

tion stores the specifications of all actions performed
by the ostis-system at the moment (which are present
entities), as well as all temporary auxiliary constructions,
generated by sc-agents in the process of work and not
yet deleted. After performing these actions, their signs
and specifications are transferred to the computer system
operation history section.

The history, current processes and development plan
of computer system section is decomposed into the
following sections:
• structure and organization of a computer system

project;
• history of the computer system development;
• current development processes of computer system;
• computer system development plan.
Section structure and organization of a computer

system project describes the structure of a project aimed
at the ostis-system development, including its subprojects
and the roles of the developers responsible for each
project.

The history of computer system development section
contains specifications of project activities performed
during system development (past entities), with the oblig-
atory indication of the performers, the sequence and the
result of each activity. The presence in the knowledge
base of this kind of information will allow to rollback
the changes made to the knowledge base, as well as to
take into account completed design tasks when planning
further work within the project.

The current development processes of computer
system section contains specifications of approved and
initiated project actions performed by the system devel-
opers at a given time (real entities), with the obligatory
indication of the performers, the sequence and purpose
of the implementation, and also all the information
describing the proposals for editing the subject part of the
knowledge base and computer system operation history
and their discussion by administrators, managers and
experts.

In the computer system development plan section
there are specifications of project actions that are ap-
proved for execution, but have not yet been fulfilled for

67

Figure 3. The structure of the knowledge base from the point of view of the development process

any reason, as well as all the information describing
proposals for editing the section history, current pro-
cesses and development plan of computer system and
their discussion by administrators, managers and experts.

B. General mechanism for knowledge bases sc-models
development

The process of a knowledge base development is a
sequence of the following steps:

• Formation of the initial structure of the knowledge
base, which involves:
•• the formation of the structure of the knowl-

edge base sections corresponding to the above
mentioned variant of structuring the knowledge
base from the point of view of the development
process;

•• identification of the described subject domains;
•• building a hierarchical system of the described

subject domains;
•• building a hierarchy of knowledge base sections

within the subject part of the knowledge base,
which takes into account the hierarchy of sub-
ject domains constructed at the previous stage.

• Identifying knowledge base components that can be
taken from a library of reusable knowledge base
components and including them into the knowledge
base that is being developed.

• Formation of project tasks for the development of
missing fragments of the knowledge base and the
assignment of tasks to developers.

• Development and coordination of knowledge base
fragments, which, in turn, may later be included in
the library of reusable knowledge base components.

• Verification and debugging of the knowledge base.

It should be noted that in the process of the knowledge
base improving, stages 3–5 are performed cyclically.

Figure 4 shows a diagram reflecting the sequence of a
knowledge base building steps according to the proposed
methodology.

The basis of the methodology under consideration is
a formal model of developer activity aimed at develop-
ing and modifying of knowledge bases, formal means
for specifying proposals for editing a knowledge base,
method for introducing changes to the knowledge base,
formal means for specifying transition processes in the
knowledge base, and formal means for specifying con-
tradictions and incompleteness in the knowledge base.

To ensure the reflexivity of the intelligent system,
in particular, the ability to automate the analysis of
the history of the evolution of the knowledge base and
generate plans for its development, all activities related
to the development of the knowledge base are specified
in this knowledge base by the same means as the subject
part.

The process of creating and editing the knowledge
base of the ostis-system is reduced to the formation
of proposals for editing of a particular section of the
knowledge base by developers (picture 5) and the sub-
sequent consideration of these proposals by knowledge
base administrators. In addition, it is assumed that, if
necessary, experts can be involved in verifying incoming
proposals for editing the knowledge base, and the de-
velopment process is managed by managers of relevant
knowledge base development projects. In this case, the
formation of design tasks and their specification are also
carried out using the mechanism of proposals for editing
the relevant section of the knowledge base. Thus, all
information related to the current processes of developing
a knowledge base, history and plans for its development
is stored in the same knowledge base as its subject part,
that is, the part of the knowledge base accessible to the
end user of the system. This approach provides wide
opportunities to automate the process of knowledge bases

68

Formation of the initial structure of
the knowledge base

Identification of the components of
the knowledge base, which can be

borrowed from the library

Formation of project assignments for
the development of missing fragments

of knowledge base

Development and coordination of
fragments of knowledge base

Verification and debugging of
knowledge base

Semantic model of knowledge base

Library of reusable components
of knowledge base

Activity model of
knowlege base developers

Means of proposal specification

The way to make changes in the
knowledge base

Means of specification of transitional
processes of evolution of knowledge base

Means of specification of contradictions
and incompleteness in the knowledgw base

Formation of the structure of
knowledge base sections

Identify the described subject
domains

Building a hierarchical
system of the described

subject domains

Construction of the sections
hierarchy of the knowledge
base in the subject part of the

knowledge base

Formation of the starting version
of ostis­system

Figure 4. Methods of building and modifying of knowledge bases

creation, as well as subsequent analysis and improvement
of the knowledge base.

Figure 5. Illustration of the knowledge base editing process

Each proposal for editing the knowledge base is a
structure containing sc-text that is proposed to be in-
cluded in the agreed part of the knowledge base. The
structure of such proposals may include signs of actions
for editing the knowledge base, which are automatically
initiated and executed by the relevant agents after the
approval of the proposal.

Figure 6 shows the stages of developing a certain piece
of the knowledge base, starting with the formulation of
the project task and ending with the final approval or
rejection of the proposal for editing the knowledge base.

The proposed methodology for developing a knowl-
edge base is primarily focused on open-source projects

for developing intelligent systems, where anyone can
become a developer.

Next, we consider in detail the typology of developer
roles and classes of actions they perform.

C. Typology of knowledge base developers

First of all, all users of any ostis-system are divided
into registered users and unregistered users.

To describe this fact, the following relations are used
in the knowledge base:

• unregistered user is a binary relation connecting
ostis-system and sc-element, denoting person that
did not pass the registration procedure in system;

• registered user is a binary relation connecting ostis-
system and sc-element, denoting person that has
passed the registration procedure in system.

An unregistered user has access to read the subject part
of the ostis-system knowledge base. This type of users
can work with the ostis-system in the operation mode,
i.e. it can only set queries addressed to the subject part
of the knowledge base (i.e., solve subject problems).

A registered user has access to read the entire knowl-
edge base and make proposals to the entire knowledge
base, can play the role of the end user of the ostis-system,
that is, work in the operating mode, and also the role of
its developer. At the same time, regardless of the role
that a particular user performs, he can make proposals for
editing any part of the knowledge base, which, depending

69

Figure 6. Illustration of the mechanism of making changes in the knowledge base

on its level, will either be automatically accepted or
separately considered.

Among registered users there is a separate type of
users - developer.

Developer is a binary relation connecting a project to
develop a section of the knowledge base of the ostis-
system (in the limit, the entire knowledge base) and a
sc-element denoting a person who can be the developer
of this section of the knowledge base, i.e. perform project
tasks within this section.

In addition to operating the ostis-system, the devel-
oper can make proposals for changing any part of the
knowledge base, leave comments on the such propos-
als. Among the developers, such roles as administrator,
manager and expert are distinguished.

Administrator is a binary relation connecting a project
to develop the knowledge base section of the ostis-
system (in general, the entire knowledge base) and the
sc-element denoting the person who is the administrator
of this knowledge base section.

Tasks of administrator are:
• control of the integrity and consistency of the entire

knowledge base;
• define access levels for other users;
• a decision regarding the acceptance or rejection of

proposals in various parts of the knowledge base,
including, if necessary, sending them for expertise;

• making changes in various parts of the knowledge
base by using the appropriate editing commands
(in this case, changes are automatically made out
as proposals and entered into the section of the
development history of the ostis-system).

If it is necessary to develop a knowledge base of a
big size, a hierarchy of developers can be introduced
corresponding to the hierarchy of sections of the knowl-
edge base being developed. In this case, the approval
of a proposal by the administrator of the lower level
section does not lead to the integration of the proposal
into the appropriate section, but requires consideration
by the higher level administrators. The final decision is
made by the administrator of the entire knowledge base.
Figure 7 shows a fragment of the knowledge base that
describes the hierarchy of knowledge administrators.

Manager is a binary relation connecting a project
to develop the knowledge base section of the ostis-
system (in general, the entire knowledge base) and the
sc-element denoting the person who is the manager of
this knowledge base section.

Tasks of the manager are:
• planning the amount of work on the development

of the knowledge base;
• detailed elaboration of project tasks for subtasks,

formulation of project tasks, assignment of perform-
ers of project tasks;

70

Figure 7. Knowledge base administrators hierarchy

• setting priorities and deadlines for tasks completing;
• control the timing of project tasks.
Manager makes changes to the part of the relevant sec-

tion that describes the project tasks using the appropriate
editing commands, and the changes are automatically
presented as proposals and entered into the section de-
scribing the development plan of the ostis-system. Thus,
the manager is the administrator of the specified section.

Expert is a binary relation connecting a project to
develop a section of the knowledge base of the ostis-
system (in general, the entire knowledge base) and an
sc-element denoting a person who is an expert of this
knowledge base section.

Tasks of the expert are:
• verification of the results of the project tasks;
• if necessary, the expert can leave comments on

any fragment of the knowledge base regarding its
correctness. All comments fall into the section de-
scribing the plan for the development of a computer
system.

