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Abstract—The system of measures and features for
scaling and ranking knowledge processing phenomena is
considered. Some types of measurement scales were gen-
eralized. Such attributes and measures as key elements of
the knowledge representation language and the distance
between the texts of such languages were considered to-
gether with others combining means of the set theory,
ordered sets and the theory of formal languages. The
proposed concepts are towards the integration of knowledge
processing models, including artificial neural networks.
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I. INTRODUCTION

The purpose of the article is to get answers to the
following questions:
• What are the types of scales [1], [2] are and their

features (attributes)?
• How complex is the measurement scale for an

arbitrary set of features?
• What features can be mined from knowledge repre-

sentation [3], [4] models?
• What features can be mined from information pro-

cessing [3]–[6] models and knowledge processing
phenomena [3], [4], [7]?

Objects are designated by signs in the order of perception
processes for the representation of knowledge. The be-
coming of signs in these processes allows to investigate
the properties and attributes of objects.

II. MEASUREMENT SCALES AND FEATURES

From a mathematical point of view, a feature is defined
by a function that is defined on a set of objects and
allows for each of them to get a particular value of
the feature. Each feature with relational structures [4]
or models on a set of objects and a set of values of
this feature form a scale. The relational structure or
model allows to structure a set of objects or a set of
values of the feature. Depending on the complexity,
scales vary by types. The complexity of the scale is
determined by power of the model carrier set and its
structure. One of the ways to set the scale structure is
to order the set of values of the feature. In this case, the
signature of the corresponding model contains a binary

relation of a reflexive order [8], which has the properties
of antisymmetry and transitivity. If the order is trivial
(has the property of symmetry), then the scale is called
nominal. Another important type of scale with an order
relation is the (linear) ordinal scale, the order on which
has the property of linearity. An important type of scales
and features (attributes) and are quantitative scales and
features which values are numbers. Often these are scales
with a linear order. Quantitative attributes (measures)
allow measurements. Within the scale, the values of one
feature can be considered as objects that may have their
own features. Thus, a sequence of scales can be built,
reflecting one set of features and their models to the next
ones. One of the quantitative scales in such sequences
and the corresponding features are the scale and the
feature that measures the number (power of the set)
of the mapped objects for any value of the feature in
another scale. The model of feature values in this scale
is in one-to-one correspondence with a well -ordered set
of cardinal numbers. Such a feature as modishness is
associated with this scale and order on it:

sup
γ∈Σ

(∣∣∣∣arg
χ∈Σ

(〈s (χ) , s (γ)〉)
∣∣∣∣
)

(1)

Here arg means a function that returns a subset of
objects of a set Σ, the value of one attribute α of which
is equal to the value of another attribute β

arg
γ∈Σ

(〈α (γ) , β (γ)〉) =

= {γ |(γ ∈ Σ) ∧ (α (γ) = β (γ))} (2)

Under the mods are understood the elements of the
set of objects of the primary scale, the feature values
of which are not less than modishness. If there are no
such elements, the modishness is external, otherwise it
is internal.

arg
ζ∈Σ

(〈∣∣∣∣arg
χ∈Σ

(〈s (χ) , s (ζ)〉)
∣∣∣∣ , sup
γ∈Σ

(∣∣∣∣arg
χ∈Σ

(〈s (χ) , s (γ)〉)
∣∣∣∣
)〉)

(3)
The projection (mapping) of the original scale on a

non-empty set of modes forms a new scale (subscale),
all objects in which are modes.

max
χ∈Σ

(α (χ)) = max ({α (χ) |χ ∈ Σ}) (4)
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It is natural to distinguish scales and attributes by the
number of values of a attribute in a scale, according
to which attributes and scales can be finite, including
binary attributes and scales, scales with n values, and
infinite ones. In addition to modes in scales with an
order relation, you can select the medians, the set of
all medians in the scale forms a medianoid.

