
Algorithm for Fast Image Compression on
Heterogeneous Computing Devices

Vadim V. Matskevich, Viktor.V. Krasnoproshin
Belarusian State University

Minsk, Belarus
matskevich1997@gmail.com, Krasnoproshin@bsu.by

Abstract—In spite of the intensive development of com-
puter technology, the problem of efficient use of computing
resources remains an urgent issue [1], [2]. Computing
devices may be heterogeneous (different in architecture
and power). In this case, when solving applied problems,
it becomes necessary to efficiently load them [3]–[6].

The paper proposes an algorithm for loading heteroge-
neous devices, which allows speeding up the data processing
process when solving the problem of image compression.

Keywords—Parallel computing, computing devices, sys-
tem performance, neural network, training, dataset.

I. IMAGE COMPRESSION USING NEURAL NETWORK
(NN)

In the general case, a color raster image is described by
a vector, each coordinate of which reflects its particular
characteristic. Coordinate values can, for example, define
[6]:

– the number of pixels in the image;
– color wavelength values;
– coordinates of specific pixels (if the image has an

arbitrary shape);
– and etc.
Storage of color raster images in the form of a vector

requires, as a rule, large amounts of memory [7]. There
is a problem of their reduction, i.e. It is necessary to
solve the problem of image compression.

Consider the process of compressing color images
using a forward passing neural network (NN) [7] (see
figure 1).

In general, the process of compressing images using
neural networks consists of the following main steps.

Stage 1. The format of the original image is deter-
mined. Usually the image is considered as raster.

Stage 2. Vector (x1, x2, ..., xn), describing the original
image is formed. For color images, each pixel is usually
described by three coordinates of the vector. One coor-
dinate determines the content of red, the second – the
green and the third - the blue.

Stage 3. The neural network configuration is selected
to implement the image compression process. The num-
ber of neurons in the input layer always corresponds to
the number of coordinates in the vector (x1, x2, ..., xn).
The output layer determines the size of the output vector
(y1, y2, ..., ym).

Stage 4. As a result of neural network data processing,
a vector is constructed (y1, y2, ..., ym), which describes
the original image already in a compressed form (m ≤
n).

When solving the problem, the NN architecture of the
following configuration was used.

The sizes of the input and output layers consisted of
48x48x3 and 12x12 neurons, respectively. Neighboring
layers were represented as full bipartite graphs. In all
neurons (except the input layer), a bipolar sigmoid func-
tion of activation with a unit coefficient was used.

f(S) =
2

1 + e−cS
− 1 (1)

The initial weights of the NA were generated uni-
formly distributed over the interval of values

[
− 16√

l1
,
16√
l1

]
(2)

where l1 – is the number of neurons in the first
layer (when learning, the output signals of this layer are
considered as input data for training).

Using the same formula, the values of the fictitious
autoencoder weights were generated.

The learning rate (lr) for each layer throughout the
training was a constant value and was calculated by the
formula:

lr =
2√
l1

(3)

In contrast to the usual multilayer perceptron, the
constructed network was trained as a deep NN.

II. ALGORITHM OF LOADING HETEROGENEOUS
COMPUTING DEVICES

Color images were represented by a set of independent
copies, formed in a separate package S. For compression,
n computational (heterogeneous) Ui, i = 1, n power
devices were used.

It was necessary to construct such a partition of S into
n parts, which would minimize the processing time of
the entire package.

We denote by Si the set of images processed on the
i-th device and Ti – the time of its processing. Then,

265

Figure 1. Image compressing

formally, the partitioning problem can be written as
follows:





Si ∩ Sj = ∅⋃
i=1,n

Si = S

max
i=1,n

Ti → min

(4)

Note. In the problem, it is important to find the values
of |Si| that satisfy (4).

Denote by P – the amount of computation required
to process a single image from S. It is known that the
processing time of input signals in forward propagation
NN is constant.

To achieve the minimum processing time, two condi-
tions must be met. The computing devices must work (a)
simultaneously and (b) the same amount of time.

With this in mind, the task can be rewritten as:




P |Si|
Ui

= P |Sn|
Un

, ∀i = 1, n− 1
n∑

i=1

|Si| = |S|
(5)

in the formula, the restriction on the coverage of all
images of the package is omitted, because it is obvious.
Fix the parameters Ui, i = 1, n, and solve the system
(5):





|Sn| = |S|
n−1∑
i=1

Ui
Un

+1

|Si| = Ui

Un
|Sn| , ∀i = 1, n− 1

(6)

When calculating |Si|, ∀i = 1, n unknown in (6)
remain the ratio of power. There are two ways to get
them:

1) you can use the table values specified by the
manufacturer. This is not suitable in the case of
video cards. The same video card, depending on
the specifics of the task, may have different power;

2) it is possible to experimentally calculate the power
ratio of computing devices.

