
Optimizing local feature description and
matching for realtime video sequence object

detection
Katsiaryna Halavataya, Vasili Sadov

Belarussian State University
Minsk, Belarus

katerina-golovataya@yandex.ru, sadov@bsu.by

Abstract—The paper proposes an algorithm for local
feature extraction, description and comparison on color
images for semantic video sequence processing. One of
the main problems in implementation of such an algo-
rithm is its ability to work within realtime constraints.
Asymptotic computational complexity for proposed algo-
rithm is determined and local performance optimizations
are introduced in order to enhance processing time. The
optimized algorithm is able to compute local feature vectors
and compare them across video frames in realtime, which
simplifies further semantic analysis.

Keywords—image processing, image feature extraction,
computer vision, algorithm optimization, realtime object
detection

I. INTRODUCTION

Local image feature extraction, description and matching
algorithms are the main building blocks of a wide range of
image processing techniques for computer vision and visual
semantic analysis problems, including image classification,
object detection, bundle adjustment, object tracking and visual
flow, 3D scene reconstruction, shape and texture extraction, and
many others [1], [2].

The main problem that feature extraction aims to solve is
that image pixel brightness values, per se, are poorly suited
as basis for direct semantic analysis – by itself, a single pixel
conveys very little information about the actual contents of the
image. When used as a feature, the pixel value states that this
particular point of the image has a concrete color value, but
the implication of a specific visual cue cannot be reversed –
for instance, a stop sign appearing in the upper left corner
of the image implies that one of the pixels will be red, but
the inverse is not true – one single red pixel in the upper
left corner doesn’t mean that this part of the image contains a
stop sign. In essence, this example illustrates how raster image
representation is completely different from the actual semantic
representation of the objects that can be used as a basis for an
automated decision-making processes [3].

The premise of feature extraction is the fact that actual
semantic analysis based on visual representation is done based
not by individual color values, but rather by meaningful higher-
order features and unique characteristics associated with objects
represented on the image. For instance, one of the defining
semantic features of stop sign is the octagonal shape. For a
proper semantic analysis it is required to create a concrete
measure that correlates with how much similar to an octagon
a particular group of pixels is. It is obvious that this is very
hard when using raw pixel values, because the particular set of

transforms and combinations required to create an appropriate
measure can vary greatly from image to image.

This limitation means that raw image data (i.e. pixel bright-
ness values or CCD/CMOS image sensor jot charges) is very
hard to analyze in the context of various classification and
object detection problems with classical approaches, like naive
Bayesian classifiers or regular feedforward neural networks
[3], [4]. For instance, when using a single pixel value as an
input feature for an artificial neural network-based classifier,
it is usually hard to measure how much this pixel should
actually contribute to the output both during training and during
classification, no matter the weights assigned to them.

Image feature extraction is a set of methods for transforming
raw image data (pixel brightness values) into an alternate rep-
resentation that is, in turn, better suited as a basis for semantic
analysis in the context of a particular domain problem. Feature
extraction as a process can be accomplished by the combination
of feature detector and feature descriptor algorithms [5]–[7].

II. IMAGE FEATURE DETECTORS AND DESECRIPTORS

Image feature detector d(I) (also called feature extrac-
tor or keypoint detector) is an algorithm that, given an
image, produces a set of coordinates of feature points (or
keypoints) of this image:

d(I) : ∀w, h ∈ N|C(w×h) → {(i, j)}, i ∈ 1, w, j ∈ 1, h, (1)

where I is the input image, w, h – integers representing
image width and height, N – natural numbers set, C –
color depth (set of all possible color values), C(w×h) –
set of all images. More formally, feature detector can be
represented as a predicate:

∀w, h ∈ N|dp(i, j, I) : (1, w)× (1, h)× C(w×h) → B, (2)

where B = {false; true} – a Boolean domain. That
is, a feature detector can be implemented as a function
that, for any point (i, j) of an image I with color depth
C, determines whether this point is, in fact, a keypoint
(dp(i, j, I) = true) or not (dp(i, j, I) = false). Based
on this, the set of keypoints in (1) can be determined
using (2) by applying a predicate over every coordinate
set:

d(I) = {(i, j) : dp(i, j, I) = true|i ∈ 1, w, j ∈ 1, h}. (3)

