
Genetic algorithm of optimizing the size, staff
and number of professional teams of

programmers
Anatoly Prihozhy, Arseni Zhdanouski

Belarusian National Technical University
Minsk, Republic of Belarus

prihozhy@yahoo.com

Abstract—This paper considers the problem of estab-
lishing and optimizing the teams of programmers taking
into account their proficiency and the level of skills in
programming technologies and tools. It proposes a method
of formalizing and evaluating the qualification of individ-
ual programmers and entire teams of programmers, and
proposes a genetic algorithm of optimizing the size, staff
and number of the teams. Experimental results on a set of
programmers graduated from universities of Belarus show
the ability of the system to find the teams of programmers,
which increase the overall qualification of the teams by
30%. The obtained results prove the practical importance
of the model, genetic algorithm and software in the field of
technologies and tools for the management of professional
teams of programmers.

Keywords—programmer; technology; tool; qualification;
team of programmers; team size; team staff; optimization

I. INTRODUCTION

Agile technology [1] of flexible software development pro-
vides requirements and finds solutions due to the joint efforts
of development teams and customers. It supports adaptive
planning, evolutionary development, continuous improvement,
and rapid-flexible response to changes. Although many techno-
logical environments use Agile, it requires further development
for distributed programming teams. Tools and processes are
important, but it is more important to have competent people
working together effectively. Improper distribution of work can
eliminate the connection of leading experts. Assigning a job to
a team that is hard to find an appropriate expert increases the
total cost of recruiting and performing work, making it difficult
to select the right people for the distributed team.

The success of a distributed team of programmers in the
implementation of a large project strongly depends on the
adequacy of the technologies and programming tools used, as
well as on the ability of effectively decomposing the project
into parts. These parts should be distributed among those teams
of programmers who have the necessary knowledge and skills
to perform them. Work [2] formulates a problem of optimal
partitioning of the given set of programmers into teams. It
is a multifactorial and poorly structured problem. In [2], the
following factors were taken into account: the productivity
of each programmer, the ability of pairs of programmers to
increase or decrease productivity in the process of collabo-
ration, the increase in interfaces’ cost between programmers
while increasing the number of programmers in one team.
Evolutionary optimization methods [3] [4] [5] are capable of
solving this kind of problems. Work [5] develops a genetic

algorithm for solving this problem. However, it does not take
into account the level of programmers’ knowledge of the
technologies and programming tools that are necessary for the
project. Work [6] proposes a model of evaluating proficiency
of programmers.

This article analyzes modern technologies and programming
tools and evaluates the level of proficiency of each of the
programmers as well as the level of proficiency of entire team
with respect to these technologies and tools. The size and the
staff of each of the teams is optimized.

This paper is organized as follows. Section II presents a
method of evaluating the proficiency of programmers and whole
teams of programmers in technologies and tools. Section III
describes a genetic algorithm of optimizing the size, staff and
number of teams. Section IV presents experimental results, and
last section concludes the paper.

II. PROFICIENCY OF A PROGRAMMER AND A TEAM
OF PROGRAMMERS IN TECHNOLOGIES AND TOOLS

A. Rating of programming technologies and tools

Analysis of the research results RedMonk company
[7] has provided on the popularity of programming lan-
guages and tools, as well as the research results the IEEE
Spectrum organization [8] has provided on rankings of
programming languages allows the evaluation of rating
of various programming technologies. The technology
rating indicates its importance and breadth, as well as
indicates the requirements and constraints at least one
member of a team of programmers must meet.

B. Proficiency of a programmer in technologies and tools

We use a survey method to solve the problem of
assessing the level of programmers’ knowledge of tech-
nologies and tools. Each of the programmers interviewed
is asked to fill out a questionnaire in which he/she indi-
cates the level of proficiency in each of the technologies.
The proficiency level is determined by a five-point scale:
0 - lack of knowledge of technology; 0.25 - the minimum
knowledge; 0.5 - intermediate skills; 0.75 - extended
technology proficiency experience; 1 - expert knowledge
and experience. We consider a programmer as expert,
if he/she possesses theoretical expert knowledge, has
developed at least two large projects and has worked for

305

at least two years with this technology. The programmer
has advanced skills if he/she meets two criteria of the
three ones, and has intermediate skills if meets only one
of the criteria.

