
Sensor Location Problem’s Software
Optimization

Andrei Pilipchuk
Belarusian State University

Minsk, Belarus
an.pilipchuk@gmail.com

Ludmila Pilipchuk
Belarusian State University

Minsk, Belarus
pilipchuk@bsu.by

Eugene Polyachok
Belarusian State University

Minsk, Belarus
arszp10@gmail.com

Abstract—In this work we consider the application of the
graph theory for construction the optimal and suboptimal
solutions to the sensor location problem. That problem
is named Sensor Location Problem for a graph (SLP).
For constructing the solution of the SLP for a graph we
presented the pseudocodes of the algorithm’s for finding the
flow arcs for the non observered part on the network. In the
pseudocode of the algorithm 1 defines sensor configurations
of the suboptimal solution and flows on the arcs on the
unobserved part of the network.
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I. INTRODUCTION

The problem of locating sensors on the network to
monitoring flows has been object of growing interest in
the past years, due to its relevance in the field of traffic
management and control [1]–[4]. The basis for modeling
the processes of estimating flows in network is a sparse
underdetermined systems of linear algebraic equations of
a special types [5], [6]. Sensors are located in the nodes
of the network for the given traffic levels on arcs within
range covered by the sensors, that would permit traffic
on any unobserved flows on arcs to be exactly.

This work is devoted to the research of intelligent
transport systems and their applications. The obtained
theoretical and practical results are an important contri-
bution to the solution of problems in the field of environ-
mental monitoring. Technologies and algorithms for one
practical solution problem of ecological monitoring and
analysis of flows on the unobserved part of the transport
network are developed.

The suboptimal solutions for the network program-
ming problem are considered in [7]. The common solu-
tions for the sparse underdetermined systems of linear
algebraic equations are obtained in [8]. In this work
we research the numerical results for constructing the
suboptimal solutions of SLP problem for various values
of the intensity threshold.

II. SENSOR LOCATION PROBLEM

Let’s introduce the finite connected directed graph
G = (I, U). The set U is defined on I × I (|I| <

∞, |U | < ∞). We assume, that the graph G is sym-
metric: that is: if (i, j) ∈ U , then (j, i) ∈ U. We note
that the graph G is not undirected: the flow on arc (i, j),
in general, will not be the same as the flow on arc
(j, i). To designate this distinction, we refer to the graph
G = (I, U) as a two way directed graph.

We represent the traffic flow by a network flow func-
tion x : U → R that satisfies the following system:

∑

j∈I+
i (U)

xi,j −
∑

j∈I−
i (U)

xj,i =

{
xi, i ∈ I∗,
0, i ∈ I \ I∗ (1)

where I∗ is the set of nodes with variable intensities, xi
is the variable intensity of node i ∈ I∗, I+i (U) = {j ∈
I : (i, j) ∈ U} and I−i (U) = {j ∈ I : (j, i) ∈ U}. If
the variable intensity xi of node i is positive, the node
i is a source; if it is negative, this node i is a sink. For
system (1) is true the following condition:

∑

i∈I
xi = 0.

According [9] if I∗ 6= ∅, then the rank of the matrix of
system (1) for a connected graph G = (I, U) is equal
to |I|.

In order to obtain information about the network flow
function x and variables xi of nodes i ∈ I∗, sensors
are placed at the nodes of the graph G = (I, U). The
nodes in the graph G = (I, U) with sensors we call
monitored ones and denote the set of monitored nodes
by M, M ⊆ I . We assume that if a node i is monitored,
we know the values of flows on all outgoing and all
incoming arcs for the node i ∈M :

xij = fij , j ∈ I+i (U), xji = fji, j ∈ I−i (U), i ∈M.

If the set M includes the nodes from the set I∗, then we
also know the values xi = fi, i ∈M

⋂
I∗. So, we have

xij = fij , j ∈ I+i (U), xji = fji, j ∈ I−i (U),
i ∈M ;

xi = fi, i ∈M
⋂
I∗.