269



A feature descriptor f is a projection of any point pIij
of any image I to an n-dimensional metric vector space
F :

f(pIij) = ~vIij ∈ F (4)

Since vector space F is also a metric space, an
appropriate metric is defined on it:

m : F × F → R (5)

Two arbitary points, pI1 of image I1 and pI2 of image
I2, are considered similar by a feature descriptor (4)
if their feature vectors ~v1 = f(pI1) and ~v2 = f(pI2)
are similar by measure of metric (5), or m(~v1, ~v2) < t.
The threshold t is selected based on a specific descriptor
implementation.

While there is no concrete definition as to what exactly
makes an image point a feature, there is a number
of desireable properties for good feature detectors and
descriptors. Specifically, feature detectors and descriptors
must be invariant (to a certain degree) to displacement,
linear scale-space transforms like rotation, shift, skew,
etc., and to some of the common non-linear transforms
like perspective shifts and distortion [5].

Detector transform invariance means that any point of
the image that was classified as a keypoint before the
transform must continue being recognized as a keypoint
after it. This is mainly achieved by analyzing a certain
surrounding area of a keypoint in rotationally-invariant
manner (i.e. circular traversal) and on different levels of
subsampling.

Descriptor transform invariance means that descriptor
vectors of the same point before and after transform
must differ, as calculated by metric m, by a small
margin. This is achieved by including only spatially-
invariant information into the descriptor and making
metric calculation process circularly agnostic.

III. FEATURE DETECTOR AND DESCRIPTOR BASED
ON MIDPOINT CIRCLE TRAVERSAL

There are many known approaches to both feature
detection and description. Some of them treat detection
and description as two disjoint operations, while others
can build a keypoint descriptor as a by-product of deter-
mining whether the point should be treated as keypoint
or not [5]–[7].

One of the main disadvantages of most keypoint
detection and description algorithms is their rigidity and
inability to adapt in terms of input parameters. Known
methods usually have a parametric threshold that should
be predetermined before feature extraction is carried
out, generating spurious point clouds on one image and
hardly detecting any on the others if the threshold is
off. Moreover, these methods tend to be over-reliant
on sharp brightness shifts, while in reality such shifts
mostly occur as artifacts (like sharp light reflections or
optics chromatic abberations). Finally, most of the known

methods are poorly suited for real-time usages. While
certain keypoint descriptors, like FAST, are designed to
carry out keypoint detection in the most efficient manner,
they commonly forego the usage of information used to
classify a point to further use it in keypoint description,
requiring more complex and computationally expensive
keypoint descriptor algorithms like ORB.

The proposed method is designed to be adaptive and
able to perform keypoint detection and description in
with a single pass.

Input of the algorithm is an image I of width w and
height h with 3 color channels (RGB colorspace).

The first step is the selection of image traversal step.
A common way to do it is to apply a logarithmic scale
on an input image size:

{
sg ∈ N
sg ∝ log(w · h)

(6)

This allows to reduce the number of exess points in
proximity of a larger feature and makes the algorithm
less susceptible to scale transforms.

After that, a one-channel transform is applied to the
image. While it is possible to use common grayscale
transforms like YUV colorspace Y-component formula,
doing so usually removes too much of color distribution
from the image. A proposed solution is to use Prin-
cipal Component Analysis (PCA) while treating image
color values on 3-component representation (red, green
and blue channels, respectively) as input features in 3-
dimensional feature space. Applied to image colorspace,
PCA will generate a new basis with 3 pseudocolor direc-
tions. First direction corresponds to the largest variance
of the image, which is, for most of the real-world images,
a shift from darker to brighter colors – that is, first
component of the new colorspace in PCA is usually
very close to Y direction of YUV colorspace. Based on
actual variance numbers, however, a second component
might be preferable, the one corresponding to the second-
largest variance distribution of colorspace. This is usually
a shift from one predominant color of the image to
the other. In some specific areas, like medical image
processing, color hue may provide more destinguishable
feature space compared to plain grayscale brightness. As
a general rule, if the variance of the second component
is above 20% of the total image variance, a second PCA
component should be considered for feature extraction.
It is important to note, however, that, when comparing
feature descriptors across images, descriptors based off
first and second components tend to differ significantly,
so the same component should be used on both images.