C. Programmer qualification

The qualification of programmer p ∈ P with regard to
the level of knowledge / possession of technologies of
set T in relation to the maximum level of knowledge /
possession can be evaluated with Equation (1).

Qualif(p) =

∑

t∈T
rank(t)× factor(p, t)

MaxQualif
(1)

where

factor(p, t) =

{
level(p, t) if level(p, t) ≤ RLp

t

0 otherwise
(2)

and
MaxQualif =

∑

t∈T
rank(t) (3)

The value of rank(t) belonging to range [0,1] is the
rank of the technology. The value of level(p,t) of the
range [0,1] is determined by the results of the survey of
the programmers. The threshold value RLp

t of level(p,t)
reduces the chances of admission to work on the project
for programmers with an insufficiently high level of
qualification. This value is selected from the range [0, 1].
If RLp

t
∼= 0 then start-up programmers or programmers

who possess of only small part of the technologies may
participate in the project. If RLp

t
∼= 1 then only experts

may participate in the project. As a result, the value of
Qualif (p) is in the range [0,1]. According to Equation
(1), programmers who possess of preferably high-rated
technologies are more highly qualified than programmers
who preferably possess of low-rated technologies.

D. Qualification of a team of programmers

Let the whole set P of programmers be divided into
k teams, producing set G = {g1, ..., gk}. Programmers
of team g constitute set Pg . The average qualification
of team g, including Ng programmers, is defined as
an average value Qualif (p) of qualifications over all
programmers p ∈ Pg:

Qualifavg(g) =

∑

p∈Pg

Qualif(p)

Ng
(4)

In addition to the average qualification Qualifavg(g),
the most important parameter that characterizes team
g is the best representative qualification Qualif best(g),
which is determined with Equations (5) and (6):

Qualifbest(g) =

0, if ∃t, oblgt(t),mxl(g, t) < RLg
t∑

t∈T
rank(t)×mxl(g, t)

MaxQualif
, otherwise

(5)

mxl(g, t) = max
p∈Pg

level(p, t) (6)

Equation (5) uses the values as follows:
• oblgt(t) is a predicate that takes value true if technology
t is mandatory for a team (see Table 1);

• mxlevel(g, t) is the level of the best representative of
team g in technology t;

• RLgt is a threshold value of the level of the best
representative of team g in technology t.

According to Equation (5), qualification
Qualif best(g) over the best representatives is equal to
zero if there is at least one mandatory technology t
for the team, for which oblgt(t) is true, and the level
mxl(g, t) of qualification over the best representatives
of team g is less than the threshold value of RLg

t .
The explanation is this team is not capable of carrying
out projects without highly qualified specialists in key
technologies.

The weighted qualification Qualifw(g) of team g is
estimated with Equation (7) as the sum of qualification
Qualif best(g) over the best representatives with weight
λ, and the average qualification Qualifavg(g) with
weight 1− λ.

Qualifw(g) = λ×Qualifbest(g)+ (1−λ)×Qualifavg(g)
(7)

The weighted qualification at 0 ≤ λ ≤ 1 can take
any value in the range [0,1]. The larger the value of λ,
the larger the weight of the qualification over the best
representatives, and vice verso, the lower the value of
λ, the larger the weight of the average qualification of
the programmers in the team. The average qualification
reflects the skills of programmers. The qualification over
the best representatives show opportunities for the growth
of skills of the team members who are guided and trained
by technology experts, who are members of the team and
are exemplary.

It is obvious, the teams with low qualifications cannot
be recognized as workable, and the participation of
such teams in the project is unreasonable or at least
controversial. We can formalize the exclusion of the
appearance of such teams with the concept of weighted
threshold qualification:

Qualif(g) =

{
Qualifw(g) ifQualifw(g) ≥ RQg

0 otherwise
(8)

It is reasonable to recommend to choose the threshold
value RQg of qualification from the range from 0.5 to
1.0, depending on the requirements of the project and
the technologies that are used for its development, as
well as depending on the expected quality of future
design results. Bellow, the qualification of a team of pro-
grammers will be understood as the threshold weighted
qualification.

