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Abstract—Adaptation in robotics systems is often imple-
mented as some form of learning. While much research is
dedicated to studying policy and value approximation in
reinforcement learning, some methods are based on rule
inference and logical descriptions. One of these methods
is based on a semantic probabilistic inference algorithm
that has its roots in the theory of functional systems.
In this article, the method is applied to a distributed
multiagent foraging problem that has an important prop-
erty of providing an environment that allows to study a
decentralized system of individually learning agents. We
compare the performance of this method to other methods:
Q-learning and a random choice algorithm as a baseline.
We also propose a modification of the algorithm that
includes an exploration behavior. Experiments are carried
out in a computer simulation system. The results show the
performance of the algorithms with different parameters,
as well as the effect of exploration on the performance.

Keywords—adaptive control, robotics, semantic proba-
bilistic inference, foraging, local interaction

I. INTRODUCTION

Adaptive control system for robotics are of practical
interest since they promise to increase robustness of
existing systems, make the behavior closer to optimal as
well as introduce the possibility to impart new behaviors
to the robot by a system of rewards or examples. This
may be especially important for multiagent systems as
controlling them in a direct way to achieve a given goal
is harder than single robots.

A lot of current research is dedicated to learning
methods for virtual and robotic agents that is based on
reinforcement learning methods using value and policy
approximations, especially based on parametric descrip-
tions of the functions and neural networks. Multiagent
aspect introduces event more problems, like operating in
a dynamic, non-markovian environment that makes even
a static environment more challenging due to the activity
of the agents themselves in relation to other agents.
Robots often work in an environment, where only some
information about the state is accessible, which means
making decisions in a partially observable environment.
Thus, seeking efficient ways to search the policy space
for acceptable (and, preferably, optimal) observation-
action mappings is important.

One of the ways to address this problem it to seek
biologically inspired models of decision making or using

different representations of the problem and policy space,
such as logical. There are various approaches and meth-
ods that use logical descriptions that could be used for
decision making, for example, semiotic networks [10],
JSM method [2], semantic probabilistic inference [7], [9].

Semantic probabilistic inference (SPI) is a learning
method for an agent that uses logical (rule-based) de-
scriptions of the actions of the agent that was introduced
in [9]. It is based on a mathematically formalized concept
of a functional system from the theory of functional
systems [7].

One of the main goals of this work was to study
and compare capabilities of the SPI method and some
reinforcement learning methods in a multiagent setting
with physically distributed agents and also the effects of
exploration and some other, problem-specific parameters,
on the agents’ performance. While SPI was used as
a basis of a network composed of logic neurons and
studied in a multiagent context in [1], in those works
agents controlled tightly coupled (physically connected)
elements of a robot, used a common reward from a
centralized source and inferred the rules in a single
system that could create rules specific to each agent, as
well as general rules. In this work we emphasize that the
studied system does not provide agents with a common
reward (each reward is specific to the agent), the agents
have only an indirect effect on each other’s performance
and they do not have to use a centralized rule-based
learning system, but can learn separately from each other.

The chosen problem environment is a foraging prob-
lem, where agents must gather food units in a grid
world since it can be seen as a reasonably representative
problem for some simple group robotics tasks and it
satisfies the environment requirements described above.
We also propose a modification of the SPI algorithm
that introduces exploration behavior into the system so
that the agent is less susceptible to local minima of
performance, especially in a stochastic environment.

On the other hand, an important issue is the question of
the application of the logical system of adaptive control,
which is based on the algorithm of semantic probabilistic
inference, to a group of mobile robots that allows local
interaction. In this regard, it is proposed to consider the
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possibility of using such a control system for a group
of robots that solve some common task. In this case,
the main emphasis is placed not on the solution of the
common task but on resolving the problem of organizing
communication and capabilities of separated and moving
robots.

The work is structured as follows. Firstly, methods
and algorithms used in the paper are presented, as well
as the proposed modification. Then the model of the
problem is described. After that, the experiment param-
eters, simulation results and the analysis follow. Then,
in the section “Organization of a group of robots for
collective application of the logical model of an adaptive
control system” further research is described, detailing
the problems that need to be solved and a proposed
approach to adapt the semantic probabilistic inference for
a physically distributed group of mobile robots. Finally,
a conclusion sums up some key points about the article.

II. METHODS AND ALGORITHMS

The main algorithm that is studied in this work is the
semantic probabilistic inference that is described in [9]
but without the mechanism of new functional system
formation as it was observed in the original work that
for a foraging problem forming new functional systems
is not required. The algorithm also uses the concept of
a goal predicate, but in the later works [1] a reward
was used as a prediction, which is what we use here,
but without creating logic neurons described in the latter
work. The reward predicted by the rules always equals
to one, so it can be written as a goal predicate that states
that the agent gets a reward of one.

