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Abstract. Problem of revenue management.Every seller of a product or service has to make some fundamental 

decisions:a child making a lemonade booth: when to have the sale, how much to ask for each cup and when to drop 

the price to finish the sale at the end of the day;a homeowner selling a house: when to list it, what price to ask, which 

offer to accept, when to lower the price or unlist the house if necessary; an eBay seller: what is the duration of the 

auction, what is the starting price, all these are variations of famous optimization problem known under names like: 

the secretary problem, the marriage problem, the sultan's dowry problem, the fussy suitor problem, etc. The key issue 

is optimization under uncertainty of the future. 

 

Keywords: reinforcement learning problem, revenue management, Q-learning 

 

Revenue management decisions 

Allocation of existing capacity depending on estimated and predicted demand is the field of 

revenue management, also known as demand management, sales decisions, yield management. 

Types of revenue management decisions: 

– Structural decisions: choice of selling format (e.g., posted price, negotiations, auction); 

choice of segmentation mechanisms; choice of offered trade terms (volume discounts, cancellation 
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or refund options) - Price decisions: setting posted prices, individual-offer prices, reserve prices 

(in auctions), pricing across product categories, across time, marking down over the product life-

time, etc. 

– Quantity decisions: accepting or rejecting an offer to buy, allocating capacity to different 

classes, segments, products or channels; when to withhold a product from the market. 

Examples of applications of dynamic pricing strategies cover a broad range of manufactured 

goods and services, such as, to name a few, food, electronic goods and garments, airline tickets, 

hotel reservations, tickets for theaters, concerts or sports arenas. 

Historical example 

With Airline Deregulation Act of 1978 the U.S. Civil Aviation Board (CAB) loosened con-

trol of prices; airlines did not need approval from CAB before changing prices, schedules, services, 

they started developing computerized reservation systems (CRSs) and global distribution systems 

(GDSs); significant price elasticity that appeared as a result, allowed many people switching from 

driving to flying; the market was revolutionized. 

Many new low-costers entered the market which forced larger companies to innovate. 

American Airlines Marketing vice president Robert Crandall realized: 

– His company was able to produce near zero marginal cost of a seat and compete with low-

cost startups using surplus seats 

– But how to identify the surplus seats without displacing high-paying business travelers? 

And how to not allow traditional business customers switching to cheaper class of leisure travel-

ers? 

The problem was solved by American using a combination of purchase restrictions and ca-

pacity-controlled fares: 

– Discounted tickets had to be purchased 30 days in advance, were not refundable, required 

minimum 7 days stay 

– The number of discounted tickets on each flight was limited 

The resulting American Super-Saver Fares launched in 1978 and its successor Dynamic In-

ventory Allocation and Maintenance Optimizer (DYNAMO) launced in 1985 where tremendously 

successful. DYNAMO became the first large scale revenue management system in the industry. 

The effect was dramatic: by aggressively matching any special deals in the market AA drove many 

competitors out of business. 

Single-resource capacity control 

Revenue management of single-resource capacity control finds optimal quantity-based rev-

enue by allocating capacity of a single resource to different classes of demand. 

Example: selling economy class cabin on a single leg flight at different prices. 

In contrast, a multiple-resource or network control would deal with selling tickets with con-

necting flights or a sequence of nights at a hotel. 

In simplest version of the problem statement demand for different classes is distinct and 

mutually exclusive. 

The central problem is allocation of fixed capacity between classes either statically or dy-

namically; in the latter case demand for each class is observed in real time and is stochastic. 

Types of control: 

− Booking limits or protection levels 

− Standard or theft nesting 
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− Bid prices 

Booking limit is the maximum amount of capacity that can be sold to any particular class at 

a given point in time. 

For example, discount offers sent to customers are available to the first 50 customers making 

purchase. After the first 50 sales the second class is closed and the rest 50 seats can be purchased 

at full price. 

Littlewood's two-class method 
A simple approach to revenue management of single-resource capacity can be based on the 

so-called Littlewood's rule. 

Let P1>P2 be prices of 2 classes. The demands for these clases are random:  

 

D1∼F1(x), D2∼F2(x). 

 

The main question is how many customers from lower class demand D2 to accept before 

opening class 1 with demand D1 ? It is also important to remember that in revenue management 

all sales typically have to end by a hard deadline after which the value of unsold units drops to 

zero. 

Let remaining capacity be z. A request for price P2 from demand D2 arrives. 