Team g is called redundant by qualification if there is a
programmer p ∈ g such that Qualif(g\p) ≥ Qualif(g).

306

In other words, the qualification of team g after removing
programmer p from it should not be lower than the
qualification before removing of the programmer. This
can happen when at least one of two following conditions
are met:
• programmer p is not the only best representative of team
g on any technology t ∈ T ;

• qualification Qualif(p) of programmer p is lower than
the average qualification Qualifavg(g) over team g.

If set G divides the set of programmers into teams,
then we can estimate the overall qualification of the
teams as a sum of the teams’ threshold weighted quali-
fications:

Qualification(G) =
∑

g∈G
Qualif(g) (9)

The overall qualification Qualification(G) takes val-
ues in the range from k × RQg to k, where k is the
number of teams.

III. OPTIMIZING THE SIZE, STAFF AND NUMBER OF
TEAMS

A. Problem formulation

Let Ω be a set of feasible solutions, which is a set of
various partitions of set P of programmers into various
set G of teams. The main parameter of solution G is
the overall qualification Qualification(G) of all teams.
Therefore, we formulate the objective function as:

max
G∈Ω

Qualification(G) (10)

We formulate the set of feasible solutions over a
system of constraints and describe them in the form of re-
quirements for programmers and teams of programmers
to be proficient in technologies and programming tools.
Requirement1. It refers to the minimum threshold

qualification level RLp
t of skills the programmer p

of set P has regarding technology t. The minimum
qualification level requirement for all technologies is
represented with vector RLp = RLp

1, ..., RL
p
m. Equation

(11) determines the actual level of Lp
t .

Lp
t = rank(t)× level(p, t) (11)

Requirement2. It refers to the minimum threshold
qualification level RLg

t the best representative of team
g ∈ G of programmers has regarding technology t.
For all technologies, the minimum threshold level is
represented with vector RLg = {RLg

1, ..., RL
g
m}. We

determine the actual qualification level Lg
t of the best

representative of team g for technology t with equation
as follows:

Lg
t = rank(t)×max

p∈Pg

level(p, t) (12)

Requirement3. It refers to the minimum-threshold
weighted qualification RQg of each team g ∈ G of
programmers. The demanded minimum qualification is

the same for all teams. The actual weighted qualification
Qualifw(g) of a team is estimated by Equation (7).

Set G typically includes a special team of unemployed
programmers, who are included in a reserve team. The
number Nempl of programmers included in a working
team can be computed with Equation (13).

Nempl =
∑

g∈G
Ng (13)

The number Nres of programmers who are unem-
ployed and included in the reserve team can be computed
with Equation (14).

Nres = |P | −Nempl (14)

The average weighted threshold qualification
Qualifavg over all teams can be evaluated with
Equation (15).

Qualifavg =

∑

g∈G
Qualif(g)

|G| (15)

B. Genetic algorithm for solving the optimization prob-
lem

The genetic algorithm (GA) implements a random
process of evolution of a population of chromosomes in
order to find the best partitioning of the set of program-
mers into developers teams. We build the chromosome
as a vector of genes that correspond to the programmers.
The gene value is the team number that includes the pro-
grammer. The fitness function is the overall qualification
Qualification(G) of the programmers of teams G.

The genetic operation of crossing two chromosomes
recombines their gen-parts and moves programmers from
one team to other team in two resulting offsprings. This
crossover operation can yield an offspring that does not
refer to a team of programmers, thus reducing the number
of teams. Such a situation may require re-enumerating
the teams and introducing facilities, which can extend
the set of teams.

The genetic mutation operation randomly chooses one
or more programmers and transfers them to other teams.
The selection operation selects parents according to the
rule of roulette wheel in order to perform crossing
and mutation operations and to select chromosomes
for producing the next generation of chromosomes and
for updating the population. The chromosome with the
highest value of the fitness function is a solution of the
optimization problem.