(2)

Consider any node i of the network. For every out-
going arc (i, j) ∈ U for this node i determine a real
number pij ∈ (0, 1] which denotes the part of the total
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outgoing flow
∑

j∈I+
i (U)

xij from node i corresponding to

the arc (i, j). That is,

xij = pij
∑

j∈I+
i (U)

xij .

If |I+i (U)| ≥ 2 for the node i ∈ I then we can write
the arc flow along all outgoing arcs from node i (except
any selected arc) in terms of arc flow a single outgoing
arc, for example, (i, vi), vi ∈ I+i (U):

xi,j =
pi,j
pi,vi

xi,vi , j ∈ I+i (U) \ vi. (3)

We continue this process for each node i ∈ I, if
|I+i (U)| ≥ 2.

Let |I+i (U)| ≥ 2 for any node i ∈ I and xi,vi
is known

for the arc (i, vi) and equal to fi,vi
. Then we can write

the unknown arc flow along all outgoing arcs from node
i (except any selected arc (i, vi)) in terms of arc flow for
a single outgoing arc (i, vi), where xi,vi is known and
equal to fi,vi

.
Let’s substitute the calculated arc flows according to

(2) and (3) in the equations of system (1). Let’s delete
from graph G = (I, U) the set of the arcs on which the
arc flow are known. Let’s delete from graph G the set
of the nodes i ∈ M . Then we have a new graph G =
(I, U). A new set of nodes with variable intensity for a
new graph G is I

∗
, where I

∗
= I∗\(M ⋂

I∗). The new
graph G can be non-connected. The graph G consists
of connected components. Some connected components
may contain no nodes of the set I

∗
. The system (1) for

graph G = (I, U) will be the following one:

∑

j∈I+
i (U)

xi,j −
∑

j∈I−
i (U)

xj,i =

{
xi + bi, i ∈ I∗,
ai, i ∈ I \ I∗

(4)
∑

(i,j)∈U
λpijxij = 0, p = 1, q, (5)

where ai, bi, λ
p
ij – are constants.

So formulate the optimal solution to the Sensor Loca-
tion Problem: what is the minimum number of monitored
nodes |M | such that system (4)–(5) has an unique
solution?

In [10] was proof that SLP problem is NP-complete.

III. OPTIMAL SOLUTION TO THE SENSOR LOCATION
PROBLEM

In Figure 1 we show a finite connected directed
symmetric graph G with the set of nodes I and the set
of arcs U where

I = {1, 2, 3, 4, 5, 6},
U = {(1, 2), (1, 3), (2, 1), (2, 4), (2, 6), (3, 1), (3, 5), (4, 2),

(4, 6), (4, 5), (5, 3), (5, 4), (5, 6), (6, 2), (6, 4), (6, 5)},

I∗ = {2, 4, 5, 6}.

Figure 1. Finite connected directed symmetric graph G

For the graph G = (I, U) (see Figure 1) we write the
system of linear algebraic equations in the form:

x1,2 + x1,3 − x2,1 − x3,1 = 0

x2,4 + x2,6 + x2,1 − x4,2 − x1,2 − x6,2 = x2

x3,1 + x3,5 − x1,3 − x5,3 = 0

x4,2 + x4,5 + x4,6 − x2,4 − x5,4 − x6,4 = x4

x5,4 + x5,3 + x5,6 − x3,5 − x4,5 − x6,5 = x5

x6,2 + x6,4 + x6,5 − x2,6 − x4,6 − x5,6 = x6

(6)

Suppose that the set of monitoring nodes is M = {2}
for the graph shown in Figure 1. Construct the cut
CC(M) with respect to the set M . We form the sets

M+ = I(CC(M)) \M = {1, 4, 6};

M∗ =M
⋃
M+ = {1, 2, 4, 6};

I \M∗ = {3, 5}.