Section ϕ on a scale ψ:

O (〈ϕ,ψ〉) =

= (∀χ (∀γ ((〈χ, γ〉 ∈ ϕ)→ (¬ (ψ (χ) ≥ ψ (γ))))))
(5)

The lower sections of the set Σ on the scale ψ:

LS (〈Σ, ψ〉) =

=

{
〈α, β〉

∣∣∣∣
(

(O (〈α× β, ψ〉) ∧ (β ⊂ Σ))∧
((α = Σ/β) ∧ (|α| ≤ |β|))

)}
(6)

LS (〈Σ, ψ〉) =

=

{
〈α, β〉

∣∣∣∣
(

(O (〈α× β, ψ〉) ∧ (β ⊂ Σ))∧
((α = Σ/β) ∧ (|α| ≤ |β|))

)}
(7)

The upper sections of the set Σ on the scale ψ:

US (〈Σ, ψ〉) =

=

{
〈α, β〉

∣∣∣∣
(

(O (〈α× β, ψ〉) ∧ (α ⊂ Σ))∧
((β = Σ/α) ∧ (|α| ≥ |β|))

)}
(8)

Embedding sections ϕ:

C (ϕ) =

=

{
〈〈α, β〉 , 〈γ, δ〉〉

∣∣∣∣
(

((α ⊆ γ) ∧ (δ ⊆ β))∧
(〈〈α, β〉 , 〈γ, δ〉〉 ∈ ϕ)

)}

(9)

Medianoid embedding sections ϕ:

M (ϕ) =

=

{
µ

∣∣∣∣
(
∀β
(
∀γ (∃α (∃δ (〈〈α, β〉 , 〈γ, δ〉〉 ∈ ϕ)))
→ ((µ ∈ β) ∼ (µ ∈ γ))

))}

(10)

Medianoid set Σ on the scale ϕ:

M(C((LS (〈Σ, ϕ〉) /US (〈Σ, ϕ〉))×
(US (〈Σ, ϕ〉) /LS (〈Σ, ϕ〉)))) (11)

A scale [1] is called quantitative if the values of the
attribute in it are numbers. If the numbers are real, then
the scale will be called charged [9], [10]. A charged
scale, the numbers in which are non-negative, will be
called the measured scale [1], [2]. The feature values in
the scale can also be elements of a module or a vector
space. If a pseudometric or metric is defined on a set
of values of a feature in a scale, then the corresponding
scales will be called pseudometric or metric [2], [13]. For

them, the concept of medoid can be defined depending
on the measures α and β.

arg
ζ∈Σ

(〈
α (〈Σ, ζ〉) , inf

γ∈Σ
(β (〈Σ, γ〉))

〉)
(12)

The measure β is usually the same as α, which has
the following form:

α (〈Σ, γ〉) =
∑

χ∈Σ

µ (〈χ, γ〉) (13)

a measure can taked as α (〈Σ, γ〉) = sup
χ∈Σ

(µ (〈χ, γ〉)) or

α (〈Σ, γ〉) = |L (〈Σ, γ〉)|, where L is the function of the
remote set of a point χ in the set Σ:

L (〈Σ, χ〉) =

= {γ |((σ ∈ S (〈Σ, χ, γ〉)) ∧ ((σ ≥ 0) ∧ (γ ∈ Σ)))}
(14)

and S is the function of distancing the point χ from the
point γ on the set Σ:

S (〈Σ, χ, γ〉) =

=



σ

∣∣∣∣∣∣


σ =

∑

ζ∈Σ

(µ (〈χ, ζ〉)− µ (〈γ, ζ〉))





 (15)

Also, a medoid can be selected based on distancing at

β (〈Σ, γ〉) = 1. (16)

When considering an arbitrary set of features defined
on a set of objects, it is possible to move from this set
to a single multiple feature according to the scheme:

∣∣∣∣ ×
i∈Γ

(
Pi
O
)∣∣∣∣ =

∣∣∣∣∣

(
×
i∈Γ

Pi

)O∣∣∣∣∣ (17)

There is possible reverse transition. If the source
features are binary, then the multiple feature has a range
of power 2. Any n-ary feature can be presented as a
multiple feature with the range of the same power 2|Γ|.
It should be noted that a countable number of binary
features for a finite set of objects corresponds to an
element of uncountable set of multiple features. The
finite multiple features of binary features and a set of
objects generate the formal context [11] for which the
lattice of formal concepts [12] can be constructed. The
corresponding indicator sets in rows or columns of the
formal context can be interpreted as elements of a vector
space [13] of finite dimension over a finite field F2 [14].
Thus, the lattice can be extended to a vector space.
The same is true for any n ary features when n is an
integer power of a prime number. Thus, a finite formal
context can be spliced onto a set of finite vector spaces
(a pseudometric and pseudonorm can be introduced).

The graph of the lattice of formal concepts [11], [15]
can be considered as the carrier of a metric space. Also,
a finite formal context can be mapped into a set of finite
modules that can be mapped to a non-infinite module of
integers [16].
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III. KNOWLEDGE REPRESENTATION LANGUAGES, ITS
TEXTS AND FEATURES

Languages [17], [18] will be called straight languages
iff each text of which does not contain its components
more than once. By analogy with symmetric (symmet-
rical) languages [3], languages containing as strings all
lines that are the result of cyclic permutations [19] of
any other text of this language will be called cyclic
languages. In a similar way, inverted (palindromic), di-
hedral and alternating [19] (antisymmetric) language are
considered.