IV. EXPERIMENTAL RESULTS

A. Rating of programming technologies and tools

Table I describes a set T of 16 basic technologies and
tools, and reports the rating of each of them [7, 8]. By
appointment, the whole set of technologies is divided
into 6 subsets. Version control and project management
systems include Git, Tortoise SVN, VJR and TFS with

307

rating 0.3 each. The development environments include
Visual Studio and Eclipse, the rating of both is 0.6.
Oracle SQL (rating 0.5) and Microsoft SQL Server
(rating 0.6) represent database management systems.
Programming languages are Java, C#, Visual Basic, C++,
Java Script and XSL with rating of 1.0, 0.9, 0.7, 0.9,
0.8 and 0.6 respectively. Windows and Linux represent
operating systems with rating of 0.6 and 0.5 respectively.
The high rating of a technology shows the groundlessness
of the creation of teams of programmers, in which there
is no any expert on this technology.

Table I
KEY TECHNOLOGIES AND PROGRAMMING TOOLS

No Name Code Rating Oblgt
1 Git VGT 0.3 no
2 Tortoise SVN VTS 0.3 no
3 TFS VTF 0.3 no
4 Jira VJR 0.3 no
5 Visual Studio DVS 0.6 yes
6 Eclipse DEC 0.6 yes
7 Oracle SQL OBM 0.5 no
8 Microsoft SQL Server DBM 0.6 no
9 Java LJ 1.0 yes
10 C# LC# 0.9 yes
11 Visual Basic LVB 0.7 no
12 C++ LCP 0.9 yes
13 Java script LJS 0.8 yes
14 XSL LXS 0.6 no
15 Windows OSW 0.6 yes
16 Linux OSL 0.5 yes

B. Proficiency of programmers in technologies and tools

Fig.1 shows results of a survey of 24 programmers
(set P) with higher education, who graduated from
universities of Belarus and work at programming compa-
nies. The rows correspond to the programmers, and the
columns correspond to the technologies of Table I. At
the intersection of row p and column t, the rectangle’s
height indicates one of the five levels 0, 0.25, 0.5, 0.75
and 1 of possession by programmer p of technology t.
The absence of a rectangle means zero level. Rows with
a large total area of rectangles indicate highly qualified
programmers. Columns with a large area of rectangles
indicate highly demanded and widely used technologies.

Figure 2 shows the level of importance of each of
the 16 technologies and programming tools for 24 pro-
grammers in relation to the highest possible level without
taking into account the technology rating. The Windows
operating system (code OSW) has the highest level of
0.72. In second place is the version control system /
project management system TFS (code VTF) with the
level of 0.63.

Figure 3 shows the level of possession of technologies
and programming tools by 24 programmers, taking into
account the technology rating (Table 1). The Java pro-
gramming language (code LJ) has the highest level of
0.98. The Windows operating system (code OSW) with
the level of 0.73 has moved to the second place.

Figure 1. Proficiency of 24 programmers in 16 technologies

Figure 2. The level of possession of 16 technologies by 24 program-
mers without taking into account the rating of technologies.

308

Fig. 4 shows the qualification of each of the 24 pro-
grammers in terms of possession of all 16 programming
technologies without taking into account the technology
rating (in this case the rank (t) value of 1 for all t and
the MaxQualif value of 16 is taken). Figure 5 shows
the qualification of programmers on all programming
technologies, taking into account the rating of technolo-
gies (in this case, the value of rank (t) is taken from
Table 1 and the MaxQualif value is 9.5). Note that
the consideration of technology rating (Fig. 5) led to
the fact that programmer 8 became more qualified than
programmer 9 (in Fig.4, programmer 9 is more qualified
than 8). The same concerns programmers 22 and 23.

Figure 3. The level of possesion of 16 technologies by 24 programmers
taking into account the rating of technologies.

Figure 4. Qualifications of 24 programmers in all technologies without
taking into account the technology rating.

C. Teams optimization constraints

We have developed a computer program that imple-
ments the proposed genetic algorithm, and have used this
program for carrying out computational experiments on
optimizing the distribution of programmers on a set of
teams. The requirements and constraints are as follows:
• the one-programmer qualification on each of the 16 tech-

nologies that are listed in table I must not be lower than

Figure 5. Qualifications of 24 programmers in all technologies taking
into account the technology rating.

