
The methods and the IACPaaS Platform tools
for semantic representation of knowledge and

development of declarative components for
intelligent systems

Valeria Gribova, Alexander Kleschev, Philip Moskalenko
Vadim Timchenko, Leonid Fedorischev, Elena Shalfeeva

IACP FEB RAS
Vladivostok, Russian Federation

gribova@dvo.ru, kleschev@dvo.ru, philipmm@dvo.ru
vadim@dvo.ru, fleo1987@mail.ru, shalf@dvo.ru

Abstract—The paper discusses the problem of ensuring
the viability of intelligent systems – systems with declarative
knowledge bases. Software tools for the development of
such systems that implement mechanisms for viability
improvement are considered. These mechanisms are based
on the construction of each component according to its
declarative model, which is specified in a unified language
for model description.

Keywords—intelligent systems, software system mainte-
nance, software system viability, development tools

I. INTRODUCTION

Ensuring the viability of software systems (SS) is
one of the key problems in software engineering. The
term viability refers to the SS sustainability (perfor-
mance preservation) to changes in the environment and
the ability to evolve during the lifecycle [1], [2], [3].
Viability is directly related to the SS transparency, which
is characterized by three main properties: accessibility,
clarity and relevance of the information and components
of the SS to interest groups [4].

Among the many SSs, the class of intelligent systems
is distinguished. They are systems with knowledge bases
(KBS), which are actively used to solve various scientific
and applied problems. Their architecture, among the tra-
ditional components – databases, business logic (solver)
and user interface, contains an additional component –
the knowledge base. At present, one can say that KBSs
have reached the phase of maturity. But the problem of
ensuring their viability is acute, since the development
team of such systems includes knowledge engineers
and domain experts in addition to programmers and
interface designers. This class of SS is characterized by
a continuous improvement of knowledge bases, and an
occasional improvement of problem solving method and
of an output explanation.

Despite the development of tools for creating of sys-
tems of this class, the problem of their viability remains
urgent:

• domain experts still cannot independently (without in-
termediaries like knowledge engineers and programmers)
build and maintain knowledge bases;

• part of the domain knowledge is “embedded” into the
problem solver, which makes their modification more
difficult, and its structure is hard to understand;

• the UI does not adapt to the requirements of users, of the
platform, of the domain, it usually has a “firm” structure
built into the problem solver.

These drawbacks make it necessary to use additional
specialized mechanisms to ensure the viability of this
class of systems. The aim of the work is to describe new
models and methods aimed at providing the viability of
the KBS.

II. REVIEW

There are three main types of KBS development tools:
programming languages, shells and specialized tool sys-
tems. General purpose programming languages (Python,
C#, Java, etc.) or specialized ones (LISP, Smalltalk, FRL,
etc.) are universal development tools. In [5] it is noted
that the complexity of intelligent system development
with the use of programming languages is so great that
it is practically unaffordable.

Problem-independent and specialized shells greatly
simplify the creation of the KBS, however, they limit
the possibilities of their evolution: they have a pre-
defined solver and an embedded UI that cannot be
modified if requirements change. Also, the disadvantages
of specialized shells include limitations on the field of
their use, and disadvantages of the problem-independent
ones – their “non-transparency” primarily for domain
experts who cannot independently (without knowledge
engineers) form and maintain a knowledge base as part of

21



the knowledge is built into the logical inference machine
[5], [6].

Specialized tool systems are focused on a wide class of
KBS. Typical representatives of tool systems are: Level5
Object, G2, Clips, Loops, VITAL, KEATS, OSTIS, AT-
technology etc. [5], [6], [7]. They differ by the knowledge
representation formalisms, by the used output mecha-
nisms, and by the tools for UI forming.

Looking at these tools from the point of view of
the viability of KBS created with their use, it can be
noted that the evolutionary development of tool systems
is focused on achieving this important goal in one way
or another. It is primarily reflected in the tools which
support the knowledge base (KB) creation, which is
one of the most difficult stages of development of such
systems, as well as in methods of coupling of KB with
a problem solver.

According to [6], the most common model of knowl-
edge representation remains the rule-based one. But by
now, the trend of production model systems amount
reducing is obvious. Given the need for alternative
knowledge representation models, many development
tools offer a mixed mechanism for their presentation. For
example, LOOP and G2 use rules and object-oriented
representation, ART – rules, frame-like and object-
oriented models for declarative knowledge. However,
the proposed types of representation are not oriented
at independent (without knowledge engineers) formation
and modification of knowledge by domain experts.