After the step is chosen and image is transformed
to grayscale, a set of traversal radiuses {ri} must be
chosen. A common choise is {3, 5, 7} pixels, with 9
pixels added for hevily distorted images. The maximum
radius rmax = max

i
ri defines a padding for image

270



traversai, that is an image is traversed from rmax to
w − rmax horizontally and from rmax to h − rmax

vertically with the step sg .
For every point (i, j) traversed, a Bresenham (mid-

point) algorithm is used to construct a circle around the
point at every specified radius {ri}. The result for radius
rk is an ordered set of point coordinates {prkn }. Before
the circle traversal, a starting point is determined as a
point where brightness values change compared to the
next pixel is the greatest across the entire circle. This is
done to mitigate the influance starting point has when
comparing features before and after rotation transforms.

The goal of Bresenham circle traversal is to determine
segment configuration. The first pixel is assumed to
belong to the first segment: p(rk)1 ∈ S0. After that, every
next pixel brightness of the circle in order is compared
to the brightness of the first pixel of a current segment.
When the brightness exceeds a certain threshold tseg ,
the pixel is considered a beginning of a new segment.
The process iteratively continues until the point circle is
confined:

∆P (j)
n = |I(prkn )− I(S

(j−1)
0 )| (7)

{
Pn ∈ S(j) if ∆P

(j)
n ≥ tseg

Pn ∈ S(j−1) if ∆P
(j)
n < tseg

(8)

Brightness difference (7) across two neighbour points
in Bresenham circle is used in (8) to determine the
beginning of a new segment. Artificial segment edge
introduced by the first pixel is mostly mitigated by
correct selection of the first pixel.

The segment configuration, i.e. the number of seg-
ments and their length, constitute a feature of a certain
point. Variable-length natural-numbered segment span
vector can be used as a feature vector of a certain point.
It is also possible to short-circut descriptor evalutation if
a point should not be considered keypoint, in case the
number of segments or their respective differential shift
is too small on any of the radiuses.

To compare the features, segment configuration simi-
larity measure must be created. This process is compli-
cated by the fact that segment span vectors have variable
length, so traditional similarity measures like Euclidean
distance cannot be applied to them. One way to solve this
problem is to introduce a simple binary representation
of a feature vector. For this descriptor, each segment of
a specific length constitutes a span of two-bit numbers
of the same length, and each segment edge changes
the segment two-bit representation with the following
circular pattern: 00 → 01 → 11 → 10 → 00. For
example, for an 12-point circle (radius 3) with segments
of length 3, 7, 3, the binary representation will be 24-bit
string – 00 00 00 01 01 01 01 01 01 01 11 11 11. The
specific pattern is chosen in such a way that Hamming
distance (the number of differing bits) increases by 1 for
each two-bit marker. To illustrate this, let’s consider a

12-point circle with segments of length 3, 6, 1, 3. Its
24-bit descriptor will be the following: 00 00 00 01 01
01 01 01 01 11 10 10 10. The difference beetween the
previous 3, 7, 3 segment is the introduction of another
small segment, which means that configurations remain
relatively similar. If a 1-bit representation was used, an
extra segment would invert the rest of the string, resulting
in a completely different 12-bit descriptor with large
Hamming distance. With 2 bits per segment span, only
"half" is inverted. In our example, Hamming distance
between feature vectors is 4.

The set of keypoints and their respective descriptors
for each radius can be used for further processing in
template-based object detection algorithms and 3D re-
construction tasks.