In processes and phenomena, frequently occurring
fragments (sub-phenomens and substrings) are distin-
guished. Frequent repetitions of adjacent identified phe-
nomena are recorded and fixed as meta-events. The ratio
of the presence or absence of a fragment in a phe-
nomenon is an attribute. Each designation is associating
with a coordinate vector in an infinite-dimensional space
with a metric introduced on the set of these vectors.

On the set of texts such features as key elements are
investigated. Consider the texts of some sublanguage L
of the language U in the alphabet A. Let’s set text τ
transformation into functional form:

ϕ (τ) = {〈i, τi〉 |(i ≤ dim ({τ})) ∧ (i ∈ N)} (18)

Least powerful sets:

N (〈γ, χ〉) = (∀α(∀β((({α, β} ⊆ χ) ∧ (α ⊂ β))→
(∃δ ((δ ∈ γ) ∧ (δ ⊆ α) ∧ (|α/δ| = |β/α|))))))
L (〈γ, χ〉) = (χ ⊆ γ) ∧N (〈γ, χ〉)∧
(∀δ ((δ ∈ γ)→ (∃α ((α ∈ χ) ∧ (α ⊆ δ)))))

(19)

Set of combinations of ε-covering σ-elements:

D (〈α, γ, ε, σ〉) = (∀χ(∀λ(((χ ∈ λ) ∧ (λ ∈ γ)) ∼(
∃β
(

(β ⊆ α) ∧ (|β| ≥ ε) ∧
(
{χ} ⊆ σ ∩⋂δ∈β δ

)))
)))

(20)
Key rank (ϕ-rank):

X (〈α, β, γ, σ, ϕ〉) =
max ({ε |(D (〈α, γ, ε, σ〉) ∧ ϕ (〈α, β, γ〉))}) (21)

Extra key combinations (ϕ-combinations):

F (〈α, β, σ, ϕ〉) = {χ|∃γ(L (〈γ, χ〉)∧
D (〈α, γ,X (〈α, β, γ, σ, ϕ〉) , σ〉) ∧ ϕ (〈α, β, γ〉))} (22)

Splitting combinations:

E (〈α, γ〉) = (∀χ ((χ ∈ α)→ (∃λ ((λ ∈ γ) ∧ (λ ⊆ χ)))))
I (〈β, γ〉) = (∀χ (∀λ (((χ ∈ β) ∧ (λ ∈ γ))→ (¬ (λ ⊆ χ)))))
T (〈α, β, γ〉) = E (〈α, γ〉) ∧ I (〈β, γ〉)

(23)
Key combinations (ϕ-combinations):

R (〈α, β, σ, ϕ〉) =
{γ |(γ ∈ F (〈α, β, σ, ϕ〉)) ∧ (¬G (〈α, β, σ, ϕ, γ〉))} (24)

where

G (〈α, β, σ, ϕ, γ〉) = (∃χ(∃λ (χ ∈ λ)∧
(λ ∈ γ) ∧ ({λ/ {χ}} ∪ (γ/ {λ}) ∈ F (〈α, β, σ, ϕ〉))))

(25)
Key schemes (ϕ-schemes):

S (〈α, β, σ, ϕ〉) =
⋃

γ∈R(〈α,β,σ,ϕ〉)
γ (26)

External key schemes (ϕ-schemes):

SE (〈α, β, σ, ϕ〉) = {δ| (δ ∈ S (〈α, β, σ, ϕ〉))∧
(∀χ ((χ ∈ β)→ (χ ∩ δ = ∅)))} (27)

Internal key schemes (ϕ-schemes):

SI (〈α, β, σ, ϕ〉) = {χ ∩ δ| (δ ∈ S (〈α, β, σ, ϕ〉))∧
((χ ∈ β) ∧ (∅ ⊂ χ ∩ δ))} (28)

Let define

W (Γ) = {λ|(∃χ((χ ∈ Γ) ∧ (∀ι((ι ∈ N)→(
λ (ι) = χ

(
ι+ min

(⋃
γ∈χ {γ1}

)
−min (N)

))
))))}

(29)
and

U (Γ) =
⋃
γ∈Γ γ

V (Γ) =
⋃
γ∈Γ {γ2} (30)

Key phrases (ϕ-phrases):

P (τ) = W (S (τ)) (31)

where τ = 〈U/L,L,A, T 〉 with universal language U , selected
(sub)language L with alphabet A and predicate T .