The following method for estimating power is pro-
posed.

Let x be the subset of images needed to process the
package S, and τi is the i-th device operation time on
this subset. Then we get the system of equations:

τi =
P |x|
Ui

,∀i = 1, n (7)

It is not difficult to notice that the time of the work
of computing device at a fixed number of operations is
inversely proportional to its power.

In order to obtain the power ratio, the last (n-th)
equation we divide into n− 1 previous ones.

Ui

Un
=
τn
τi
,∀i = 1, n− 1 (8)

The expression (8) means that the power ratio is
inversely proportional to the ratio of time spent on
processing a fixed number of operations.

The resulting expression accurately reflects the power
ratio. It takes into account the actual conditions in which
the calculations are made.

An approach to the efficient use of resources based on
data parallelization technology is proposed. Formally, it
can be described as the following algorithm.

Step 1. From the set of images S select (small in
power) a subset necessary for processing the batch S.

Step 2. Process this subset (with time measurement for
their execution) on each of the devices.

Step 3. According to the formula (8) determine the
power ratio.

Step 4. By the formula (6) calculate the optimal load
for each computing device. For this:

– the set of images S is divided into |S| subsets of
Pj , j = 1, |S| ,

– for each i-th device i = 1, n, a subset of Si is
formed by join Pj , i.e. we have:





Si =
⋃

h=1,|Si| Pjih⋃
i=1,n

Si = S

Si ∩ Sj = ∅, ∀i 6= j

(9)

266

We assume that the devices are commensurate with
each other in power. This condition is satisfied if:

max
i=1,n

∪i ≤ c min
j=1,n

∪j (10)

where c is a constant equal to two.
2) The package of images S must be large enough. In

this case, it makes sense to parallelize their processing.
3) After calculating by formula (6) some values of

the powers |Si|, i = 1, n may turn out to be fractional
numbers. In this case, it is necessary to round them to
a integer, taking into account the restriction (5). If |Si|,
i = 1, n is substantially greater than n, then rounding
will not practically slow down the computation time.
Otherwise, it is necessary to round up to an integer
(according to standard mathematical rules). In the case
of "shortage", "free" images of the package S must be
transferred to computing devices in descending order of
their power. In the case of "busting" – remove one image
from computing devices in order of increasing power.

The proposed approach has several advantages:
1) When solving applied problems, one can efficiently

use the computing resources of a standard com-
puter. They usually contain a multi-core processor
and a video card.

2) High accuracy estimates of the optimal |Si|, i =
1, n in (6) is guaranteed.

3) In the process of solving the problem, no additional
calculations are required, but simply to solve the
system (6).

III. EXPERIMENTS

The STL-10 data from the Stanford University repos-
itory [8] was used as the source data. The dataset
contains one hundred thousand unmarked color images
measuring 96x96 pixels. Each image is described by
27648 integers (in the range from 0 to 255) specifying
the content of red, green, and blue colors [9]. Based on
the obtained characteristics (the sample is set to about
2.8 * 109 numbers, contains descriptions of arbitrary,
unmarked objects), we can conclude that the process of
compressing the images of this sample with low losses
is quite a challenge.

To illustrate the nature of the data used in the exper-
iment, we give examples of some instances of images
from the STL-10 dataset. (see Figure 2).

For data processing, a standard computer with an 8-
core processor and a video card was used:

Video card nvidia – 1050 2gb; processor – amd ryzen
7 1700 3.0 GHz; RAM: 2x8 Gb 3200 MHz; Hard drive
– samsung 850 pro 256 Gb; operation system – Lubuntu
16.04.3.

Computer graphics card is about 60% more powerful
than the processor. Power of devices are commensu-
rate with each other. Therefore, the configuration of

the computing heterogeneous device corresponds to the
conditions noted above.

The nvcc 7.5 compiler was used as software (libaries
CUDA (Version 9.1 [10]) and OpenMP) with options:

nvcc -D_FORCE_INLINES -O2 –machine 64 -lgomp
-Xcompiler -fopenmp program_code.cu

Measurement of time of operations was carried out
using the function "gettimeofday".

Note. The compiler option "–machine 64" shows that
the application is 64 bit, therefore, it is not compatible
with 32 bit systems.

When training a neural network, batch mode was used.
The batch size was fixed and equal to 6561 images. The
latter was due to the following considerations:

The size of the training dataset is one hundred thou-
sand images. This number is not divisible by three,
therefore, the degree of the triple can be chosen as the
batch size to maximize the LCM and, therefore, as the
repetition period of the batches. The batch size is three
to the eighth degree, hence the repetition period of the
batches is 656100000 images.

As part of the computational experiment, two different
cases were considered:

– image batch processing is carried out only on a
video card,

– simultaneously on the processor and video card
(using the developed approach).