IV. REALTIME OPTIMIZATION

Realtime video sequence processing puts a time con-
straint on feature detector and descriptor performance.

Generally accepted framerate for video sequence im-
age rendering is 24fps (frames per second). That means
that it should take around 40ms for an entire frame to
render. If the information can be presented as a HUD
(heads-up display) overlay over existing video sequence
with visual cues (as is the case with object detection
and localization, for instance), it is generally acceptable
to have HUD re-render at lower framerates, with times
of up to 100ms per frame. Still, this constraint is quite
severe in terms of computational complexity of algo-
rithms involved in common computer vision tasks. For
instance, a well-calibrated feature-based binary classifier
needs as much as 5ms to process a single sliding window
frame, and needs to run the classification up to 10-15
sliding window positions per frame to correctly localize
an object. In practice, this means that, independently of
further processing and semantic analysis, feature detector
and descriptor should produce extracted feature vectors
within 20ms for acceptable performance that can still be
percieved as realtime [4], [8], [9].

It’s easy to illustrate how the feature extraction pro-
cedure (7) - (8) has a linear asymptotic computational
complexity. PCA transform requires mean and standard
deviation calculation, which require a full image pass and
have the complexity of O(n) each. The transform itself
is a O(p3) complexity problem, where p is the number
of input features: for color images, p = 3 = const,
i.e. it doesn’t depend on the input image size. Detection
requires a full traversal of an entire image, which is a
linear O(n) complexity compound problem. For each
pixel, a constant number of operations must be performed
to construct a descriptor, so the complexity of single
point analysis is O(nr) where nr = const is the
number of radiuses used for descriptor generation. The
resulting complexity is, in terms of big-O notation, is
O(2n+ p3 + nrn) = O(n).

271



The nature of feature extraction process means that it’s
not possible to further reduce asymptotic complexity, so
the optimizations must be performed during key stages
of the algorithm.

PCA computation is generally quite costly, since it
requires the calculation of eigenvectors and eigenvalues
of color feature matrix. However, when working with
a video sequence, it can be safely assumed that PCA
transform basis will be quite similar as long as the scene
doesn’t change drastically. In practice, it means that
the same PCA transform can be used across the series
of similar frames, for times up to several seconds of
video sequence. So the first optimization is to skip PCA
computation and instead use previous transform matrices
across several frames. It is also possible to perform
this computation in parallel to the main data stream
on a single frame in isolation, and replace the current
transform once PCA is calculated, further reducing frame
processing time.

Detection itself requires a full image traversal at the
minimum [10]. The traversal step grid introduced in (6)
means that a portion of image’s pixels is skipped already.
To further increase processing performance, it’s possible
to statistically analyze the keypoint detection distribu-
tion. With adaptive threshold value the total number of
keypoints on the image takes up to 10% of all the image
pixels, which means that bail-out optimizations might
actually increase processing speed. Bail-out optimiza-
tions are a way to short-circut the evaluation in case
of a negative answer by performing a short check. In
case of Bresenham circle descriptor, one common way
to discern a keypoint is to select only those points where
number of segments is large enough. It is possible to
traverse the smallest radius value only, and mark the
pixel as non-keypoint early if it doesn’t have enough
segments, thus avoiding additional traversals on larger
raduises. Since this happens for most of the image pixels
(around 90%), this optimization provides a noticeable
performance boost.

V. RESULTS AND CONCLUSION

The proposed algorithm allows for efficient feature extrac-
tion from color images. It is able to both determine a set of
keypoints on the image and calculate their respective descriptor
values in one pass, while also providing a bit string descriptors
values that can be compared very fast using Hamming distance
across several frames.

The performance optimizations have been evaluated for a
processing task of feature extraction in realtime over 1 minute
of FullHD video sequence. The results are presented in table
I.