We also propose a modification of the algorithm by
introducing an exploration behavior into the system.
The original algorithm chooses a random action only
in cases where the situation was never encountered
before and / or there were no suitable rules inferred
from the experience. Instead, we also add a random
possibility of choosing an action randomly with uniform
probability that is governed by an exploration rate ε.
This is similar to exploration done by the Q-learning
algorithm and should help the agent gather information
about alternative choices of actions in situations that
already have a suitable rule. There are also cases where
such exploration strategies were successfully applied to
foraging problems [6], so it seems reasonable to try it
for the SPI algorithm in a multiagent setting.

The following is a short version of the SPI algorithm
as it is implemented in this work. The proposed modifica-
tion is marked by an asterisk and is basically everything
that uses ε.

1) Parameters of the algorithm basic_rule_depth brd,
max_plan_length mpl are set, the environment and
agents are initialized.

2) Agent receives an observation obs from the environment,
which includes the reward r from the previous action.

3) Agent updates its experience table (called here spi_table)
by adding 1 to the record describing a combination of the
last state slast, sequence of last actions taken aseqlast
and the resulting reward r (0 or 1):

spi_table[slast, aseqlast, r] += 1

4) Rules for regularities detection are created by exploring
a graph that has rule of the following form as its nodes:

P1 ∧ P2 ∧ ... ∧A1 ∧ ... ∧Ampl → r

which contain state predicates (P1 can be, for example,
a fact “the left cell has food”) and a sequence of actions
Ai, in the precondition and a predicted reward r in the
postcondition that always equals 1 (otherwise the rule
would never be applied). Nodes are explored in two
steps. Firstly, all possible rules with no more than brd
predicates in the precondition including action predicates
and no less than one action are built by expanding a node
with a single new predicated added to the preconditions.
During the second stage, only the rules that pass a
positive rule regularity check are expanded. The first
node is a rule→ r.

5) Positive regularity check for a rule means that its es-
timated probability to yield a reward r is higher than
that of any subrule that can be formed with a subset
of its preconditions. Only rules that pass a positive
regularity check are added to the list of regularities for
decision making. The probability check is the following
inequality:

n(Prule ∧Arule ∧ r)

n(Prule ∧Arule)
>

n(Psubrule ∧Asubrule ∧ r)

n(Psubrule ∧Asubrule)

where Prule — state preconditions of the rule, Arule

— action preconditions (planned actions) of the rule,
Psubrule — state preconditions of the subset rule,
Asubrule — action preconditions (planned actions) of
the subset rule, n(predicates) — number of times the
predicates were applicable to agent’s situation stored in
its experience table spi_table.

6) (*) Exploration action is carried out with ε probability,
which is a randomly chosen action with a uniform
probability and step 9 is performed. Otherwise the usual
SPI action selection is applied.

7) If exploration action was not chosen, all discovered
rules’ applicability to current state from the regularities
list are checked. If a rule’s precondition is satisfied,
its performance rule_performance (probability to get
a reward following the precondition actions from the
current state) is checked according to the formula:

rule_performance(rule, state) =

=
p(Pstate ∧Arule ∧ r)

p(Pstate ∧Arule)

where Pstate is all predicated describing the current
observation (not just the predicated from the rule’s
precondition). A list of such rules is formed with their
performances.

8) The applicable rule with the highest performance is
chosen and its first action (if there are several in the
rule action plan) is chosen to be performed:

chosen_rule =

= argmax
rule

(rule_performance(rule, state))
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action = (Achosen_rule)1

9) The chosen action is stored as the last action performed,
the sequence of length mpl of last actions is updated,
the current state is remembered as the last state and the
action is returned to the environment to be performed.

The SPI method was expected to show relatively high
performance, surpassing some classical reinforcement
learning algorithms at least on initial episodes, since
it can aggregate states from observation space by only
deciding on a few variables (predicates) from it. The
original (with exploration rate ε = 0) SPI also quickly
adapts rewarding behavior, but it can be hypothesized
that it can fall into a local minima because it does
not seek new rules actively for a state that already has
a rewarding regularity discovered. Hence the proposal
to add an exploration coefficient to it, so that it can
sometimes check other actions.