The general scheme of the experiments included the
following main steps:

1) Read input data.
2) Preliminary image processing.
3) Initialization of the initial values of the weights of

the neural network.
4) "Endless" learning cycle (each batch includes 6561

images).
a) The learning process without a teacher.
b) Measuring training time for 15 packets and

checking the conditions for exit from the
cycle.

The criterion for exiting the cycle: «the total root-
mean-square error on 15 image packets increased». In the
process of implementing the experiment (in accordance
with the described approach), the following actions were
performed:

– on the first iteration of the «infinite» cycle on the
video card, the first half of the image batch is
processed and the processing time τgpu is measured;

– the second half of the packet is processed on the
processor and the time τcpu is measured;

– using formulas (8) and (6), the number of images
that are fed to the processor and video card, respec-
tively, is calculated;

– adjustment of neural network weights is carried out;
– the number of images of the batch, which is cal-

culated on the first iteration, is processed on the
267

Figure 2. STL-10 pictures examples [9]

processor and video card simultanioulsy (in the
loop);

– the neural network weights are adjusted again.
According to the results of the experiments, the fol-

lowing results were obtained (see table 1):

Table I
PROBLEM SOLVING TIME

Used computing devices Videocard Processorand video card
Timeof processing (in sec.) 24 15

It is easy to see that the use of the algorithm has
reduced the processing time by 60%.

Thus, due to the rational loading of heterogeneous
computing devices, it is possible to reduce the total
processing time. This is important when solving applied
problems in real-time conditions.

IV. CONCLUSION

The paper presents an algorithm for calculating the
loading of heterogeneous devices, which reduced the
processing time for image compression.

The efficiency of the algorithm is demonstrated on a
computer with a multi-core processor and a video card.

The ideas described in the paper may be useful in
processing large amounts of data on heterogeneous clus-
ter calculators that are being actively developed at the
present time.

REFERENCES

[1] Pavan Balaji Programming models for parallel computing (Sci-
entific and engineering computation) / Pavan Balaji. – The MIT
press, 2015 - 488p. ISBN – 978-0262528818

[2] Voevodin, V. V. Parallel computations [Text]: book. / V. V.
Voevodin – Piter: BXV Saint Petersberg, 2004. – 608p. – ISBN
5-94157-160-7.

[3] Gregory R. Andrews Foundations of multithreaded, parallel and
distributed programming [Text]: book – 688p. – ISBN 978-
0201357523

[4] Cavaro-Menard C. Compression of biomedical images and signals
/ C. Cavaro-Menard – Wiley, 2013. –288p. – ISBN 978-1-84821-
028-8

[5] Burger W. Principles of digital image processing / W. Burger. –
Springer, 2013. – 369p. – ISBN 978-1-84882-919-0

[6] Marz N., Warren J. Big Data: Principles and Best Practices of
Scalable Real-time Data Systems / N. Marz, J. Warren – Manning
Publications, 2015 – 328p. – ISBN 978-1617290343

[7] Simon Haykin Neural Networks and Learining machines (third
edition) / Simon Haykin. – Pearson Prentice Hall, 2009. – 936p.
– ISBN 978-0-13-147139-9

[8] STL-10 dataset [electronic resource]. – link : academictor-
rents.com/details/a799a2845ac29a66c07cf74e2a2838b6c5698a6a
– Access date: 25.02.2018.

[9] STL-10 dataset description [electronic resource]. – link : stan-
ford.edu/ acoates//stl10/ – Access date: 24.02.2018.

[10] CUDA toolkit [electronic resource]: – link :
developer.nvidia.com/cuda-downloads – Access date: 23.02.2018.

АЛГОРИТМ БЫСТРОГО СЖАТИЯ
ИЗОБРАЖЕНИЙ НА ГЕТЕРОГЕННЫХ
ВЫЧИСЛИТЕЛЬНЫХ УСТРОЙСТВАХ

Мацкевич В.В., Краснопрошин В.В.
В работе рассмотрена проблема организации эффектив-

ной обработки данных на гетерогенных вычислительных
устройствах. Предложен один из возможных подходов к
решению проблемы с использованием технологии распарал-
леливания данных. Показано, что в общем случае проблема
представляется нетривиальнойматематической задачей.Для
одного из частных случаев предложен алгоритм решения.
Эффективность подхода демонстрируется на примере реше-
ния задачи сжатия цветных изображений с использованием
нейронной сети прямого распространения. Описанные в
работе идеи могут оказаться полезными при обработке
больших объемов данных на гетерогенных кластерных вы-
числителях.

Ключевые слова: Параллельные вычисления, вычисли-
тельные устройства, производительность системы, нейрон-
ная сеть, обучение, выборка.

Received 28.12.18

268