In addition, any participant in the development process

has the opportunity to leave a natural language com-
mentary to any fragment or element of the knowledge
base, thus, any issues related to the specified fragment
or element of the knowledge base can be discussed. Such
comments fall into the knowledge base section current
processes of computer system development.

An example of using these relations to indicate the
roles of developers in a project to create a knowledge
base in the SCg is presented in the figure 8:

D. Ontology of actions of knowledge base developers

In the process of developing the knowledge base
of the ostis-system, each of the users involved in the
development process uses a specific set of commands
corresponding to the knowledge base editing mechanism
described above. Each such command corresponds to a
certain class actions in sc-memory [5]. All such actions
are combined into a common class actions of the knowl-
edge base developer.

For the purpose of subsequent automation, some
classes of actions of the knowledge base developer are

71

Figure 8. The roles of developers in the knowledge base

formally specified and detailed to the level of elementary
transformations in the system memory.

To identify classes of actions, the names of the fol-
lowing form will be used: action. «action class name».

The hierarchy of the actions of the knowledge bases
sc-models developers in the SCn-code, taking into ac-
count the roles considered and the corresponding re-
sponsibilities (the actions of the manager are not shown,
since they repeat the actions of the administrator, but are
applicable only for certain sections):

knowledge bases sc-models developer action
⊃ action of knowledge base ordinary developer
⊃ action. build a new fragment for inclusion in the

knowledge base
⊃ action. modify the proposal for editing the

knowledge base
⊃ action. make a proposal for editing the knowledge

base
⊃ action. form a project task proposal
⊃ action. form a project task performer proposal

⊃ action of knowledge base administrator
⊃ action. consider a proposal for editing the

knowledge base
⊃ action. approve a proposal for editing the

knowledge base
⊃ action. reject a proposal for editing the knowledge

base
⊃ action. create a task for the verification of the

proposal

⊃ action. approve the result of the proposal
verification

⊃ action. reject the result of the proposal verification
⊃ action of knowledge base manager
⊃ action of knowledge base expert
⊃ action. verify the specified structure
⊃ action. approve verifying proposal
⊃ action. reject verifying proposal
⊃ action. create a task for consideration of the

proposal verification result

For the specification of knowledge bases sc-models de-
veloper action and structures describing the proposal for
editing the knowledge base, relations such as proposal*,
approved*, rejected*, new version*.

An example of a specification of a proposal for editing
a knowledge base using the above relations and classes
of actions in the SCg-code is presented in the figure 9:

E. Typical mistakes and difficulties in the development
of knowledge bases of semantic computer systems

As mentioned earlier, one of the important tasks of
IMS.ostis Metasystem is the information support for the
developers of sc-models of ostis-systems, which also in-
volves learning of developers using typical examples and
exercises. To solve this problem, a section of the knowl-
edge base of the Metasystem IMS.ostis was developed,
describing typical errors and difficulties in developing of
knowledge bases sc-models. In this section we consider
some of the most common examples of such problems.

1) It is necessary to distinguish:
• Syntactic typology of sc-elements (sc-node, sc-

edge, sc-arc);
• Semantic typology of sc-elements.
That is, membership pair 6= sc-arc of membership

membership pair
⊃ sc-arc of membership

2) It is necessary to distinguish:
• variable sc-arc of membership;
• constant sc-arc of membership.
Sometimes, for example, constant sc-arcs of member-

ship can go out of constant sc-nodes, but are included in
variables sc-elements (figure 10).

3) It is necessary to distinguish:
• permanent (stationary) sc-arcs of membership;
• temporal (situative) sc-arcs of membership.
4) It is necessary to distinguish:
• the entity being described;
• abstract sign (internal sign, sc-sign) of the described

entity;
• external sign (identifier, designation, name) of the

described entity;
• specific occurrence of an external sign of the de-

scribed entity in a specific sign structure;
72

Figure 9. Specification of the proposal for editing the knowledge base

Figure 10. Incidence of constant sc-arcs and variable sc-nodes

• unambiguous specification of the described entity,
represented in sc-memory or in any external lan-
guage.

5) It is necessary to distinguish:
• set of sc-elements itself, which can be a described

entity;
• sc-element, which is the sign of the corresponding

(denoted by it) set of sc-elements;
• sc-text, which describes the connection of the sign

of some set of sc-elements with all sc-elements that
are members of this set.

6) It is necessary to distinguish:
• concept;
• natural language text (text file), which is one of the

wording of the concept definition;
• natural language text that is an another formulation

of the concept definition;

• text, which is the natural language formulation of a
statement, which could be a concept definition, but
is not (a statement of a defining type);

• sc-node denoting a statement, which is the concept
definition, presented in the SC-code;

• sc-node denoting the entire sc-construction, which
is the concept definition, presented in the SC-code.

7) It is necessary to distinguish:
• concept of set;
• concept of a set of sc-elements (semantically nor-

malized set, sc-set).
8) It is necessary to distinguish:
• sc-sign atomic logical formula;
• sc-sign non-atomic logical formula;
• sc-sign of the full sc-text of the logical formula.

For an atomic logical formula, the sc-sign of this
formula coincides with the sign of its full text.

9) It is necessary to distinguish:
• concrete number as a sign of the corresponding

abstract entity;
• unambiguous specification of this number, for ex-

ample, in one or another number system;
• string of digits, which is the external identifier

(name) of this number corresponding to a particular
number system.

10) It is necessary to distinguish:
• constant sc-element that is a sign of a specific

73

known (identified), uniquely defined, specified en-
tity – known sc-constant;

• variable sc-element that is a sign of an arbitrary
entity from some additionally defined (using logical
statements) set of entities – sc-variable;

• constant sc-element, which is a sign of a specific
entity, but not currently known – unknown sc-
constant.

11) It is necessary to distinguish:
• sc-constant which is a member of a given set;
• sc-variable, any value of which is a member of a

given set;
• sc-variable, which itself is a member of a given set

(for example, a structure).
12) It is necessary to distinguish:
• sign of some specific (constant) entity class. At the

same time, the elements (instances) of a class can
be signs of other classes, signs of variables, signs
of specific temporary entities, and signs of specific
permanent entities;

• sign of some constant element (instance) of the
above class;

• sign of a specific subset (subclass) of the specified
class;

• sign of some arbitrary (variable) entity, possible
values of which can only be signs of elements of
the considered class of entities;

• sign of some arbitrary (variable) entity, one of the
values of which is the sign of the entity class itself.

13) It is necessary to distinguish a section describing
the subject domain and the subject domain being
described

14) It should be remembered that for binary oriented
relations there is no semantic need to introduce
inverse relations, i.e. semantically, all links of each
binary relation are also links and its inverse relation
and vice versa (sin*=arcsin*, be a subset*=be a
superset*)

15) It is necessary to distinguish:
• sign of non-role relation;
• sign of role relation corresponding to a given non-

role relation;
• signs of relation domains (a domain is a set of those

and only those entities that, in the tuples of a given
relation, perform the specified role).

16) It is necessary to distinguish the connection of
membership and inclusion* (figure 11).

17) It is necessary to distinguish:
• case when the element ei is included in the set si,

while performing multiple roles at the same time
(figure 12)

• case when the element ei is included in the set
si multiple times. Moreover, within the framework

Figure 11. Membership and inclusion

Figure 12. Multiple element roles in the set

of different occurrences, the specified element may
perform different roles (figure 13)

Figure 13. Multiple occurrences of an element in a set with different
roles

18) It is necessary to distinguish the sc-element, de-
noting some described entity and a singleton, the
only elements of which is the sign of this entity
(figure 14)

19) It is necessary to distinguish the relation between
classes and the relation between instances of these
classes (figures 15, 16)

F. Methods for sc-models of problem solvers develop-
ment

The proposed methods for problem solvers construct-
ing and modifying includes several stages. Figure 17
presents a list of such stages, indicating the sequence
of their execution.

The considered methods can be applied both in the
development of hybrid solvers and in the development
of simpler solvers, since from a formal point of view all
of them are treated as a non-atomic abstract sc-agent.

74

Figure 14. The difference of the sign of the entity and the singleton
containing this sign

Figure 15. Incorrect (left) and correct (right) example of using the
concepts of a triangle and a segment

Stage1. Requirements formation and problem
solver specification

At this stage, it is necessary to clearly identify the
problems that should be solved by the problem solver,
consider the intended ways of solving them and, based
on this analysis, determine the place of the future solver
in the general hierarchy of solvers. The importance of
this stage lies in the fact that, with proper classification,

Figure 16. Incorrect (left) and correct (right) example of using the
concept of intersection*

Figure 17. Stages of the process of problem solvers constructing and
modifying

there is a possibility that there is already an implemented
version of the required solver in the component library.
Otherwise, however, the developer has the opportunity to
include the developed solver into the component library
for later use. These facts are due to the fact that the
structure of the library of problems solvers components
is based on the semantic classification of such solvers
and, accordingly, of their components.

With an insufficiently precise specification and classi-
fication of the solver being developed, it is more likely
that a suitable solver will not be found in the component
library, even if it is there, and the newly developed
solver cannot be included in the library. Thus, the idea of
reuse of already developed components will be broken,
which will significantly increase the cost of such a solver
development.

Stage2. Formation of a sc-agents collective that are
part of the developed solver

In the case when it is not possible to find a ready-
made solver in the library that meets all requirements, it
is necessary to distinguish and specify all the components
of such a solver.