A random choice algorithm was used as a baseline for
comparison. Another algorithm to compare the perfor-
mance against was the classical Q-learning (in tabular
form), described, for example, in [4]. It maps states to
actions by using a value function Q(s, a) that serves as
an estimate of how much reward an agent can get from
a given state s by choosing an action a. The actions are
chosen to maximize the reward:

a(s) = argmax
a

(Q(s, a))

The state-action values are stored in a table and are
updated using both the actual received reward r at the
current step after receiving information about the state
s’ the agent was transferred to and the estimate of the
next rewards:

Q(s, a) = Q(s, a) + α(r + γ ·max
a
Q(s′, a)−Q(s, a))

The estimate is updated with a learning rate α that can
be interpreted as indication of how much the observations
are trusted and the discount rate γ, which indicates how
much the agent values (or trusts the estimates of) the
future rewards.

It should be noted that in partially observable en-
vironments observations must be used instead of the
whole states and that the method uses the whole state
information to make decisions. It means that if only one
small part of the observation changes, the agent treats
the situation as a completely new one and will have to
learn it from scratch.

III. EXPERIMENTAL SETUP

Foraging problem is a relatively common testing envi-
ronment for multiagent reinforcement learning problems,
but can be formulated differently. Here it is defined in the
following way. There are three types of objects – food
units, obstacles and agents situated in square grid cells.
Neither agents nor food can be located on a cell with
an obstacle, but there can be unlimited amount of food

units or agents on any of the free cells. The obstacles
are located only at the edges of the field (Fig. 1):

Figure 1. Foraging environment. Green circles are food locations, pink
circle is an agent and the white line on it shows the direction it is
currently facing, light squares on the fringes are obstacles.

Agent can move and when moving onto a cell with
food objects it «eats» one of them and gets a reward of
1 as part of the observation on its next step. This is to
have a unified and more realistic interface between the
agent and simulation, since rewards are not a separate
entity of the world, but rather an interpretation of the
agent of the situation or an external signal that explicitly
communicates a reward. Agent has a direction, where it
is currently facing. It can choose one of three actions:
moving forward one step in the direction it is facing,
turning 90 degrees left or right.

An observation consists of a number of nearby cells
and their simplified contents. The simplification is that
only a type of the object is shown on the grid to the
agent and none of its internal parameters, and when
there are multiple objects in a cell, only one of them
is detected. The exact cells to be observable depend
on the observation radius and are calculated using a
maximum norm. The direction of the agent is facing also
determines the observation so that the agent also faces
‘up’. For example, for radius of one the observation looks
as shown in Fig. 2:

Figure 2. Observation with vision radius equal to 1. In this example,
three obstacles are shown to the right, two unites of food are located
behind the agent with one being diagonally to the left, the agent itself
is in the center and it always looks forward (‘up’) in its local system
of observation, and the reward received on the previous step is 0.

The goal of each agent is to maximize the cumulative
reward (food it gathered) over an episode, where an
episode is a fixed length sequence of steps. For con-
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venience, instead of a rolling sum, all of the steps are
separated into non-overlapping episodes.

IV. RESULTS AND DISCUSSION

The model of the world consisted of a 25 by 25 grid
with 100 randomly placed food units. The amount of
food on the field was constant which was provided by
randomly placing another unit of food whenever a unit
was gathered by an agent. There were simultaneously 10
agents on the grid with the same starting parameters, but
that evolved independently of each other (without delib-
erate communication). At the start of each step, all agents
decided on an action based on the observation of nearby
surroundings with a vision radius of 1 (all contiguous to
an agent cells, including diagonal, were seen by it). Then
the simulation executed each of the actions sequentially.
On the next step, agents were provided with a reward (if
they gathered a unit of food on the previous step) of 1
by including that information in the observation.

Experiments were carried out 10 times for each set
of parameters and the results were averaged over the
experiments. They were further averaged over the agents
to get a learning curve for an algorithm with a set of
parameters. While a standard practice for single agent
simulations in reinforcement learning, it also makes
sense in this case for a multiagent problem, since agents
of the same type (with the same algorithm and starting
parameters) show similar average performance.

When a new experiment starts, the world and agents
reset (learned parameters are not kept between exper-
iments). Each experiment consisted of 2000 steps that
are grouped into episodes — each episode is a 100
steps. The episodes are mostly a more convenient way to
view the results of a simulation, since the task itself is
continuous. Each episode’s cumulative reward for each
agent is recorded.

Semantic probabilistic inference had its rule depth
limited to 1 (rules with more than one precondition were
retained only after a successful regularity check was
performed) and its plan length to 1 (so that no more
than one action is in a precondition). It was tested both
with the proposed exploration modification and several
exploration rates ε., as well as without it as in the original
article [9], which is equivalent to ε = 0.