As can be seen from the results, the goal of realtime perfor-
mance optimization of midpoint feature extraction algorithm
was successfully met – the framerate constraint of 20ms per
frame for HUD processing tasks was fulfilled using Midpoint
circle traversal algorithm with bail-out optimization and stag-
gered PCA computation across 24 frames (basis recalculated
every second). For comparison, FAST feature detector and ORB

Table I
MEAN FRAME PROCESSING TIME t FOR FEATURE EXTRACTION ON
FULLHD (1920 × 1080) 24FPS VIDEO SEQUENCE OVER 1 MINUTE

(1440 FRAMES TOTAL)

Algorithm t, ms
FAST & ORB 27.35

Midpoint without optimizations 35.02
Midpoint with staggered PCA 28.94

Midpoint with bail-out 23.14
Midpoint with bail-out & staggered PCA 19.41

feature descriptor performance was also considered. While both
of those algorithms have linear asymptotic complexity, the
information used in FAST for keypoint detection is not used for
descriptor generation, as ORB is a separate algorithm; thus, the
algorithms require twice the amount of image traversals, which
impacts performance on larger images, like FullHD-scale image
used to evaluate the performance.

REFERENCES

[1] R. S. Choraś Image Feature Extraction Techniques and Their Applications
for CBIR and Biometrics Systems. International Journal of Biology and
Biomedical Engineering, 2007, vol. 1, no. 1, pp. 6-16.

[2] L. G. Shapiro, G .C. Stockman Computer Vision, New Jersey, Prentice-
Hall,2001. 608 p.

[3] Z. Shi, S. Vadera, A. Aamodt Image Semantic Analysis and Understanding.
IFIP Advances in Information and Communication Technology, 2010, vol.
340, pp. 4-5.

[4] L. Qin, L. Kang Application of Video Scene Semantic Recognition
Technology in Smart Video. Technical Gazette, 2018, vol. 25, no. 5, pp.
1429-1436.

[5] D. Lowe, Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 2004, vol. 60, no. 2, pp. 91–110.

[6] K. M. Yi, E. Trulls, V. Lepetit, P. Fua Lift: Learned invariant feature
transform. European Conference on Computer Vision, 2016, pp. 467-483.

[7] E. Rublee, V. Rabaud, K. Konolige, G. Bradski ORB: an efficient alterna-
tive to SIFT or SURF. IEEE International Conference on Computer Vision
(ICCV), 2011, pp. 2564-2571.

[8] S. Baier, Y. Ma, V. Tresp Improving Information Extraction from Images
with Learned Semantic Models. 27-th International Joint Conference on
Artificial Intelligence (IJCAI-18), 2018, pp. 5214-5218.

[9] I. Simon, N. Snavely, S. M. Seitz Scene summarization for online image
collections. IEEE International Conference on Computer Vision (ICCV),
2007, pp. 1-8.

[10] R. Girshick, J. Donahue, T. Darrell, J. Malik Rich feature hierarchies for
accurate object detection and semantic segmentation. IEEE conference on
computer vision and pattern recognition (CVPR), 2014, pp. 580-587.

ОПТИМИЗАЦИЯ АЛГОРИТМОВ ОПИСАНИЯ И
СРАВНЕНИЯ ЛОКАЛЬНЫХ ПРИЗНАКОВ
ИЗОБРАЖЕНИЙ ПРИ ДЕТЕКТИРОВАНИИ

ОБЪЕКТОВ НА ВИДЕОПОСЛЕДОВАТЕЛЬНОСТЯХ
В РЕАЛЬНОМ ВРЕМЕНИ

Головатая Е.А., Садов В.С.

В работе предложен алгоритм извлечения, описания и
сравнения локальных признаков цветных изображений для
семантической обработки видеопоследовательностей. Одна
из решаемых задач - поддержка работы алгоритма в реальном
времени. Для оценки и улучшения производительности про-
ведён анализ асимптотической вычислительной сложности,
а также предложены оптимизации. Оптимизированный ал-
горитм позволяет вычислять вектора локальных признаков
и сравнивать их между кадрами, а также может служить
основой для дальнейшего семантического анализа.

Received 09.01.19

272