Possible decisions: 

− Accept it and make P2 

− Reject it. Then entire capacity z can be sold for P1 if and only if D1≥z. The expected 

marginal value of reserving capacity z for class P1 is then P1P(D1≥z) 

Then the optimal solution is: accept a class 2 request while P2≥P1P(D1≥z), then switch 

to class 1. 

The most critical piece of information required for the strategy is distributions of demands 

for all classes. 

Revenue management as reinforcement learning problem 

Dynamic pricing problem fits well within problems based on discrete finate Markov decision 

processes because pricing is a real time decision process in a stochastic environment with finite 

number of states (remaining capacity and remaining units of time before the deadline) and deci-

sions depend only on the current, but not previous states. 

The biggest advantage of using reinforcement learning method is: explicit knowledge of 

demands distributions is not necessary. 

In order to avoid complexity of continuous price updates assume that price can only be re-

viewed and changed periodically at equal time steps. 

Describe more formally the MDP for yield management problem: 

− Let n be the total capacity (i.e. total number of units to sell) and m be the total number of 

times when the price can change  

− Variable xt represents remaining capacity at time t and can take values 

{1,2,…,n}, t={0,1,…,m} 

− Remaining time to the deadline is τt=m−t 

− A(xt) is the set of allowed prices when remaining capacity at time t is xt. Prices a 

− t∈A(xt) are the actions available to the agent  

− State of the Markov process describing the environment is then St=<xt,τt> 
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− Transition probabilities p(St+1|St,at) that at time t+1 Markov process state is 

St+1=<xt+1,τt+1>, given that at time t it was St=<xt,τt> and the action (price) selected at time t 

was at 

− Expected immediate revenue (reward) gained as a result of selecting price at when remain-

ing capacity was xt at time t is r(St,at) 

−  Policy of agent (pricing strategy) is formalized as discrete distribution on the set of avail-

able actions or probabilities π(a|s) of selecting action a in state s 

 

The objective is maximization of total expected revenue. Optimization is achieved by solv-

ing the action-value Bellman optimality equation using method of dynamic programing through 

iterations:  

 

where γ is the discount factor for rewards and k is index of iterations of adjustments of the 

action-value function. 

For more information about reinforcement learning see [SuttonBarto] 

Dynamic pricing problem as Q-learning 

Note that knowing transition probabilities p(St+1|St,at) is in fact equivalent to knowing 

distribution of the demand. 

Reinforcement learning problem can still be solved in case when MDP is not fully defined: 

transition probabilities and rewards are not initially known. In such case solution cannot be found 

by dynamic programming. The method that has to be used instead of dynamic programming is Q-

learning. Agent will acquire knowledge about environment transitions indirectly (not explicitly in 

the form of transition probabilities matrix) and gradually in the process of interaction with that 

environment. Besides the advantage of being model-free the Q-learning approach is adaptive: 

agent continues learning and adapting to the changing environment. 

Q-learning is based on the temporal difference version of action-value Bellman optimality 

equation  

 
 

where α is learning rate and st+1,rt+1 are next step t+1 observations of state and immediate 

reward after at state st action at was selected. 

Term  
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is TD error, it is the difference between the target (rt+1+γ⋅maxat+1Qt(st+1,at+1)) and the 

current value of the action-value function Qt(st,at). Then αδt is the adjustment to the state-value 

function Qt(st,at) at the next time t+1 with learning rate α 

Further information on Q-learning can be found in [SuttonBarto]. For information about 

application of reinforcement learning to revenue management see, for example, [GosaviBandla-

Das], [RanaOliveira] and further references there. 

Description of the results 

Reinforcement learning approach 

Below we illustrate the results using example of selling 100 tickets for a one-leg flight by a 

deadline using reinforcement learning policy trained using Q-learning. 

Then we compare the results with a more traditional strategy based on Littlewood's rule that 

requires knowledge of mean value and variance of Gaussian demands for each class. 

The results are obtained in communication with a remote server that plays role of environ-

ment simulator necessary for training the selling agent. The policy is a real time illustration when 

local agent sets the price level and sends it to the remote server. Then remote server sends back to 

the agent a flow of customers buying tickets for the suggested price. 

The real time demo will be shown during the conference. 

 
In [1]: %matplotlib notebook 

 

In [2]:!protoc --python_out=./ revenue.proto 

 

Initiate the environment. Show the total capacity, number of time units when the price can 

be changed and the available prices of different classes. 