Q-learning parameters used in the experiments are the
following: exploration rate ε = 0.05, learning rate α =
0.1, discount factor γ = 0.1.

Computational experiments were carried out in a cus-
tom Python simulation system. Experimental results are
shown in Fig. 3.

The random learning agent serves as a baseline for
comparison and also allows to check that the environment
is not too easy for an agent — rewards must be relatively
low between a random and a learning agent.

The foraging problem itself in this formulation has
several interesting qualities — locally (within a single

Figure 3. SPI – semantic probabilistic inference algorithm. The
number after ’SPI’ is the ε used. Random algorithm is a baseline for
comparison. The bold line is the mean over all agents and experiments,
the shaded area shows minimum and maximum performance between
agents with the same algorithm.

agent’s viewfield) it is almost deterministic, that is,
correct actions will always lead to the same reward,
unless another agent interferes, which is relatively rare
for such rate of agents to the field size (less than 2%
of cells are occupied by agents, which observe at most
about 14% of the world). Outside of the immediate ob-
servation area, however, the world is highly unpredictable
to agents, since they only have a partial observation
of the world state (and a considerably limited, at that),
with food spawning randomly and agents having almost
no information, which could allow to determine food
location outside of the immediate observation.

This leads to a behavior that is similar to random
choice when no food is observed (although, agents show
a preference for forward movement after learning) and
a set of rules that instruct to pick up observed food as
soon as it appears in the agent’s view. However, this en-
vironment did not demonstrate significant opportunities
to trap an agent’s policy in a local minimum because of
the aforementioned properties. Most random significant
drops in an agent’s performance can be attributed to
having collected all the food in a local area and randomly
moving in a now-empty area that the agent has no way
of determining without sufficient memory.

This might contribute to lower importance of explo-
ration in this problem, despite it usually being important
to get a high performance for some types of learning
agents, as seen from, for example, comparison in the
work [5]. We can also observe that high values (0.5 on
the graph) lead to a decreased performance, which is
expected since even optimal rules would be ignored half
of the time.

Q-learning quickly becomes overwhelmed by the state
space when increasing the radius of the agent vision and
learns very slowly, while showing performance below
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that of a random agent. It is not shown on the graph, but
separate experiments have shown that with vision radius
equal to 2 cells away, Q-learning surpasses performance
of 50 by about 200th episode (which is 200 000 steps).

V. ORGANIZATION OF A GROUP OF ROBOTS FOR
COLLECTIVE APPLICATION OF THE LOGICAL MODEL

OF AN ADAPTIVE CONTROL SYSTEM

Firstly, let’s consider, instead of a shortened version
studied above, a full logical model of an adaptive control
system that is introduced in [9]. It can be formally written
as CS = 〈S,A, P, F 〉, where F is the description of the
hierarchy of the basic elements of the system, which are
functional systems, as S = {S1, S2, ..., Sn} is the set
of sensors of the robot (a robot with such structure will
be further called animat), A = {A1, A2, ..., Am} is the
set of its possible actions and P = {P1, P2, ..., Pl} —
the sensory information at a specific time in the form of
predicates which can describe not only the current, but
also the past states of the sensors.

Each functional system (FS) is a tuple FS =
〈PG,G, PR〉, where PG is a predicate-goal, describes
a goal that is represented using the conjunction of
sensory predicates P, i.e. PG = P1 ∧ P2 ∧ ... ∧ Pl. If
this predicate is true, then the goal is achieved. G =
{PG1, PG2, ..., PGn}, where PGi are goal predicates
corresponding to the goals of the subordinate FS in the
hierarchy. PR is a pattern, in the form of:

P1∧P2∧...∧Pn∧PG1∧PG2∧...∧PGm∧A1∧A2∧...∧Ak

which shows that:
• If the animat is in the state described by the sensory

predicates P1, P2, ..., Pn;
• If in this situation it sequentially reaches the sub-

goals PG1, PG2, ..., PGm;
• If then it sequentially performs actions
A1, A2, ..., Ak;

• Then it will reach the goal G with some probability.
With a given goal or sub-goal and known information

about the world and the internal state of the FS, the task
of this FS is to find the best way to achieve the goal
by performing the actions chosen on the basis of the
prediction.

The example of general scheme of this architecture is
shown in Fig. 4

Figure 4. Example of adaptive control system architecture.

Since this case describes the model of the adaptive
control system for a single animat, then considering a

group of robots with local interaction, each robot in the
group can be associated with a separate FS. The links
between individual FSs are then identical with the local
links between the robots of the group. Therefore, orga-
nizing the processes of transferring subgoals from higher-
level FS-robots to lower-level FS-robots and transferring
results or predictions of results from lower-level FS-
robots, you can ensure that the algorithm for semantic
probabilistic inference for a group of robots is similar
to the same algorithm for a single robot. This allows to
treat a group of robots as a single goal-directed entity
driven by the SPI algorithm.