The result of this stage is a list of fully specified
sc-agents, which will be part of the developed solver,
with their hierarchy up to atomic sc-agents. Within this
stage, it is very important to design a group of agents
in such a way as to maximize the use of reusable
components already presented in the library, and in
case of the necessary component absence, be able to
include it in the library after implementation. Depending
on the complexity of the solver being developed, such
components can include both atomic sc-agents and whole

75

teams of sc-agents (non-atomic sc-agents).
When developing the list of agents (including their

specifications) it is necessary to follow a number of
principles:

• each sc-agent being developed should be as inde-
pendent as possible, that is, the set of key nodes
of this sc-agent should not include concepts that
are directly related to the subject domain under
consideration. The exceptions are concepts from
general subject domains that are interdisciplinary
in nature (for example, the inclusion* relation or
the action concept). This rule can also be violated
if the sc-agent is auxiliary and is focused on pro-
cessing a particular class of objects (for example,
sc-agents that perform arithmetic calculations can
work directly with specific relations addition* and
multiplication*, etc.). All the sc-agent information
needed to solve the problem must be extracted from
the semantic neighborhood of the corresponding
initiated action. Obviously, the sc-agent, developed
with these requirements, can be used to design a
larger number of osti-systems than if it was imple-
mented with a focus on a particular subject domain.
After development and debugging is completed,
such a sc-agent should be included in the Library
of reusable abstract sc-agents;

• it is important to distinguish the concept of sc-agent
and agent program (including agent scp-program).
The interaction of sc-agents is carried out exclu-
sively through the specification of information pro-
cesses in common memory, each sc-agent responds
to a certain class of events in sc-memory. Thus, each
sc-agent corresponds to a condition of initiation and
one agent program that starts automatically when an
appropriate condition of initiation occurs in the sc-
memory. In this context, various subprograms can
be called as many times as necessary. However,
it is important to distinguish the initiation of the
sc-agent, which occurs when the corresponding
construction appears in the sc-memory, and the
subprogram call by another program, which implies
an explicit specifying of the called subprogram and
the list of its parameters;

• each sc-agent should independently verify the com-
pleteness of its own initiating condition in the
current state of sc-memory. In the process of prob-
lem solving, a situation may arise when several
sc-agents reacted to the appearance of the same
structure. In this case, the execution continues only
those of them, the condition of initiation of which
is fully consistent with the situation. The remaining
sc-agents in this case stop execution and return
to the standby mode. The implementation of this
principle is achieved by carefully specifying the
specifications of the developed sc-agents. In the

general case, the initiation conditions for several sc-
agents may coincide, for example, in the case when
the same task can be solved in different ways and
it is not known in advance which of them will lead
to the desired result;

• it is necessary to remember that a non-atomic sc-
agent from the point of view of other sc-agents that
are not part of it must function as an integral sc-
agent (perform logically atomic actions), which im-
poses certain requirements on the specifications of
the atomic sc-agents included in its composition: as
a minimum, it is necessary that at least one atomic
sc-agent is present in the composition of a non-
atomic sc-agent, the initiation condition of which
completely coincides with the initiation condition
of this non-atomic sc-agent;

• if necessary, the implementation of a new sc-agent
should be guided by the following principles for
atomic abstract sc-agents design:

•• the designed sc-agent should be as independent
as possible from the subject domain, which will
enable it to be used in the development of
solvers for the maximum possible number of
osti-systems in the future. At the same time,
universality implies not only minimizing the
number of key nodes of the sc-agent, but also
distinguishing the class of actions performed
by this sc-agent in such a way that it makes
sense to include this sc-agent into the Library
of reusable abstract sc-agents and use it when
developing solvers of other ostis-systems. One
should not artificially link a set of actions
into one sc-agent and, conversely, dismember
one self-sufficient action on sub-actions: this
will cause difficulties in understanding how sc-
agents work by developers and will not allow
using sc-agent in some systems (for example,
in learning systems which should explain the
decision-making way to the user);

•• the act of activity of each sc-agent (the ac-
tion performed by this sc-agent) must be log-
ically consistent and complete. It should be
remembered that all sc-agents interact exclu-
sively through common memory and avoid sit-
uations in which the initiation of one sc-agent
is performed by explicitly generating a known
initiation condition by another sc-agent (i.e., in
fact, explicitly direct calling one sc-agent by
another);

•• it makes sense to separate into sc-agents those
relatively large fragments of the implementation
of a certain general algorithm that can be exe-
cuted independently of each other;

• when combining sc-agents into teams, it is recom-
mended to design them in such a way that they can

76

be used not only as part of the non-atomic abstract
sc-agent considered. If this is not possible and some
sc-agents, being separated from the team, lose their
meaning, it is necessary to indicate this fact when
documenting the sc-agents;

• the actual initiator of the sc-agent launch via com-
mon memory (the author of the corresponding con-
struction) can be either the system user directly or
another sc-agent, which should not be reflected in
the work of the sc-agent itself.

Stage3. Development of algorithms for atomic sc-
agents

Within the framework of this stage, it is necessary
to think over the algorithm of each developed atomic
sc-agent. The development of the algorithm implies the
distinguishing of logically consistent fragments in it,
which can be implemented as separate scp-programs,
including those executed in parallel. Thus, there is a
need to speak not only about the Library of reusable
abstract sc-agents, but also about Library of reusable
programs for sc-texts processing in various programming
languages, including Library of reusable scp-programs.
Due to this, part of the scp-programs that implement the
algorithm of the operation of a certain sc-agent can be
taken from the corresponding library.

It is important to remember that if sc-agent generates
any temporary structures in memory during the work,
then at the completion of the work it is necessary to
delete all information, the use of which in the system
is no longer advisable (to remove information garbage).
The exceptions are situations when such information is
necessary for several sc-agents to solve one problem,
but after solving a problem, the information becomes
useless or redundant and requires removal. In this case,
a situation may arise when none of the sc-agents is able
to remove the garbage. In this case, there is a need to
talk about the inclusion of specialized sc-agents into the
solver, whose task is to identify and destroy information
garbage.

Stage4. Implementation of scp-programs
The final stage of development is the implementation

of previously specified scp-programs or, if necessary,
programs implemented at the platform level.

Stage5. Verification of the developed components
The verification of the developed components can be

carried out both manually and using the specified tools
that make up the automation system for constructing and
modifying of problem solvers built on the base of OSTIS
Technology.

Stage 6. Debugging of developed components. Error
correction

The debugging phase of the developed components, in
turn, can also be divided into more specific stages:
• debugging of individual scp-programs or programs

implemented at the platform level;

• debugging of individual atomic sc-agents;
• debugging of non-atomic sc-agents included in the

problem solver;
• debugging of the entire problem solver.
Note that Stage5 and Stage6 can be executed in

parallel and are repeated until the developed components
meet the necessary requirements.

G. Ontology of the activity of problem solvers developers

In the framework of the proposed approach, the meth-
ods for constructing and modifying problem solvers is
based on the formal ontology of the activities of such
solvers developers.

It is important to note that, according to the model
mentioned earlier, the problem solver is a abstract sc-
agent, in connection with which the development of a
solver comes down to the development of such an agent.

A fragment of a formal ontology of activity aimed at
constructing and modifying problem solvers in the SCn-
code looks as follows (for convenience of reading, the
relations defining the order of actions are omitted):

action. develop an osti-system problem solver
= action. develop an abstract sc-agent
<= subdividing*:
{
• action. develop an atomic abstract sc-agent
• action. develop non-atomic abstract sc-agent
}

=> abstract subaction*:
• action. specify an abstract sc-agent
• action. find an abstract sc-agent in the library

that satisfies the given specification
• action. verify sc-agent
• action. debug sc-agent

action. develop a platform-independent atomic
abstract sc-agent
=> abstract subaction*:
• action. decompose a platform-independent

atomic abstract sc-agent into scp-programs
• action. develop an scp-program

action. develop a non-atomic abstract sc-agent
=> abstract subaction*:
• action. decompose a non-atomic abstract

sc-agent into particular
• action. develop an abstract sc-agent

action. develop an scp-program
=> abstract subaction*:
• action. specify scp-program
• action. find in the library an scp-program that

satisfies the given specification
• action. implement the specified scp-program
• action. verify scp-program
• action. debug scp-program

77

action. verify sc-agent
<= subdividing*:

{
• action. verify atomic sc-agent
• action. verify non-atomic sc-agent
}

action. debug sc-agent
<= subdividing*:

{
• action. debug atomic sc-agent
• action. debug non-atomic sc-agent
}

The presence of such a formal ontology allows, firstly,
to partially automate the process of constructing and
modifying solvers, and secondly, to increase the effec-
tiveness of information support for developers, since
this ontology is included in the knowledge base of the
IMS.ostis Metasystem.

IX. AUTOMATION TOOLS FOR THE DEVELOPMENT OF
SEMANTIC COMPUTER SYSTEMS

A. Architecture of automation tools for the development
of knowledge bases sc-models

To reduce the complexity of the process of developing
knowledge bases and reduce the requirements for devel-
opers in the framework of OSTIS Technology, tools have
been developed to automate the processes of knowledge
bases development and information support for such
knowledge bases developers.

The information support tools for developers are im-
plemented in the form of the previously mentioned
IMS.ostis Metasystems [73].

Tools for automating knowledge base development
processes are implemented in the form of system for
the collective knowledge bases development support
(SKBD). An important aspect of the knowledge bases
development support is support of activities of knowl-
edge base developers directly during the operation of the
system being developed, which is possible due to the fact
that the support system for the collective development of
knowledge bases is embedded as a subsystem into each
developed system.