RLp = 0.1, 0, 0.1, 0, 0.3, 0.25, 0, 0.15, 0.6, 0, 0, 0.25,
0, 0.2, 0.4, 0.2;

• the one-team-of-programmers qualification on each of the
16 technologies must not be lower than RLg = 0.2, 0, 0.2,
0, 0.4, 0.3, 0, 0.3, 0.75, 0.4, 0, 0.5, 0, 0.3, 0.5.0.25;

• the threshold weighted qualification of one team of pro-
grammers on all technologies must not be lower than
RQg taking value from the range 0.40 ... 0.75;

• the weight λ of one team qualification over the best
representatives is equal to 0.7, and the weight 1 − λ of
one team average qualification is equal to 0.3.

D. Experimental results

Table II reports experimental results that are obtained
with the genetic algorithm while optimizing the size,
staff and number of teams composed of 24 programmers
(Fig.1), using the 16 key programming technologies and
tools (Table I). Previous Section describes the require-
ments and constraints on teams establishing, which are
associated with a project the teams will work on. Varying
the value of RQg in the range from 0.40 to 0.75 with
step 0.05, GA has given 8 solutions listed in Table
II. The increase in the proficiency level RQg of one
team decreases monotonically the number |G| of teams
from 9 down to 2. Moreover, it decreases the number
Nempl of programmers involved in these teams. The
qualification Qualifavg of one team grows from 0.602
to 0.785, although the overall Qualification(G) of all
teams falls rapidly from 5.42 down to 1.57 due to many
programmers appear not involved in the project and are
included in the reserve team. The staff of all teams is
given in Table III.

Figure 6 shows the dynamics the genetic algorithm
yields in the process of evolution of the chromosome
population. The total weighted threshold qualification
for all teams has grown (Fig. 6) from 3.5 to 5.04
over 25 generations. Growth is about 30%. During this
time, the number of teams that meet all qualification
requirements has increased from 5 to 8, while the number
of programmers included in these teams has increased
from 15 to 23 . The number of teams that do not meet

309

Table II
EXPERIMENTAL RESULTS ON OPTIMIZATION OF PROGRAMMING

TEAMS WITH GENETIC ALGORITHM

Run RQg |G| Nempl Qualifavg Qualification(G)
1 0.40 9 22 0.602 5.42
2 0.45 8 23 0.631 5.05
3 0.50 8 23 0.630 5.04
4 0.55 8 21 0.626 5.01
5 0.60 6 22 0.683 4.10
6 0.65 5 16 0.696 3.48
7 0.70 3 13 0.757 2.27
8 0.75 2 6 0.785 1.57

the requirements has ranged from 1 to 2, and the number
of programmers who are included in the reserve team
has ranged from 9 to 1. As a result, the evolutionary
process has been accompanied by a steady increase in
the total threshold weighted qualification of the set of
teams represented by the best chromosome.

Table III
STAFF OF WORKING AND RESERVE TEAMS

Run Working teams Reserve team
g1={6,7,15,17,24}, g2={11,20,23}, {4,9}

1 g3={1,3,5,14}, g4={8,19,21}, g5={18},
g6={16}, g7={22}, g8={2,12}, g9={10,13}

g1={8,13,15,21,24}, g2={2,5,6,9,14}, {20}
2 g3={3,4,7}, g4={12,22}, g5={10,11},

g6={16,19}, g7={1,17,23}, g8={18}
g1={4,11,17,20}, g2={3,5,14,19}, {10}

3 g3={7,9,13,22}, g4={1,12,15,24},
g5={2,6,21}, g6={18}, g7={8,23}, g8={16}

g1={3,4,6,9,11,17}, g2={5,19,21,24}, {2,20,23}
4 g3={10,14}, g4={8,12,15}, g5={1,7},

g6={18}, g7={16}, g8={13,22}
g1={2,4,7,9,14,16}, {19,20}

5 g2={3,6,10,13,17,21,24}, g3={12,22},
g4={1,5,8,23}, g5={11,15}, g6={18}
g1={1,2,4,5,8,14,15}, g2={12,16,20}, {3,6,7,9,13,