For the formation of knowledge bases one can consider
specialized tools based on ontologies: Protégé, OntoEdit,
GrOWL, Graphl, RDFGravity, WebVOWL, Ontolingua,
OilEd, WebOnto, WebODE [9]. However, they usually
implement an object-oriented paradigm of knowledge
representation, incomprehensible to most domain ex-
perts. A question of their integration with a problem
solver and UI also remains open. In accordance with the
knowledge representation model, an appropriate mecha-
nism for implementing the solver (reasoner) is proposed.
If there are several models supported by the system,
respectively, several solver implementation mechanisms
and languages are supported. E.g., the SWORIER system
uses a reasoning mechanism based on ontologies and
rules. Such solutions, on the one hand, are aimed at
giving the possibility of choosing the most adequate
knowledge representation model and the corresponding
solver, but on the other hand, the transparency of such
systems remains quite low.

The support of UI development is carried out in several
ways. The developer is offered a set of tools provided
by the toolkit, for example, [7]. This may be a special-
ized programming language or tools similar to interface
builders, offered by various CASE-tools: a set of WIMP
interface elements that a user can define, specify their
properties and associate them with commands (user and

/ or solver actions) and / or data (input or output). The
interaction scenario in this case is embedded into the
solver. Interface development can be carried out using
the language in which the solver is designed. Interaction
with different libraries provided by the toolkit is possible.

Thus, the most flexible tool for KBS implementation
are specialized tool systems, as they allow one to imple-
ment different classes of KBS. However, the problem of
the viability of this class of systems is still far from a
final solution. Therefore, the search for new, improved
mechanisms for viability improvement of such systems
remains an urgent task.

III. BASIC PRINCIPLES OF KBS VITALITY

The viability of SS and KBS in particular is largely
determined by their transparency. One of the main at-
tributes of a transparent SS is clarity for interest groups.
For KBS such groups are:

• domain experts who are responsible for the development
and maintenance of KB,

• programmers who create and maintain a solver,
• interface designers who implement the UI of a solver and

the UI for KB editors.

For KBS, it is fundamentally important to use relevant
knowledge that must be formed and maintained by
domain experts or inductively (but in the latter case its
representation should be intelligible to experts). This is
possible only if the knowledge representation language
is focused on the class of problems to be solved, and its
terminology is familiar to experts. To ensure the trans-
parency of the solver, its structure and modules should
be clear to the maintainer. This is possible if most of the
solver is presented declaratively (which allows to control
solvers with the help of editors), and domain knowledge
is not included in the solver. UI transparency can be
ensured, firstly, by providing users with different types
of UI which suite the model for presenting information
most appropriately, secondly, by separating the data from
the logic of its processing and its presentation method.
The latter also provides separate modification of each of
the components.

To implement these requirements, the following basic
solutions are proposed:

• common principles for creating KBS components;
• a two-level approach to the formation of components:

first, a structural declarative model (component ontology)
is formed, then the necessary component of the KBS is
created by it;

• unified language and editor for creating models of all
components;

• automatic generation of editors for creation of compo-
nents basing on their models;

• implementation of instrumental and applied intelligent
systems as cloud services.

All proposed solutions are based on a model descrip-
tion language that allows one to describe arbitrary models
oriented and adapted to the terminology of developers,
with the transition from general concepts to detailed

22



ones. The models of the components of intelligent ser-
vices are formed in the model description language
and are represented in the form of a connected marked
rooted hierarchical binary digraph. The markup defines
the semantics for the rules of formation (creation and
modification) of components, imposing restrictions on
their structure and content [10], [11].

A. Development and maintenance of the knowledge base

In accordance with the two-level approach to the
formation of components of the KBS, at the first stage a
specialized model of knowledge (data) representation is
formed – the ontology of knowledge, which takes into
account the specifics of the organization of knowledge
and data in a given domain. Further, according to the
model of knowledge (data), the component editor gener-
ator builds an editor of the knowledge base / database
(see Fig. 1). Domain experts have the opportunity to
form knowledge and data bases in terms of their concept
systems but not in terms of some fixed knowledge and
data representation language.

Figure 1. Knowledge base formation process.

B. Development and maintenance of problem solver

The problem solver is a set of agents that interact
with each other by the exchange of messages. In ac-
cordance with the two-level approach, developers are
offered unified agent and solver models for all services.
To organize the launch of solvers with specific sets of
input and output data, the cloud service model is also
defined. To increase the transparency of the imperative
parts of the agent and of the message template after the
description of their declarative part is specified, their
source code sketch in the Java language is generated.
The developed imperative code is associated with the
corresponding vertex of the agent (or message template)
model.