Figure 4 shows the stages of the process of devel-
oping a knowledge base in accordance with the methods
described above. Actions performed by developers in the
first two stages cannot be fully formalized, and therefore
their implementation cannot be fully automated.

Thus, in the framework of the system for the collective
knowledge bases development support, the actions of de-
velopers carried out in the last three stages are automated.
These actions are performed cyclically throughout the
entire life cycle of the system being developed (figure
4).

The architecture system for the collective knowledge
bases development support is presented in the figure 18.
As can be seen from the figure, the system is an ostis-
system and interacts with the IMS.ostis Metasystem,
which includes a library of reusable components, which
allows, on the one hand, to take components available
in the library in accordance with the proposed methods
of knowledge bases developing, on the other hand – to
provide the opportunity to replenish the library with new
components obtained in the process of knowledge bases
development.

Let us consider in more detail the composition of each
system component.

B. The knowledge base of system for the collective
knowledge bases development support

The knowledge base of system for the collective
knowledge bases development support includes sections
containing all the knowledge necessary to support the
process of the knowledge base developing and evolving.

Such knowledge includes:

• set of top-level ontologies necessary for the func-
tioning of the SKBD itself and being the basis for
building knowledge bases of the systems being de-
veloped. These ontologies are part of the previously
considered Knowledge base kernel;

• formal ontology of the subject domain of devel-
opers’ activities aimed at knowledge bases devel-
oping and modifying, including a description of
the typology of roles of developers of knowledge
bases, classification of developer actions, as well
as formal means of specifying proposals for editing
a knowledge base. The concepts included in this
ontology were discussed above;

• ontology of the subject domain of problem struc-
tures in knowledge bases, i.e., those structures that
describe incomplete, incorrect or redundant infor-
mation in the knowledge base;

• means for specifying changes and transients in the
knowledge base.

1) Problem structures in knowledge bases and their
typology: One of the tasks of the system for the collective
knowledge bases development support is the identifica-
tion of problem structures in the knowledge base with
the aim of correcting them.

Search and elimination of incompleteness, incorrect-
ness and information garbage is carried out on the basis
of:

• ontologies of completeness, which formally set the
requirements for the completeness of the specified
subject domains in the sc-memory;

• ontologies, within which classes of constructions
are specified, representing incorrectness and infor-
mational garbage in the respective subject domains.

78

UI IS

sc­memory

KB IS Problem solver IS

Developed IS

System for the collective knowledge bases development support

Set of
top­level
ontologies

Ontology of the
subject domain of

developers’ activities
aimed at knowledge
bases developing and

modifying

Ontology of the
subject domain of

problem
structures in

knowledge bases

Means for
specifying
changes and
transients in
the KB

KB SKBD

KB
developer

A set of interface
commands for the

engineer,
administrator,
manager and
expert of KB

UI SKBD

Non­atomic sc­agent of KB editing

Non­atomic sc­agent for automation
of activities of ordinary KB developer

Non­atomic sc­agent for automation
of activities of KB administrator

Non­atomic sc­agent for automation
of activities of KB manager

Non­atomic sc­agent for automation
of activities of KB expert

Non­atomic sc­agent for KB
verification

Non­atomic sc­agent for knowledge
base characteristics calculating

Problem solver SKBD

IMS

L
ib
ra
ry
 o
f R

eu
sa
bl
e
C
om

po
ne
nt
s o
f

kn
ow

le
dg
e
ba
se
s

Figure 18. Architecture of system for the collective knowledge bases development support

The selection of classes of problem structures in the
knowledge base allows us to specify such structures
for knowledge base developers and for their automatic
processing by agents.

In addition, the specification of the problem structures
in the knowledge base allows the system to analyze
its own knowledge base for correctness, completeness
and redundancy, evaluate acquired knowledge and skills,
which ensures the property of reflexivity of the intellin-
gent system.

Consider the typology of such structures:
• incorrect structure;
• structure describing the incompleteness in knowl-

edge base;
• informational garbage.
Under the incorrect structure we mean a structure

containing a fragment of the knowledge base, in which
in any way revealed any incorrectness. Additional con-
cretization of the fact of incorrectness can be carried out
by adding this structure to a particular class of incorrect
structures or by specifying additional relations specifying
this structure, for example, the contradiction relation.

The structure describing the incompleteness in the
knowledge base means a structure containing a fragment
of a knowledge base that lacks any information that is
necessary (or at least desirable) for an unambiguous and
complete understanding of the meaning of this fragment.

By informational garbage is meant a structure contain-
ing a fragment of the knowledge base, which for some

reason has become unnecessary and requires removal.
The formation of a structure describing such a fragment
of the knowledge base, and, accordingly, the removal of
its contents can be performed both by the sc-agent that
generated the fragment and by the specialized sc-agents
of garbage collection.

The following are the selected classes of incorrect
structures:
• structure that contradicts the property of uniqueness

(a special case of this class of structures is the class
Cantor set contains a repeating element);

• cycle within order relation – failure to comply with
the antisymmetry property for the order relation;

• mismatch of elements tuple with relationship do-
mains;

• power mismatch of relation arity;
• elements of a single subdividing have a non-empty

intersection;
• mismatch of a fragment of the knowledge base with

a logical statement;
• and more.
As an example, consider the detection in the knowl-

edge base of the contradictions associated with the indi-
cation of the angle in a right-angled triangle. As a result
of fragment analysis, two contradictions arose:
• contradiction with the definition of a right triangle

(figure 19);
• a contradiction with the theorem on the sum of the

angles of a triangle (figure 20).
79

Among the situations that describe the incompleteness
of the knowledge base, the following can be distin-
guished:
• specified the main identifiers of a given entity for

some, but not all external languages;
• system identifier is specified for the given entity, but

the main identifiers for all external languages are
not specified;

• the definition or explanation for the concept of the
subject domain is not specified;

• no constants are used in the definition;
• the key sc-element of the semantic neighborhood is

not specified;
• maximum studied object class is not specified for

subject domain;
• relation domains are not specified;
• no unit or scale for the measured parameter is

indicated;
• concept is not related to any subject domain.
To identify incompleteness in the knowledge base,

rules are used that are recorded within the framework
of the corresponding ontologies in the knowledge base.
The figure 21 shows an example of such a rule, according
to which each relation must have a definition domain.

The listed classes of problem structures are specified
in the ontology of subject domain of the problem parts
of the knowledge base. The specified list of classes can
be expanded and supplemented.

2) Means of specifying changes and transitions in
the knowledge base: In the course of its evolution,
the knowledge base undergoes significant changes, in
particular, it is necessary to make changes that affect the
conceptual structure of the subject domains described in
the knowledge base. Among these types of changes the
most problematic are the following:
• in the knowledge base you need to override the

already introduced and used concept.
• in the knowledge base an alternative concept ap-

pears, which excludes the use of another concept
associated with it.

To solve problems in the above situations, the follow-
ing classes of concepts are introduced that are part of the
ontology of situations and events in sc-memory:
• main concept;
• non-main concept;
• concept moving from main to non-main;
• concept moving from non-main to main.
The figure 22 shows an example of the specification

of the transition process in the knowledge base with the
indication of the planned completion dates of this process
and the rule on the basis of which the transition is made.

As mentioned earlier, the history of computer system
development section is used to store the history of
changes in the knowledge base in the process of its

evolution. Figure 23 shows an example of a structure
that uses means for specifying changes made in the
knowledge base.

It should be noted that in this case, actions are
specified not only for editing the knowledge base, but
also actions for coordinating the changes made to it.
All performed actions, as well as their specifications,
are included into the section history of computer system
development.

This mechanism for changes fixation in the knowledge
base is the basis for managing versions of the knowledge
base. In the framework of the proposed approach, it is
assumed that, if necessary, a rollback of the changes
made before any action in the history is required to
perform in reverse order a number of actions, which are
inverse to the actions that follow the specified action in
the history. At the same time, actions performed in this
way are also added to the change history in the order of
execution.

C. Problem solver and user interface of system for the
collective knowledge bases development support

Problem solver of system for the collective knowledge
bases development support is a team of knowledge
processing agents, each of which automates actions be-
longing to any of the classes of actions of the knowledge
bases developers discussed above.

The structure of the considered solver in SCn-code:

Problem solver of system for the collective knowledge
bases development support
<= abstract sc-agent decomposition*:

{
• Non-atomic sc-agent of knowledge bases editing
• Non-atomic sc-agent for automation of activities

of ordinary knowledge base developer
• Non-atomic sc-agent for automation of activities

of knowledge base administrator
• Non-atomic sc-agent for automation of activities

of knowledge base manager
• Non-atomic sc-agent for automation of activities

of knowledge base expert
• Non-atomic sc-agent for knowledge base

characteristics calculating
}

Traditionally, when working collectively with a shared
resource, in this case, a knowledge base, conflicts may
arise, for example, several developers try to enter con-
flicting or duplicate information in the knowledge base,
try to simultaneously change the same piece of knowl-
edge base. The final decision is the responsibility of the
knowledge base administrator.

User interface of system for the collective knowledge
bases development support is presented by a set of
interface commands that allow developers to initiate

80

Figure 19. Example of the description of the contradiction with the definition in the knowledge base

Figure 20. Example of the description of the contradiction with the theorem in the knowledge base

81

Figure 21. Example of incompleteness specification in the knowledge
base

the activity of the desired agent that is part of this
system [77], as well as a set of editors which allow
editing knowledge base fragments taking into account
the mechanism discussed earlier.