Thus, to adapt the logical model of the adaptive control
system for a group of robots, it is necessary to build
a hierarchy of relations within the group of robots,
each of which is known for the adaptive control system
architecture.

This first problem can be solved in two stages: first,
a leader is selected in the group of robots that will be
the top of the hierarchy. Restriction on the locality of
interactions between agents makes leader selection non-
trivial, but algorithms that can solve this problem are
described in, for example, [3] or [8].

By applying one of these algorithms [8], which is
based on the redistribution of weights between robots,
a hierarchical communication structure can be created
(Fig. 5):

Figure 5. Hierarchical structure resulting from the use of a leader
selection algorithm for a group of robots with local interaction.

It can be seen from the figure that it is a structure
similar to the structure necessary for the functioning of
the logical model of the adaptive control system, where
the root agent ‘0’ corresponds to the one of FS.

However, there are still links connecting several robots
at the top level with the same robot at a lower level. In
this regard, the second stage of preparation is necessary,
i.e. carrying out the procedure for removing such con-
nections, which consists in sending the leader a special
message M with his number to his neighbors. As soon
as the message M is received, the robot remembers the
number of the “parent” robot from which it received it
and will continue to receive messages only from it. Then
he sends the message M with his number and the number

241



of his “parent” to his neighbors. Neighbors of the upper
level, except for the “parent”, by accepting this message,
will exclude him from their neighbors. Lower level
neighbors will remember him as their “parent” unless
they already have another. If messages from different
“parents” came at the same time, a “parent” with a large
number is selected.

This is a particular example of when the connections
in the adaptive control system form a tree. In general,
there is no need to remove additional links.

It remains to assign the remaining FS robots from F (k)

in such a way that they satisfy the expressions describing
the set F (k). This is achieved by assigning each neighbor
of the robot a separate branch of a common tree, which
describes the scheme of relations of individual FS with
each other in the adaptive control system. Each neighbor
thus gets its own tree for distributing its branches among
its neighbors, etc. Obviously, with such a physical orga-
nization, a number of restrictions appear, for example,
the number of lower-level FS that can be controlled by
the upper-level FS is limited by the maximum number
of local communication channels of the robot.

Consequently, in a given group of robots with local
interaction, only some functional system hierarchies can
be implemented. Another factor limiting the number
of possible hierarchies is the number of robots in the
group, i.e. it is impossible to implement systems with
|F (k)| > R, where R is the number of robots in a group.
Moreover, even if |F (k)| > R, it does not guarantee
that robots will be able to organize such a control
system. This is due to the fact that it is impossible to
predict what hierarchical structure robots will build in the
process of self-organization, knowing only their numbers
and the number of their possible local neighbors. The
probability of building a suitable structure increases if
R is noticeably greater than |F (k)| and increasing L.
In other words, the more robots in a group, and the
more neighbors each robot can have, the more complex
functional system hierarchy they can reproduce.

A similar approach can be used to create a group of
robots with local interaction, which can be controlled as
a whole using a logical model of an adaptive control
system.
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АНАЛИЗ МЕТОДА УПРАВЛЕНИЯ НА ОСНОВЕ
СЕМАНТИЧЕСКОГО ВЕРОЯТНОСТНОГО
ВЫВОДА В МНОГОАГЕНТНОЙ ЗАДАЧЕ

ФУРАЖИРОВКИ

Воробьев В. В., Ровбо М. А.

Адаптация в робототехнических системах часто
представляет собой какую-либо форму обучения. Хо-
тя многие исследования посвящены изучению прибли-
жения стратегии и функции полезности в обучении с
подкреплением, некоторые методы основываются на
выводе правил и логическом описании. Один из них
основан на алгоритме семантического вероятностного
вывода, который имеет корни в теории функцио-
нальных систем. В этой статье метод применяется
к распределенной многоагентной проблеме фуражи-
ровки, которая имеет важное свойство в виде среды,
позволяющей изучать децентрализованную систему
индивидуально обучающихся агентов. Мы сравниваем
эффективность этого метода с другими: Q-обучения
и алгоритма случайного выбора в качестве основы
сравнения. Мы также предлагаем модификацию ал-
горитма, включающую исследовательское поведение.
Эксперименты проведвены в системе компьютерно-
го моделирования. Результаты показывают эффектив-
ность работы алгоритмов для различных параметров,
а также влияние исследовательского поведения.
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