C. UI development and maintenance

The development of an interface of intelligent ser-
vices implies the development of a web interface. The
interface design is based on the Model-View-Controller
(MVC) pattern. Its fundamental principle consists in the
separation of data, the logic of its processing and the
way it is presented in order to provide independent
modification of each component. The projection of this
pattern on the interface model is as follows. The Model
component includes: an abstract UI model containing a
description of the structure of standard WIMP interface
elements (simple and container ones) and a way for
their recursive organization into a single nested structure,
as well as a software interface (API) for generating
fragments of abstract interfaces. The View component
is implemented by the system View agent. Its main
function is to create a description of a specific interface
based on the description of an abstract interface and on
rules of mapping from later to former. The Controller
component is represented by agents which play the
role of an Interface Controller being a part of various
problem solvers. These agents interact with the View
agent by exchanging messages using specific templates
and implement necessary processing logic.

IV. CONCEPTUAL ARCHITECTURE OF DEVELOPMENT
TOOLS

A comprehensive solution to the problem of the
intelligent service viability also means providing the
viability of the tools with which the service is created
and maintained. As a rule, the toolkit is maintained by its
developers, but it must also be maintained by the KBS
developers [12]. For the successful implementation of
this requirement, a three-tier toolkit architecture is pro-
posed, consisting of the Toolkit Core, the Basic Toolkit
and the Extensible Toolkit.

The Toolkit Core implements the basic principle of the
construction of all components and includes the model
description language, the model editor, the generator of
component editors. The declarative language for model
description is used to create component models, re-
gardless of component’s purpose. The component model
editor allows developers to create models in simple and
convenient way. The generator is designed to automati-
cally build declarative component editors by component
models (ontologies). It is responsible for generating the
UI and the component formation scenario which includes
checking the context conditions specified in the model
and the completeness of the component. The Toolkit Core
is sufficient for creating and controlling all intelligent
service declarative components by their models.

The main task of the Basic Toolkit is to provide the
developer with a set of tools for creating software com-
ponents, assembling and binding them with information
components, launching, and organizing infrastructure at

23



all levels of the toolkit. Since all components are formed
according to their structural declarative models, this level
of toolkit includes component editors that are generated
automatically. In addition to the elements mentioned
above, it contains external software for creating the
intelligent service UI and the imperative part of the
aforementioned components.

The Extensible Toolkit is primarily intended for KBS
developers, who can expand it with new convenient tools
for maintenance of KBSs developed by them and with
specialized or universal shells of expert systems. The
expansion may be carried out using the Toolkit Core, the
Basic Toolkit, as well as with the tools and instrumental
mechanisms of the Extensible Toolkit itself. This way,
recursive use of its developed components is achieved.

The three-tier architecture forms the basis of the
IACPaaS cloud platform (https://iacpaas.dvo.ru) [13],
which is available for use by all developers of KBSs
and their components. To date, portals of knowledge on
medicine, mathematics, autonomous uninhabited under-
water vehicles, diagnostics of crops, information security,
educational psychology, and programming technology
have been created on the platform.

V. CONCLUSION

The paper considers mechanisms aimed at ensuring the
viability of one class of software systems – systems with
knowledge bases. Their main difference from systems of other
classes is the presence of a knowledge base, which is subject
to continuous changes during the life cycle, and which must be
created and maintained by domain experts. The proposed so-
lutions are based on the model description language developed
by the authors, which provides the tools for model specification
in the form of connected labeled rooted hierarchical binary
digraphs with possible loops and cycles. The KBS components
which are built on the basis of the model have a unified
representation and internal storage format, and are provided
with a standardized and extensible set of software interfaces
for uniform access to them. Domain experts get the opportunity
to form knowledge and data bases in terms of their concept
systems but not in terms of fixed the knowledge and data rep-
resentation language. The problem solver architecture includes
declaratively represented software units, which can constitute
a dynamic configuration, interact by message exchange, and
the structure of which is also described using a declarative
model. A unified language and a uniform internal representation
of both models and components, specified by them, allow the
use of common principles for editor generation basing on the
KBS component type. All proposed ideas are implemented on
the IACPaaS cloud platform. Herewith, tool services providing
support for the development technology are created on the same
principles as the applied services.

At the same time, the experience of platform usage and the
availability of user feedback has set a number of new scientific
problems, including the creation of language-oriented queries to
knowledge bases, methods for creating adaptive user interfaces
of various types for KBS problem solvers and knowledge
editors. Their solution will end up as additional increasing of
the viability for this class of systems.