In the Sensor Location Problem (SLP) the values of
flows on all incoming and outgoing arcs for the each
node i of the set M (monitored nodes) are known and
we also know the values xi = fi, i ∈M

⋂
I∗ :

x1,2 = f1,2, x2,1 = f2,1, x2,4 = f2,4,

x4,2 = f4,2, x2,6 = f2,6, x6,2 = f6,2, x2 = f2.
(7)

We substitute the known values of the variables (7) to
the system of equations (6) and delete the corresponding
arcs from the graph G. Also, we delete the nodes i ∈M
from the graph G. The graph G′ obtained after deleting
the arcs corresponding to the variables (7) and nodes
i ∈ M from graph G is shown in Figure 2. The rest of
the flows for the outgoing arcs from the nodes of the set
M+ = I(CC(M)) \M = {1, 4, 6}, can be expressed
from the flows of the outgoing arcs for M+ = {1, 4, 6}
by the following equations:
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x1,3 =
p1,3
p1,2

f1,2, x4,5 =
p4,5
p4,2

f4,2,

x4,6 =
p4,6
p4,2

f4,2,

x6,4 =
p6,4
p6,2

f6,2, x6,5 =
p6,5
p6,2

f6,2.

(8)

Let us substitute (8) to the system of linear equations
(6). We delete from the graph G arcs which correspond to
the known values of the arc flows (7) and (8). The graph
G = (I, U) obtained by deleting the arcs corresponding
to variables (8) from the graph G′ is shown in Figure 3.
The system (6) for the graph G = (I, U) (see Figure 3)
transforms to the form (9).

Figure 2. Graph G′

f1,2 +
p1,3
p1,2

f1,2 − f2,1 − x3,1 = 0,

f2,1 + f2,4 + f2,6 − f1,2 − f4,2 − f6,2 = f2,

x3,1 + x3,5 −
p1,3
p1,2

f1,2 − x5,3 = 0,

f4,2 +
p4,5
p4,2

f4,2 +
p4,6
p4,2

f4,2−

−f2,4 − x5,4 −
p6,4
p6,2

f6,2 = x4,

x5,4 + x5,3 + x5,6 − x3,5 −
p4,5
p4,2

f4,2−

−p6,5
p6,2

f6,2 = x5,

f6,2 +
p6,4
p6,2

f6,2 +
p6,5
p6,2

f6,2−

−f2,6 −
p4,6
p4,2

f4,2 − x5,6 = x6.

(9)

Arc flows xi,j , (i, j) ∈ U , corresponding to the arcs
outgoing from node set I \M∗ = {3, 5} are unknown.
For these unknown flows xi,j , (i, j) ∈ U we form the
additional equations.
• Choose arbitrary outgoing arc that starts from a

node set i of set I \ M∗ = {3, 5}, for example,
for the node i = 3 we choose the arc (3, 5). Let us
express the arc flows to all other arcs outgoing from

Figure 3. Graph G = (I, U)

the node i = 3 through the arc flow of x3,5 for the
chosen outgoing arc (3, 5).

• Choose any outgoing arc from the node i = 5, for
example (5, 6). Let us express the arc flows to all
other arcs outgoing from the node i = 5 through
the arc flow of x5,6.

x3,1 =
p3,1
p3,5

x3,5, x5,3 =
p5,3
p5,6

x5,6, x5,4 =
p5,4
p5,6

x5,6.

Additional equations have the form:

x3,1 −
p3,1
p3,5

x3,5 = 0, x5,3 −
p5,3
p5,6

x5,6 = 0,

x5,4 −
p5,4
p5,6

x5,6 = 0.
(10)

Part of the unknowns of the system (9), (10) makes up
outgoing arc flows for arcs from node sets I \ M∗ =
{3, 5} for the graph G :

x3,1, x3,5, x5,3, x5,4, x5,6.

The remaining part of the unknowns of the system (9),
(10) defines the variables xi, i ∈ I

∗
= {4, 5, 6}:

x4, x5, x6.