In the current version of the tools, there are two editors
that support the ability to edit in the SCg (figure 24) and
SCn (figure 25) languages.

D. Tools of automating the development of problem
solvers sc-models

Among the tasks solved by tools of automating the
development of problem solvers sc-models are technical
support for problem solver developers, including ensur-
ing the correct and efficient implementation of the steps
provided by the above methods. These tools are also
implemented as an osti-system, which can be used both
in the local version and as a subsystem for the automation
system for the development of knowledge bases.

In turn, within the framework of the system under
consideration, two subsystems are conventionally dis-
tinguished: the subsystem of automation of the process
of constructing and modifying of knowledge processing
agents and the subsystem of automating the process of
constructing and modifying of scp-programs.

Graphically, the structure of the system under consid-
eration and its subsystems can be represented as follows
(figure 26).

An important stage in the development of software
systems is the debugging of the developed components.
In the case of problem solvers based on OSTIS Technol-
ogy, two fundamentally different levels of debugging are
distinguished:
• debugging at sc-agents level;

• debugging at scp-program level.
In the case of debugging at the sc-agents level, the act

of execution of each agent is considered indivisible and
cannot be interrupted. In this case, both atomic sc-agents
and non-atomic ones can be debugged. The initiation of
one or another agent, including one that is not part of an
atomic one, is done by creating appropriate constructions
in sc-memory, thus, debugging can be done at different
levels of detailing of agents, even atomic ones.

Taking into account the fact that the model of agents
interaction used within the framework of OSTIS Tech-
nology uses a universal variant of interaction of agents
through common memory, the considered agent design
support system can serve as a basis for agent modeling
systems that use other communication principles, for
example, direct message exchange between agents.

Debugging at the level of scp-programs is carried out
similarly to the existing modern approaches to debug-
ging procedural programs and suggests the possibility of
setting breakpoints, step-by-step program execution, etc.

The considered system for automating the constructing
and modifying of problem solvers, accordingly, its sc-
model, is divided into two more specific ones:

System for automating the constructing and modifying
of problems solvers using OSTIS Technology
<= basic decomposition*:

{
• System for automating the constructing and

modifying of knowledge processing agents
• System for automating the constructing and

modifying of scp-programs
}

In turn, these subsystems are decomposed in accor-
dance with the general principles of ostis-systems build-
ing into sc-models of the knowledge base, problem solver
and user interface. Next, we consider in more detail the
components listed.

The knowledge base of the system for automating the
constructing and modifying of problem solvers includes,
in addition to the Knowledge base kernel and kernel
extensions, sc-models of knowledge bases provided at
the level of OSTIS Technology and models of subject
domains of scp-programs and scp-interpreter as well the
description of key concepts related to verification and
debugging of scp-programs such as breakpoint, incor-
rectness in the scp-program, error in the scp-program
and others.

The problem solver of the system for automating the
constructing and modifying of knowledge processing
agents has the following structure:

Problem solver of system for for automating the
constructing and modifying of knowledge processing
agents
<= decomposition of sc-agent*:

82

Figure 22. Transition process specification in knowledge base

Figure 23. Means of specifying changes made in the knowledge base

83

Figure 24. SCg-editor example

Figure 25. SCn-editor example

{
• Abstract sc-agent of sc-agents verification
<= decomposition of sc-agent*:
{
• Abstract sc-agent of sc-agents specification

verification
• Abstract sc-agent for checking a nonatomic

sc-agent for the consistency of its
specification to the specifications of
particular sc-agents in its composition

}
• Abstract sc-agent of sc-agents teams debugging
<= decomposition of sc-agent*:
{
• Abstract sc-agent of search for all running

processes corresponding to a given sc-agent
• Abstract sc-agent of initiation of a given

sc-agent on the given arguments
• Abstract sc-agent of activation of a given

sc-agent
• Abstract sc-agent of deactivation of a given

sc-agent
• Abstract sc-agent of setting a lock of a

given type for a given process on a given
sc-element

• Abstract sc-agent of unlocking of all locks
of a given process

• Abstract sc-agent of unlocking of all locks
of a given sc-element

}
}

In turn, the problem solver of the automation system
for automating the constructing and modifying of scp-
programs has the following structure:

Task solver of the automation system for automating
the constructing and modifying of scp-programs
<= decomposition of sc-agent*:
{
• Abstract sc-agent of scp-programs verification
• Abstract sc-agent of scp-programs debugging
<= decomposition of sc-agent*:
{
• Abstract sc-agent of launch of a given

scp-program for a given set of input data
• Abstract sc-agent of launch of a given

scp-program for a given set of input data
in step-by-step mode

• Abstract sc-agent of search of all
scp-operators in the scp-program

• Abstract sc-agent of search of all
breakpoints within the scp-process

• Abstract sc-agent of adding breakpoint in
scp-program

• Abstract sc-agent of removing breakpoint
84

System for automating the constructing and modifying of problem solvers

Subsystem for automating the constructing
and modifying of sc­agents

Subsystem for automating the constructing
and modifying of scp­programs

Knowledge

base
Interface Problem

solver

Knowledge

base
Interface Problem

solver

IMS.ostis Metasystem

Library of reusable components of problem solvers

Set of components Means of components
specification Tools of components search

Figure 26. The structure of the system for automating the constructing and modifying of problem solvers

from scp-program
• Abstract sc-agent of adding breakpoint in

scp-process
• Abstract sc-agent of removing breakpoint

from scp-process
• Abstract sc-agent to continue the execution

of the scp-process on one step
• Abstract sc-agent to continue the execution

of the scp-process to a breakpoint or end
• Abstract sc-agent for viewing information

about the scp-process
• Abstract sc-agent for viewing information

about the scp-operator
}

}
Since the objects of the design of the described

automation system are the components of the problem
solvers, in particular, agents and knowledge processing
programs presented in the SC-code, such a system can
use the basic means of external representation of the texts
of the SC-code, for example, SCn or SCg languages.

In order to visually simplify the process of verifying
and debugging the components of the solver, an approach
is used that assumes that only the minimum necessary set
of sc-elements is displayed to the system user at a time.
For example, when debugging a scp-process, it suffices to
display the scp-operators and connections between them.
If necessary, the user can manually request and view the
specification of the desired scp-operator at the time of
the break. This approach is embedded in the algorithms
of all agents of the described system.

Thus, at present, the user interface of the system for
automating the constructing and modifying of problem
solvers is represented by a set of interface commands
that allow the user to initiate the activity of the necessary

agent that is part of this system.

X. MEANS OF PROJECT TASK SPECIFICATION

To represent the project tasks and their specifications
in the knowledge base of the system for automating the
development of knowledge bases, the first version of the
sc-model of the Subject domain of project actions and
its ontology were developed. This subject domains is
particular for the Subject domain of actions and tasks
[73] and, thus, inherits from it many general concepts,
such as action, action class, task , decomposition of
action*, subaction*, performer* and others.

In the framework of the Subject domain of project
actions, concepts are studied that are directly related to
project activities, in particular, with classes of project
activities, priorities of project activities and dependencies
between them. The corresponding ontology can become
the basis for the formalization of existing methods and
standards in the field of organization of project and
intelligent activity [78], [79] and was developed taking
into account existing standards in this field.

It should be noted that in the framework of the pro-
posed approach to the formalization of activities task is
treated as a specification (semantic neighborhood within
the framework of the knowledge base) of a certain
action. Thus, each action can be assigned a certain
task, containing the conditions in which the specified
action is or should be performed. In this connection, it
turned out to be inexpedient to introduce separately the
classification of actions and the classification of tasks,
and the choice was made in favor of the classification
of actions, since the concept of action can be used in
a wider context, which is not necessarily related to the
project activity. Thus, in describing project activities, the
concepts action and action class will be used, and it is

85

understood that, if necessary, a project action can always
be put in correspondence with a project task.

Examples of the specification of concepts studied in
the Subject domain of project actions in the SCn-code:

project action
⊂ action

dependent action*
∈ binary relation:
=> first domain*:

project action
=> second domain*:

project action

Tuples of dependent action* relation connect together
some project action and another project action, which
cannot be completed until the original project action is
successfully executed. It is assumed that the original
action is not a subaction for the dependent action.

action priority*
∈ binary relation:
=> first domain*:

project action
=> second domain*:

project action

Tuples of action priority* relation connect two project
actions, the first of which is of higher priority for some
reason. Most often it is assumed that both actions are the
actions of some general action.

In turn, for the development of ostis-systems, addi-
tional classes of project activities were allocated, taking
into account the specifics of developing sc-models of
knowledge bases and sc-models of problem solvers. The
specified classes of actions are studied in the framework
of the Subject domain of actions of knowledge bases sc-
models developers.