REFERENCES

[1] Pressman R.S. Software engineering: a practitioner’s approach. McGraw-
Hill, 7th ed., 2010. 930 p. ISBN: 0073375977.

[2] Kryazhich O.A. Obespechenie zhiznesposobnosti informacii vo vremeni
pri ee obrabotke v SPPR [Ensuring the viability of the information during
its processing in decision support systems]. Matematicheskie mashiny i
sistemy [Mathematical Machines and Systems], 2015, no. 2, pp. 170–176.

[3] Chernikov B.V. Upravlenie kachestvom programmnogo obespecheniya
[Software quality management], Moscow: Forum-Infra-M, 2012. 240 p.

[4] Yu-Cheng Tu. Transparency in Software Engineering. A thesis submitted
in fulfillment of the requirements of Doctor of Philosophy in Electrical and
Electronic Engineering. The University of Auckland. New Zealand, 2014.
337 p.

[5] Rybina G.V. Intellektual’nye sistemy: ot A do YA. Seriya monografij v
trekh knigah. Kn. 3. Problemno-specializirovannye intellektual’nye sis-
temy. Instrumental’nye sredstva postroeniya intellektual’nyh system [In-
telligent systems: A to Z. A series of monographs in three books. Book
3. Problem-specialized intelligent systems. Tools for building intelligent
systems], M.: Nauchtekhlitizdat, 2015. 180 p.

[6] Emmanuel C. Ogu, Adekunle, Y.A. Basic Concepts of Expert System
Shells and an Efficient Model for Knowledge Acquisition. Intern. J. of
Science and Research Intern. Journal of Science and Research (IJSR), India
Online ISSN: 2319-7064, 2013, vol. 2, issue 4, pp. 554–559.

[7] Rybina G.V. Intellektual’naya tekhnologiya postroeniya obuchayushchih
integrirovannyh ehkspertnyh sistem: novye vozmozhnosti [Intelligent tech-
nology for construction of tutoring integrated expert systems: new aspects].
Otkrytoe obrazovanie [Open Education], 2017, vol. 21, no 4, pp. 43–57.

[8] Golenkov V., Gulyakina N., Grakova N., Davydenko I., Nikulenko V.,
Eremeev A., Tarasov V. From training intelligent systems to training their
development tools. Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intelligent sys-
tems], 2018, pp.88–98.

[9] Ontology Tools. Available at: http://wiki.opensemanticframework.org/ in-
dex.php/Ontology_Tools (accessed 2019, Jan).

[10] Gribova V.V., Kleshchev A.S., Moskalenko F.M., Timchenko V.A. A Two-
level Model of Information Units with Complex Structure that Correspond
to the Questioning Metaphor. Automatic Documentation and Mathematical
Linguistics, 2015, vol. 49, no. 5, pp. 172–181.

[11] Gribova V.V., Kleshchev A.S., Moskalenko F.M., Timchenko V.A. A
Model for Generation of Directed Graphs of Information by the Directed
Graph of Metainformation for a Two-Level Model of Information Units
with a Complex Structure. Automatic Documentation and Mathematical
Linguistics, 2015, vol. 49, no. 6, pp. 221–231.

[12] Musen M. The protégé project: a look back and a look forward. Newsletter
AI Matters, 2015, vol. 1, iss. 4, pp. 4–12.

[13] Gribova V., Kleschev A., Moskalenko P., Timchenko V., Fedorischev L.,
Shalfeeva E. The IACPaaS cloud platform: Features and perspectives.
Computer Technology and Applications (RPC), 2017 Second Russia and
Pacific Conference on. IEEE, 2017, pp. 80–84.

МЕТОДЫИ СРЕДСТВА ПЛАТФОРМЫ IACPAAS ДЛЯ
СЕМАНТИЧЕСКОГО ПРЕДСТАВЛЕНИЯ ЗНАНИЙ И
РАЗРАБОТКИ ДЕКЛАРАТИВНЫХ КОМПОНЕНТОВ

ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

В.В. Грибова, А.С. Клещев, Ф.М. Москаленко,
В.А. Тимченко, Л.А. Федорищев, Е.А. Шалфеева

В работе обсуждается проблема обеспечения жизнеспо-
собности интеллектуальных систем – систем с декларатив-
ными базами знаний. Рассмотрены инструментальные про-
граммные средства для разработки систем данного класса,
реализующие механизмы повышения их жизнеспособности.
Эти механизмы основаны на построении каждого компо-
нента по его декларативной модели, специфицируемой на
едином языке описания моделей.

Received 11.01.19

24