Thus, the system (9), (10) is a system of full rank. The
number of unknowns of the system (9), (10) equal to the
rank of the matrix and is equal to 8. The system (9), (10)
has the unique solution for given set of monitored nodes
M = {2}.

IV. PSEUDOCODE ALGORITHMS SUBOPTIMAL
SOLUTION TO THE SENSOR LOCATION PROBLEM

In the work [11] get the interval [1, |I∗|] values
changes of the number of |M | nodes being viewed. Sub-
optimal (t−optimal) solution are constructed to the SLP
problem of the establishment of full observability of the
network for given intensity threshold t: |xi| ≥ t, i ∈ I∗.
We presented the pseudocode algorithm’s for finding the
suboptimal solution to the sensor locations problem.
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Algorithm 1 Pseudocode algorithm’s for the suboptimal
solution to the sensor locations problem
List of reference symbols:
arcs - array arc with flows value
FAKE-VERTEX - fake vertex
flow - value flow arc
iterations - count
lowerBound - value lower bound
normArcs - array arc notmalize with flow
numberThreads - count children threads
numberTrials - count value
observedArcs - array observible arcs
threshold - threshold of intensity

Input: arcs, threshold, iterations, numberTrials,
lowerBound, numberThreads

Output: sensors configuration
1: normArcs← balance_nodes(arcs, treshold) . Algorithm

2
2: initialV ertices← get_start_nodes(normArcs) .

Algorithm 3
3: if FAKE − V ERTEX ∈ initialV ertices then
4: delete FAKE-VERTEX from initialVertices
5: end if
6: randomSearch ← rsls(normArcs, initialVertices, itera-

tions, numberTrials, lowerBound, numberThreads) .
Algorithm 4

7: observedV ertices← null
8: for all results ∈ randomSearch do
9: if residual ∈ result < 10−10 and cond ∈ result <

106 then
10: observedV ertices← vertices ∈ result
11: break
12: end if
13: end for
14: observedArcs ← get_monitored_nodes_with_network

(normArcs, observedVertices) . Algorithm 5
15: get_sensors_configuration(normArcs, observedVertices,

observedArcs) . Algorithm 6

Algorithm 2 – pseudocode of the algorithm to obtain-
ing an array of normalized arcs.

Algorithm 3 – pseudocode of the algorithm to obtain-
ing an array of initial nodes with variable intensity.

Algorithm 4 – pseudocode of the algorithm of the
random search location sensors.

Algorithm 5 – pseudocode of the algorithm for obtain-
ing the array of observed arcs.

Algorithm 6 – pseudocode of the algorithm to ob-
taining of the sensor configurations for the suboptimal
solutions.

V. SUBOPTIMAL SOLUTION TO THE SENSOR
LOCATION PROBLEM

The example of a suboptimal solution show in the
figure 4 for the graph G = (I, U), |I| = 9, |U | = 18
I∗ = {2, 4, 5, 6, 7, 9}.

After location in the network G the |M | = 6 sencors
in the nodes M = {2, 4, 5, 6, 7, 9}, (fig. 4), we have the
suboptimal solution.

Figure 4. Suboptimal solution: M = {2, 4, 5, 6, 7, 9}
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ОПТИМИЗАЦИЯ ПРОГРАММНОГО
ОБЕСПЕЧЕНИЯ ПРОБЛЕМЫ
РАСПОЛОЖЕНИЯ СЕНСОРОВ

Пилипчук А., Пилипчук Л., Полячок Е.
В работе рассматривается приложение теории графов для

построения оптимальных и субоптимальных решений задачи
расположения сенсоров. Эта задача называется проблемой
расположения сенсоров (SLP) для графа. Для построения
решений задачи SLP для графа мы представляем псевдокоды
алгоритмов для нахождения дуговых потоков на ненаблюда-
емой части сети. В псевдокоде алгоритма 1 определяются
сенсорные конфигурации субоптимального решения и дуго-
вые потоки на ненаблюдаемой части сети.
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