Fragment of the typology of project actions of the
ostis-systems sc-models developers in the SCn-code:

action. build a new fragment for inclusion in the
knowledge base
⊃ action. build subject domain sc-model
=> abstract subaction*:
• action. build a structural specification of

subject domain
• action. build a terminological ontology of

subject domain
• action. build a set-theoretic ontology of

subject domain
• action. build a logical ontology of subject

domain
⊃ action. build a semantic neighborhood of a given

entity
⊃ action. develop an example of the given concept

use

An example of the specification of project activities for
the development of the IMS.ostis Metasystem knowledge
base:

Section. Development plan of the IMS.ostis
Metasystem
3 key sc-element’:
• Action. develop exercises for the formalization of

basic knowledge
• Action. develop a family of introductory sections

on OSTIS Technology
• Action. build sc-model of the subject domain of

artificial neural networks
=> subaction*
• Action. build a structural specification of

the subject domain of artificial neural
networks

• Action. build a terminological ontology of
the subject domain of artificial neural
networks

• Action. build a set-theoretic ontology of the
subject domain of artificial neural networks

• Action. build a logical ontology of the
subject domain of artificial neural networks

XI. MEANS OF SPECIFICATION OF PARTICIPANTS IN
THE DEVELOPMENT OF SEMANTIC COMPUTER

SYSTEMS

One of the important advantages of the approach to the
organization of the development process, in which all
the information about executing, executed and planned
actions, participants in the process, etc., is recorded in the
knowledge base, is the possibility of creating professional
”portraits” of developers which can be further analyzed
and taken into account when solving, for example, such
tasks as:

• evaluation of the developer’s total contribution to
the development results for a certain period, includ-
ing in material terms;

• evaluation of the experience and competence of the
developer in solving tasks of certain classes for
•• planning available resources and optimizing the

assignment of tasks in terms of their implemen-
tation;

•• determining the need to train certain developers
in any areas, the improving of certain skills of
a specific developer;

•• assignment of authority and determining the
value of a particular developer’s opinion when
making any collective decisions;

• the ability to automate the above processes.

An example of a fragment of a knowledge base in
the SCg-code describing a specific participant in the
development process (figure 27):

86

Figure 27. An example of the description of a developer professional
portrait

XII. MECHANISMS FOR ASSESSING THE
COMPLEXITY OF PROJECT TASKS AND THE

CONTRIBUTION OF THE DEVELOPERS OF SEMANTIC
COMPUTER SYSTEMS AND THEIR COMPONENTS

Evaluation of the developer’s experience and the con-
struction of his professional portrait are closely related
to the mechanisms for assessing the contribution of
each particular developer to the system being developed.
At the same time, the assessment of the contribution,
expressed in any conventional quantitative units, will
allow both to evaluate the developer’s experience and
directly provide his material remuneration and solve
a number of other tasks related to the assessment of
the participation of developers in the development of
a specific system. Thus, it is important to move from
continuous improvement of methods and tools of assess-
ing the complexity of project tasks in developing such
systems, as well as assessing the quality, timeliness and
value of project developer’s results to improving methods
and tools of project activities stimulating.

In the development of modern computer systems, the
assessment of the complexity of the tasks being solved,
as a rule, manually on the basis of accumulated experi-
ence and is expressed in man-hours. Real remuneration is
formed depending on the qualifications of the developer
and the total number of man-hours corresponding to the
tasks solved for a certain period of time.

When assessing the contribution of the developers of
osti-systems, it is possible to take into account the se-
mantics of the fragments being developed, which, on the
one hand, will allow automate the process of assessing
contribution for each developer, and on the other, allow
to make such an assessment more objective.

In addition, the fact that all project activities are
described in the knowledge base of the designed system

and, accordingly, can be analyzed by the system itself,
provides additional opportunities for automating the pro-
cess of evaluating the contribution of the developer.

The assessment of the contribution in the general case
may depend on the following factors:

• directly the amount of the changes made (the
number of concepts, the number of sc-arcs, the
number of operators in programs, etc.) and the
amount of work performed (in man-hours or other
conventional units of labor intensity);

• the complexity of the changes (in general, a frag-
ment of the knowledge base describing a formal
logical statement is considered more complicated
than, for example, the description of a simple set-
theoretic connection between concepts);

• quality of the changes made, which is assessed not
only in terms of the correctness of the changes,
but also their completeness, compatibility with other
fragments of the system, etc. As was shown earlier,
the assessment of the quality of fragments of knowl-
edge bases of ostis-systems (including the specifi-
cations of knowledge-processing agents and their
corresponding programs) can be largely automated;

• importance (purposefulness, expediency, priority) of
the task (accomplishment of the task with a priority
higher in terms of achieving current goals, is rated
higher than solving a useful, but not very priority
task).

One of the problems that arise in assessing the contri-
bution of the developer, and in assessing his professional
experience, is the problem that the author is sometimes
from the point of view of the system (the person who
directly formed the proposal to edit the knowledge base)
and the real author of knowledge introduced into the
system (an expert who does not use the technical tools of
the knowledge base editing) may turn out to be different
people, and the formal authorship will be attributed not
to the expert, but to his technical assistant. To solve
this problem, in addition to the obvious option, which
involves simplifying technical tools and adapting them
to subject domain experts, an option is proposed where
the authorship of the expert is clearly specified manually
and considered in the same way as any other proposal
for editing the knowledge base.

XIII. CONCLUSION

The paper discusses the principles of developing new
generation semantic computer systems based on the Open
Semantic Technology for Intelligent System Design (OS-
TIS Technology), justifies the advantages of transition
from traditional computer systems to semantic computer
systems from the point of view of their design process,
and considers the advantages of developing design au-
tomation tools as semantic computer systems.

87

The main conclusions on the work include the follow-
ing:
• the accumulated experience of organizing and au-

tomating the development of modern computer sys-
tems (synthesis, assembly, analysis, testing, diag-
nostics, etc.) is a rich basis for creating models,
methods and means of organizing and computer
support for project activities that should be directed:
•• on the consistency of project actions of all

developers (compatibility of project results);
•• on the reduction of the time of transition from

the current workable version to the next also
consistent version not due to the intensification
of the developers’ activities, but due to:
• • • increasing the consistency of their ac-

tions;
• • • increase the level of valuation, the pur-

posefulness of the results of each de-
veloper from the point of view of the
earliest construction of the next consis-
tent workable version of the developed
system, which has qualitative advantages
over the previous version;

• the features of the development objects themselves
(semantic computer systems) due to the possibility
of their consideration at the semantic level create
favorable prerequisites for effective analysis:
•• consistency of project activities;
•• quality of project results (consistency, com-

pleteness, clearness);
•• valuation (purposefulness) of project results;
•• scope of completed design work;
This, in turn, creates prerequisites for creating
methods and tools of effectively stimulating project
activities, which can also be used in open source
projects that assume free entry into the development
team;

• development of semantic computer systems in the
presence of a satisfactory version of the imple-
mentation of a universal interpreter of semantic
models is reduced to the development of the rel-
evant sections of knowledge base. Therefore, the
intelligent system to support the collective design
of knowledge bases of semantic computer systems
has a special place in the complex of design tools
for semantic computer systems.

ACKNOWLEDGMENT

This work was supported by the BRFFR-RFFR (No.
F18R-220).

REFERENCES

[1] V. V. Golenkov and N. A. Guljakina, “Proekt otkrytoj
semanticheskoj tehnologii komponentnogo proektirovanija
intellektual’nyh sistem. chast’ 1: Principy sozdanija [project of

open semantic technology for component design of intelligent
systems. part 1: Creation principles],” Ontologija proektirovanija
[Ontology of design], no. 1, pp. 42–64, 2014.

[2] V. Golenkov, N. Guliakina, N. Grakova, I. Davydenko, V. Niku-
lenka, A. Eremeev, and V. Tarassov, “From training intelligent
systems to training their development tools,” in Otkrytye seman-
ticheskie tehnologii proektirovanija intellektual’nyh sistem [Open
semantic technologies for intelligent systems], V. Golenkov, Ed.,
BSUIR. Minsk , BSUIR, 2018, pp. 81–98.

[3] A. Kolesnikov, Gibridnye intellektual’nye sistemy: Teoriya i
tekhnologiya razrabotki [Hybrid intelligent systems: theory and
technology of development], A. M. Yashin, Ed. SPb.: Izd-vo
SPbGTU, 2001.

[4] I. Davydenko, “Semantic models, method and tools of knowledge
bases coordinated development based on reusable components,”
in Otkrytye semanticheskie tehnologii proektirovanija intellek-
tual’nyh sistem [Open semantic technologies for intelligent sys-
tems], V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2018, pp.
99–118.

[5] D. Shunkevich, “Agent-oriented models, method and tools of
compatible problem solvers development for intelligent systems,”
in Otkrytye semanticheskie tehnologii proektirovanija intellek-
tual’nyh sistem [Open semantic technologies for intelligent sys-
tems], V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2018, pp.
119–132.

[6] (2018, Feb.) Autodesk generative design. [Online]. Available:
https://www.autodesk.com/solutions/generative-design

[7] (2018) Autodesk dreamcatcher. [Online]. Available: https:
//autodeskresearch.com/projects/dreamcatcher

[8] S. M. Duffy and A. H. B. Duffy, “Sharing the learning activ-
ity using intelligent cad,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 10, no. 2, p. 83–100,
1996.

[9] L. S. Cardona-Meza and G. Olivar-Tost, “Modeling and simula-
tion of project management through the PMBOK standard using
complex networks,” Complexity, vol. 2017, pp. 1–12, 2017.

[10] J. Stark, Product Lifecycle Management (Volume 1): 21st Century
Paradigm for Product Realisation, 3rd ed. Switzerland: Springer,
Cham, 2015.

[11] T. Dillon, E. Chang, and P. Wongthongtham, “Ontology-based
software engineering- software engineering 2.0.” Australian Soft-
ware Engineering Conference, IEEE Computer Society, pp. 13–
23, 2008.

[12] A. Emdad, “Use of ontologies in software engineering,” 2008,
pp. 145–150.