External (PE) and internal (PI) key phrases are defined as
follows:

PE (τ) = W (SE (τ))
PI (τ) = W (SI (τ))

(32)

Key components (C) and its external (CE) and internal (CI)
ones are defined in similar way:

C (τ) = U (S (τ))
CE (τ) = U (SE (τ))
CI (τ) = U (SI (τ))

(33)

Finally, key elements (E) as well as external (EE) and
internal (EI) components are:

E (τ) = V (C (τ))
EE (τ) = V (CE (τ))
EI (τ) = V (CI (τ))

(34)

Key schemes, phrases, components, elements and their
sets, are features of languages [18] and families of
phenomena [3]. Other features of texts are: length, period
[20], etc. Other features can be obtained by correlating
texts of languages and texts in languages obtained by
canonization, symmetrization [3], [19], circulation, loop-
ing, etc. The investigation of texts and associations with
key elements allows to explore the model semantics of
these key elements [3].

For comparing texts of languages [17], [18] and phe-
nomena [3], it is possible to use scales of distant vectors,
whose components correspond to the number of deleted,
added, rearranged, duplicated or merged components of
a particular class in the texts. In turn, the norm of distant
vectors corresponding to the metric on the metric scale
can be calculated using the metric operator. The texts
of languages and phenomena are mapped respectively
on this scale. These and other attributes correspond to
the functions defined on the relations of the knowledge
specification model [5].
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IV. FORMAL MODELS AND PHENOMENA OF
KNOWLEDGE PROCESSING

Among the formal information processing models [5],
[6], it is possible to distinguish elementary formal infor-
mation processing models that have only one operation.
Any formal information processing model can be reduced
to an elementary one, by combining all its operations
into one operation of an elementary model. It is possible
to investigate the operational semantics of texts of the
language representing the states of the formal informa-
tion processing model in addition of the investigation
of model semantics of key elements of this language. In
particular, the model set-theoretic semantics is associated
with the (implicit) operations of choosing (marking)
the notation of a set and searching (marking) of the
elements of this set. The study of operational semantics
is related to discovering the rules and properties of
becoming elements of texts and phenomena. The basis
for the study of operational semantics is both the key
elements of the language themselves and the multiple
features, the distant vectors of their set and averaging
between the texts before and after the application of the
operation. Other features can be obtained by examining
the complements or inversions of the model (models
with operations complementing the original operations
before the full operation (relation) or inverse them). For
comparing formal information processing models [5],
[6], [21], projections or the reduction of initial models
to elementary formal models of information processing
and features defined between them can be used. First
of all, it is necessary to find operations that are the
smallest symmetric differences of operations isomorphic
to the operations of the compared models taking into
account the maximum possible one-to-one fusion of the
states of these models. Then, it is necessary to choose
the one among these operations having the minimal
averaging of the set of distant vectors between the texts
before the application of this operation and after. This
averaging or monotonously (or linearly) dependent on it
value can be an analogue of the distant vector between
the two models. If the models are not elementary, then
they should be supplemented (if it is necessary) with
empty operations and divided into one-to-one elementary
models with preservation of one-to-one identification of
the states so that the averaging of distant vectors between
them is minimal. For finite models (finite automata) this
problem is solvable.

V. CONCLUSION

The results of this work allow to generalize the concept
of the scale and some of the features defined on them. In
accordance with the knowledge specification model [5], an
approach is also considered to identify key elements of texts
of languages, phenomena and operations, their semantics and
metric properties as the basis for scaling and analyzing the
attributes of texts of languages and phenomena of information
processing models in intelligent systems.
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ПРИЗНАКИ,ШКАЛЫИМЕРЫДЛЯМОДЕЛЕЙ
ПРЕДСТАВЛЕНИЯ И ОБРАБОТКИ ЗНАНИЙ

Ивашенко В.П.
Рассмотрена система признаков и мер для шкалирова-

ния и ранжирования явлений обработки знаний. Средства-
ми методов теории множеств, упорядоченных множеств и
теории формальных языков рассмотрено обобщение шкал
некоторых видов, а также впервые приведено формальное
описание таких признаков и мер, как ключевые элементы
языков представления знаний и метрики на текстах этих
языков и моделях обработки информации. Предложенные
понятия ориентированы на интеграцию моделей обработки
знаний, включая искусственные нейронные сети.
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