6 g3={10,11}, g4={19,22,23}, g5={18} 17,21,24}
g1={2,9,10,11,13,14,22,23}, {1,3,4,5,6,8,

7 g2={7,12,15,16}, g3={18} 17,19,20,21,24}
g1={7,10,11,12,15}, g2={18} {1,2,3,4,5,6,8,

8 9,13,14,16,17,
19,20,21,22,

23,24}

CONCLUSION

This paper has presented a method of assessing the qual-
ifications of development teams that takes into account their
knowledge and skills in programming technologies and tools.
We have developed a genetic algorithm to optimize the size,
staff and number of teams, which maximizes the overall qualifi-
cation of the teams and minimizes the number of programmers
not involved in them. Further research will focus on the
integration of the qualification aspects and the performances
of programmers and teams of programmers, which participate
in executing big projects.

REFERENCES

[1] Joshi, S. Agile Development - Working with Agile in a Distributed Team
Environment / S. Joshi // MSDN Magazine, 2012, Vol.27, No.1, pp.1-6.

[2] Prihozhy, A. Lecture notes on “Modeling and Optimization for Engineering
Systems Design” / A. Prihozhy // BNTU, Software for Computers and
Automated Systems Dpt., 2013, pp. 58-69.

Figure 6. Weighted total qualification of all teams of programmers vs.
generation number in GA.

[3] Barricelli, N.A. Symbio genetic evolution processes realized by artificial
methods / N.A. Barricelli // Methodos, 1957, pp. 143-182.

[4] Muller, J.P., Rao, A.S., Singh, M.P. A-Teams: An Agent Architecture
for Optimization and Decision-Support, Proceedings 5th International
Workshop, ATAL’98 Paris, France, July 4-7, 1998, pp. 261-276.

[5] Prihozhy, A.A. Evolutionary Method of Software Teams Optimization for
Reducing Time and Resources of Project Execution / A. Prihozhy, A.
Zhdanouski // Proc. Conf. “Information Technologies in Engineering and
Business”, Minsk, RIHS, 2016, pp.16-20.

[6] Prihozhy A., Method of qualification estimation and optimization of
professional teams of programmers / A. Prihozhy, A. Zhdanouski // System
analysis and applied information science, No 2, 2018, pp. 4-12.

[7] Red Monk, [electronics resource] / the developer-focused industry an-
alyst firm Red Monk. – Access mode: http://redmonk.com/sogrady/
2016/07/20/language-rankings-6-16/. – Date of access: 26.02.2017.

[8] Cass, S. The 2016 Top Programming Languages [electronics resource]
/ IEEE Spectrum, 2016. −− Access mode: http://spectrum.ieee.org/
computing/software/the-2016-top-programming-languages. – Date of ac-
cess: 26.02.2017.

ГЕНЕТИЧЕСКИЙ АЛГОРИТМ
ОПТИМИЗАЦИИ ЧИСЛЕННОСТИ,

ПЕРСОНАЛА И КОЛИЧЕСТВА
ПРОФЕССИОНАЛЬНЫХ КОМАНД

ПРОГРАММИСТОВ
Прихожий А.А., Ждановский А.М.

В статье рассматривается проблема созданияи опти-
мизации команд программистов с учетом их квалифи-
кации и уровня навыков в технологиях и инструментах
программирования. Она предлагает метод формализа-
ции и оценки квалификации отдельных программистов
и целых команд программистов, а также предлага-
ет генетический алгоритм оптимизации численности,
персонала и количества команд. Экспериментальные
результаты на множестве программистов, окончивших
вузы Беларуси, показывают способность системы на-
ходить команды программистов, которые повышают
суммарную квалификацию коллектива разработчиков
на 30%.Полученныерезультатыподтверждаютпракти-
ческую значимость модели, генетического алгоритма
и программного обеспечения в области технологий
и инструментов для управления профессиональными
командами программистов.

Received 10.01.19
310