[13] A. N. Andrichenko, “Tendencii i sostojanie v oblasti upravlenija
spravochnymi dannymi v mashinostroenii [trends and status in the
field of reference data management in mechanical engineering],”
Ontologija proektirovanija [Ontology of design], no. 2(4), pp.
25–35, 2012.

[14] A. Fedotova, I. Davydenko, and A. Pfortner, “Design intelligent
lifecycle management systems based on applying of semantic
technologies,” vol. 1. Switzerland , Springer International
Publishing„ 2016, pp. 251–260.

[15] (2018) Agile manifest. [Online]. Available: http://agilemanifesto.
org/iso/ru/manifesto.html

[16] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile
software development methods: Review and analysis,” Agile
Software Development, vol. 1, pp. 31–59, 2002.

[17] (2018) Best version control systems. [Online]. Available:
https://www.g2crowd.com/categories/version-control-systems

[18] (2018) Comparison of issue-tracking systems. [On-
line]. Available: https://en.wikipedia.org/wiki/Comparison_of\
_issue-tracking_systems

[19] (2018) Project management software. [Online]. Available:
https://www.capterra.com/project-management-software

[20] (2018) Comparison of gui testing tools. [Online]. Available: https:
//en.wikipedia.org/wiki/Comparison_of_GUI_testing_tools

[21] (2018) List of web testing tools. [Online]. Available: https:
//en.wikipedia.org/wiki/List_of_web_testing_tools

[22] (2018) Best version control hosting software. [Online]. Available:
https://www.g2crowd.com/categories/version-control-hosting

88

[23] R. Iqbal, A. Murad, and A. Mustapha, “An analysis of ontology
engineering methodologies : a lit. rev.” Research J. of Appl.
Sciences, Engineering a. Technology, vol. 6, no. 16, pp. 48–62,
2013.

[24] P. Sainter, K. Oldham, and A. Larkin, “Achieving ben-
efits from knowledge-based engineering systems in the
longer term as well as in the short term,” Semantic
Scholar, retrieved from https://pdfs.semanticscholar.org/0edc/
b90ca6601192e10d7eb2fd03147fb72e1f9d.pdf.

[25] A. A. Slobodjuk, S. I. Matorin, and S. N. Chetverikov, “O
podhode k sozdaniju ontologij na osnove sistemnoobektnyh
modelej predmetnoj oblasti [on the approach to the creation
of ontologies based on system-object domain models],” Nauch.
vedomosti Belgor. gos. un-ta. Ser.: Jekonomika. Informatika
[Scientific journ. of Bel. state univ. Ser .: Economy. Computer
science], no. 22, pp. 186–193, 2013.

[26] M. Uschold and M. Grueninger, “Ontologies: principles, methods
and applications,” The Knowledge Engineering Rev, vol. 11, no. 2,
pp. 93–136, 1996.

[27] M. Gruninger and M. Fox, “Methodology for the design and
evaluation of ontologies [Electronic resource],” Workshop on
Basic Ontological Issues in Knowledge Sharing, IJCAI-95,
mode of access: http://citeseerx.ist.psu.edu/viewdoc/download;
jsessionid=70152DBAFA34B86E22661C3E3F7C978F?doi=10.1.
1.44.8723\&rep=rep1\&type=pdf. — Date of access: 30.10.2016.

[28] A. Gomez-Perez, M. Fernandez-Lopez, and A. de Vicente, “To-
wards a method to conceptualize domain ontologies,” in ECAI
96 : proc. of the 12th Europ. Conf. on Artificial Intelligence,
Budapest, 11–16 Aug. 1996, Europ. Coordinating Comm. for
Artificial Intelligence ; ed. W. Wahlster. Budapest, 1996, pp.
41–51.

[29] A. Gomez-Perez and M. Suarez-Figueroa, “Scenarios for building
ontology networks within the neon methodology,” in Proceedings
of the Fifth International Conference on Knowledge Capture (K-
CAP 2009), Assoc. for Computing Machinery, Spec. Interest
Group on Artificial Intelligence. New York, 2009, pp. 183–184.

[30] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and
D. Wenke, “Ontoedit: collaborative ontology development for the
semantic web,” in The Semantic Web (ISWC 2002) : proc. of
the first Intern. semantic web conf., Sardinia, 9–12 June 2002,
I. Horrocks and J. Hendler, Eds. Berlin, 2002, pp. 221–235.

[31] A. Bernaras, I. Laresgoiti, and J. Corera, “Building and reusing
ontologies for electrical network applications,” in ECAI 96 : proc.
of 12th Europ. Conf. on Artificial Intelligence, Budapest, 11–16
Aug. 1996, Europ. Coordinating Comm. for Artificial Intelligence.
Chichester, 1996, pp. 298–302.

[32] H. S. Pinto, S. Staab, and C. Tempich, “Diligent: Towards a
fine-grained methodology for distributed, loosely-controlled and
evolving engineering of ontologies,” in European Conference on
Artificial Intelligence (ECAI’04) : proc. of the 16th Conference,
Valencia, Spain – August 22–27, 2004. Amsterdam, 2004, pp.
393–397.

[33] B. Swartout, R. Patil, K. Knight, and T. Russ, “Toward distributed
use of large-scale ontologies [Electronic resource],” Semantic
Scholar, mode of access: https://www.semanticscholar.org/paper/
Toward-Distributed-Use-of-Large-Scale-Ontologies-Swartout-Patil/
07b64a07e6d56a91f2471975a3922e3fcd9ff2d7?tab=abstract. —
Date of access: 26.08.2016.

[34] A. D. Nicola, M. Missikoff, and R. Navigli, “A proposal for
a unified process for ontology building: Upon,” in Database
and expert systems applications : proc. of the 16th intern. conf.
(DEXA 2005), Copenhagen, 22–26 Aug. 2005, K. Andersen,
J. Debenham, and R. Wagner, Eds. New York ; Berlin , Springer,
1997, pp. 655–664.

[35] J. V. Rogushina, “Semanticheskie wiki-resursy i ih ispol’zovanie
dlja postroenija personificirovannyh ontologij [semantic wiki-
resources and their use for building personalized ontologies],” in
Proceedings of the 10th International conference of programming
(UkrPROG’2016), Kyiv, 24–25 May 2016, P. A. I. Sergienko, Ed.
Kyiv, 2016, pp. 188–195.

[36] M. Raman, “Wiki technology as a «free» collaborative tool within
an organizational setting,” Inform. Systems Management, vol. 23,
no. 4, pp. 59–66, 2006.

[37] “MediaWiki [Electronic resource],” mode of access: https://www.
mediawiki.org.. — Date of access: 26.11.2016.

[38] A. J. Gladun and J. V. Rogushina, “Wiki-tehnologii,” Telekom.
Kommunikacii i seti, no. 5, p. 58, 2008.

[39] Semantic MediaWiki [Electronic resource]. Mode of ac-
cess: https://www.semantic-mediawiki.org. — Date of access:
21.10.2016.

[40] I. S. Chistjakova, “Inzhenerija ontologij [ontology engineering],”
Inzhenerija programm. zabezpechennja [Software engineering],
no. 20, pp. 51–66, 2014.

[41] “Protege [Electronic resource],” mode of access: http://protege.
stanford.edu. — Date of access: 27.05.2016.

[42] J. Euzenat, “Corporate memory through cooperative creation of
knowledge bases and hyper-documents [Electronic resource],”
Knowledge Acquisition for Knowledge-Based Systems : Proc.
of 10th Workshop, EKAW’97, mode of access: http://ksi.cpsc.
ucalgary.ca/KAW/KAW96/euzenat/euzenat96b.html. — Date of
access: 30.10.2016.

[43] “Ontolingua [Electronic resource],” Knowledge systems, al lab-
oratory, mode of access: http://www.ksl.stanford.edu/software/
ontolingua. — Date of access: 29.05.2016.

[44] “Building DAML+OIL ontologies [Electronic resource],” OilEd,
mode of access: http://oiled.semanticweb.org/building. — Date of
access: 24.05.2016.

[45] “Projects [Electronic resource],” Knowledge Media Institute,
mode of access: http://kmi.open.ac.uk/projects. — Date of access:
22.05.2016.

[46] N. M. Borgest, “Rol’ ontologii v proektirovanii informacionnyh
sistem [role of ontology in information system design],” in Otkry-
tye semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems],
V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2014, pp. 155–160.

[47] O. M. Ovdej and G. J. Proskudina, “Obzor instrumentov
inzhenerii ontologij [ontology engineering tools survey],”
Jelektron. b-ki. [Electronic libraries], vol. 7, no. 4, 2004, available
at: http://www.elbib.ru/index.phtml?page=elbib/rus/journal/2004/
part4/op. — accessed: 30.11.2016.

[48] E. Alatrish, “Comparison some of ontology,” Management In-
form. Systems, vol. 8, no. 2, pp. 18–24, 2013.

[49] N. Noy, M. Klein, S. Kunnatur, A. Chugh, and S. Falconer,
“PROMPT [Electronic resource],” Protege Wiki, mode of ac-
cess: https://protegewiki.stanford.edu/wiki/PROMPT. — Date of
access: 23.11.2016.

[50] “Chimaera [Electronic resource],” Knowledge systems, al lab-
oratory, mode of access: http://www.ksl.stanford.edu/software/
chimaera/. — Date of access: 20.05.2016.

[51] “OntoMerge: ontology translation by merging ontologies
[Electronic resource],” Computer Science, mode of access: http://
cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html.
— Date of access: 19.10.2016.

[52] H. Chalupsky, “OntoMorph: a translation system for sym-
bolic knowledge [Electronic resource],” mode of access: https:
//www.isi.edu/~hans/ontomorph/presentation/ontomorph.html. —
Date of access: 19.05.2016.

[53] “Ontology based system enhanced with relationships for vocabu-
lary heterogeneity resolution [Electronic resource],” SID Research
Group, mode of access: http://sid.cps.unizar.es/OBSERVER. —
Date of access: 16.05.2016.

[54] G. Stumme and A. Maedche, “Fca-merge: bottom-up merging of
ontologies,” in IJCAI-01 : proc. of the seventeenth Intern. joint
conf. on artificial intelligence, Seattle, 4–10 Aug. 2001, B. Nebel,
Ed., Amer. Assoc. for Artificial Intelligence. San Francisco,
2001, pp. 225–230.

[55] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt,
and F. Ciravegna, “MnM: ontology driven semi-automatic and
automatic support for semantic markup,” in Knowledge engineer-
ing and knowledge management: ontologies and the semantic
web : proc. of the 13th intern. conf., Siguenza, 1–4 Oct. 2002,
A. Gomez-Perez and V. R. Benjaminsns, Eds. Berlin ; New
York, 2002, pp. 379–391.

[56] J. Heflin and J. Hendler, “A portrait of the semantic web in
action,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 54–59, 04
2001.

89

[57] I. V. Efimenko and V. F. Horoshevskij, Ontologicheskoe
modelirovanie jekonomiki predprijatij i otraslej sovremennoj
Rossii : v 2 t. M. : Nac. issled. un-t «Vyssh. shk. jekonomiki»,
2011, vol. 1 : Ontologicheskoe modelirovanie: podkhody, modeli,
metody, sredstva, resheniya [Ontological modeling: approaches,
models, methods, tools, solutions], (Preprint / Nac. issled. un-
t «Vyssh. shk. jekonomiki» ; Serija: Matematicheskie metody
analiza reshenij v jekonomike, biznese i politike ; WP7/2011/08).

[58] A. F. Tuzovskij, I. A. Zaikin, and V. Z. Jampol’skij, “Sistema
kollektivnoj podderzhki ontologicheskih modelej [system of
collective support of ontological models],” Izv. Tom. politehn. un-
ta [News of Tomsk polytechnic univ.], no. 5, pp. 89–94, 2011.

[59] T. Tudorache, N. Noy, S. Tu, and M. Musen, “Supporting
collaborative ontology development in protege,” in The semantic
web (ISWC 2008) : proc. of the 7th Intern. semantic web conf.,
Karlsruhe, 26–30 Oct. 2008, D. H. [et al.], Ed. Karlsruhe, 2008,
pp. 17–32.

[60] V. V. Gribova, A. S. Kleshchev, F. M. Moskalenko, V. A. Tim-
chenko, L. Fedorishchev, and E. A. Shalfeeva, “Platforma dlya
razrabotki oblachnykh intellektual’nykh servisov [platform for
intelligent cloud services development],” in XV Natsional’naya
konferentsiya po iskusstvennomu intellektu s mezhdunarodnym
uchastiem (KII-2016), Smolensk, 3–7 oktyabrya 2016 g. : trudy
: v 3 t. [XV National Conference on Artificial Intelligence with
International Participation (CAI-2016), Smolensk, October 3–7,
2016: procs: 3 v.], vol. 1, Ros. assots. iskusstv. intellekta, Feder.
issled. tsentr «Informatika i upravlenie» Ros. akad. nauk [Russ.
assoc. art. intelligence, Feder. research Center «Informatics and
Management» Rus. Acad. of science]. Smolensk, 2016, pp. 24–
33.

[61] A. N. Borisov, “Postroenie intellektual’nyh sistem, osnovannyh na
znanijah, s povtornym ispol’zovaniem komponentov [building of
intelligent knowledge-based systems with reusable components],”
in Otkrytye semanticheskie tehnologii proektirovanija
intellektual’nyh sistem [Open semantic technologies for
intelligent systems], V. Golenkov, Ed., BSUIR. Minsk : BSUIR,
2014, pp. 97–102.

[62] L. S. Globa and R. L. Novogrudskaja, “Modeli i metody
integracii informacionnyh i vychislitel’nyh resursov [models
and methods for the integration of information and computing
resources],” in Otkrytye semanticheskie tehnologii proektirovanija
intellektual’nyh sistem [Open semantic technologies for
intelligent systems], V. Golenkov, Ed., BSUIR. Minsk , BSUIR,
2012, pp. 447–452.

[63] G. B. Zagorul’ko and J. A. Zagorul’ko, “Podhod k organizacii
kompleksnoj podderzhki processa razrabotki intellektual’nyh
sppr v slaboformalizovannyh predmetnyh oblastjah [approach
to the organization of complex support of intelligent dms
development in weakly-structured subject domains],” in Otkrytye
semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems],
V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2016, pp. 61–64.

[64] L. S. Bolotova, Sistemy iskusstvennogo intellekta: modeli
i tehnologii, osnovannye na znanijah : uchebnik [Artificial
Intelligence Systems: Knowledge-Based Models and
Technologies: Textbook]. Moskow , Finances and Statistics,
2012.

[65] (2016, Aug.) RDF 1.1 semantics. [Online]. Available: https:
//www.w3.org/TR/2014/REC-rdf11-mt-20140225

[66] (2016, May) Ontaria: easy access to the semantic web. [Online].
Available: https://www.w3.org/2004/ontaria/

[67] (2016, Aug.) Schema.org. [Online]. Available: http://schema.org
[68] M. D’Aquina and N. F. Noyb, “Where to publish and

find ontologies? A survey of ontology libraries [Elec-
tronic resource],” Web Semantics, vol. 11, 2012, mode of
access: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293483/
pdf/nihms-324445.pdf. — Date of access: 20.05.2016.

[69] C. Debruyne, P. D. Leenheer, and R. Meersman, “A method and
tool for fact type reuse in the dogma ontology framework,” in On
the move to meaningful Internet systems: OTM 2009 : in 2 pt.,
ser. 2 pt. London ; Berlin , Springer, 2009, pp. 1147–1164.

[70] P. D. Leenheer and C. Debruyne, “Dogma-mess: A tool for fact-
oriented collaborative ontology evolution,” in On the move to

meaningful Internet systems: OTM 2008 Workshops, R. Meers-
man, Z. Tari, and P. Herrero, Eds. Heidelberg , Springer, 2009,
pp. 797–806.

[71] M. Bergman, “Knowledge-based artificial intelligence
[Electronic resource],” AI3: Adaptive Information,
mode of access: http://www.mkbergman.com/1816/
knowledge-based-artificial-intelligence. — Date of access:
14.10.2016.

[72] A. Filippov, V. Moshkin, D. Shalaev, and N. Yarushkina,
“Edinaya ontologicheskaya platforma intellektual’nogo analiza
dannykh [unified ontological data mining platform],” in Otkrytye
semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems],
V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2016, pp. 77–82.

[73] (2018, Nov.) IMS metasystem. [Online]. Available: http:
//ims.ostis.net/

[74] V. Golenkov, “Ontology-based design of intelligent systems,”
in Otkrytye semanticheskie tehnologii proektirovanija intellek-
tual’nyh sistem [Open semantic technologies for intelligent sys-
tems], V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2017, pp.
37–56.

[75] V. P. Ivashenko, “Modeli i algoritmy integratsii znanii na osnove
odnorodnykh semanticheskikh setei [models and algorithms for
the knowledge integration based on homogeneous semantic
networks],” Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], vol. 2, pp. 111–132, 2015.

[76] (2018, Nov.) Github. [Online]. Available: https://github.com
[77] D. Koronchik, “Semanticheskie modeli mul’timodal’nykh

pol’zovatel’skikh interfeisov i semanticheskaya tekhnologiya
ikh proektirovaniya [semantic models of multimodal user
interfaces and semantic technology for their design],” in Otkrytye
semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems],
V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2012, pp. 339–346.

[78] (2018) Pmbok R© guide and standards. [Online]. Available:
https://www.pmi.org/pmbok-guide-standards

[79] A. S. Kleshhjov and E. A. Shalfeeva, “Ontologija zadach in-
tellektual’noj dejatel’nosti [ontology of the tasks of intelligent
activity],” Ontologija proektirovanija [Ontology of design], vol. 5,
no. 2(16), pp. 179–205, 2015.

ПРИНЦИПЫ ОРГАНИЗАЦИИ И
АВТОМАТИЗАЦИИ ПРОЦЕССА РАЗРАБОТКИ

СЕМАНТИЧЕСКИХ КОМПЬЮТЕРНЫХ
СИСТЕМ

Голенков В.В., Шункевич Д.В.,
Давыденко И.Т., Гракова Н.В.

Работа посвящена принципам разработки семанти-
ческих компьютерных систем нового поколения на ос-
нове Открытой семантической технологии проектиро-
вания интеллектуальных систем (Технологии OSTIS).
Обоснованы преимущества перехода от традиционных
компьютерных систем к семантическим компьютер-
ным системам с точки зрения процесса их проектиро-
вания, а также рассмотрены преимущества реализации
средств автоматизации проектной деятельности как
семантических компьютерных систем.

Received 09.01.19

90