 
In [3]:from remote_revenue_env import RemoteRevenueEnv 

env = RemoteRevenueEnv(episode_duration=100, plotting=True, redraw_sec-

onds=0.05) 

 

In [4]:print('Total capacity:', env.total_capacity) 

print('Subepisodes:', env.time_horizon) 

print('Ticket Fares:', env.action_space) 

Total capacity: 100 

Subepisodes: 10 

Ticket Fares: [300, 400, 500, 600, 700, 800, 900, 1000] 

 

Define the class for interaction with the environment. 

 
In [5]:class QLearn: 

    def __init__(self, gamma=0.95, alpha=0.05): 

        from collections import defaultdict 

        self.gamma = gamma 

        self.alpha = alpha 

        self.qmap = defaultdict(int) 

 

    def iteration(self, old_state, old_action, reward, new_state, 

new_possible_actions): 

        # Produce iteration step (update Q-Value estimates) 
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        old_stateaction = tuple(old_state) + (old_action,) 

        max_q = max([self.qmap[tuple(new_state) + (a,)] for a in new_possi-

ble_actions]) 

        self.qmap[old_stateaction] = (1-self.alpha)*self.qmap[old_state-

action] + self.alpha*(reward+self.gamma*max_q) 

        return 

 

    def best_action(self, state, possible_actions): 

        # Get the action with highest Q-Value estimate for specific state 

        a, q = max([(a, self.qmap[tuple(state) + (a,)]) for a in possi-

ble_actions], key=lambda x: x[1]) 

        return a 

Define ϵ − greedy strategy which selects the best available action using the current state-

action value function with probability 1−ϵ and selects action randomly with probability ϵ 

. 
In [6]:import random 

 

def egreedy_strategy(ql, state, possible_actions, eps=0.0): 

    # eps-greedy strategy 

    # ql is a QLearn object 

    if random.random() < eps: 

        # select random action 

        action = random.choice(possible_actions) 

    else: 

        # select action with max Q-Value estimate 

        action = ql.best_action(state, possible_actions) 

    return action 

 

Train the state-action value function. 

 
In [7]:def play_and_train(env, eps, n_games, ql, training): 

    scores = [] 

    for _ in range(n_games): 

        obs = env.reset() 

        done = False 

        score = 0 

        while not done: 

            # select next action using eps-greedy strategy 

            action = egreedy_strategy(ql, obs, env.ac-

tion_space, eps=eps) 

            new_obs, reward, done, info = env.step(action) 

            score += reward 

            if training: 

                # update Q-Value estimates 

                ql.iteration(obs, action, reward, 

                             new_obs, env.action_space) 

            obs = new_obs 

        scores.append(score) 

    return scores 

 

In [8]: from remote_revenue_env import RemoteRevenueTrainEnv 
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env = RemoteRevenueTrainEnv() 

 

ql = QLearn(gamma=0.95, alpha=0.05) 

train_scores = []  # container for train results 

n_games = 100000  # number of episodes per eps for training 

eps_list = [0.9, 0.7, 0.5, 0.3, 0.2, 0.1, 0.05, 0.0] 

for eps in eps_list: 

    print('Training with eps = {} ...'.format(eps)) 

    train_scores += play_and_train(env, eps, n_games, ql, train-

ing=True) 

print('Done.') 

 

Training with eps = 0.9 ... 

Training with eps = 0.7 ... 

Training with eps = 0.5 ... 

Training with eps = 0.3 ... 

Training with eps = 0.2 ... 

Training with eps = 0.1 ... 

Training with eps = 0.05 ... 

Training with eps = 0.0 ... 

Done. 

 

Let the agent use the learned policy. 

The curve shows capacity sold by the current moment (right axis). The bars show the chang-

ing price level: decisions by the agent (left axis). 

 
In [9]: env = RemoteRevenueEnv() 

n_games = 1 

for i in range(n_games): 

    obs = env.reset() 

    done = False 

    while not done: 

        action = egreedy_strategy(ql, obs, env.action_space, eps=0) 

        obs, reward, done, info = env.step(action) 

    print(f'Episode # {i+1}, revenue: {info["revenue"]}, capacity 

left: {obs[0]}') 
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Episode # 1, revenue: 59300, capacity left: 4 

 

EMSRb algorithm 

In this section we apply EMSRb algorithm to the same problem. 

Since this method requires knowledge of distributions of demands, collect, collect data from 

remote server imitating the environment and estimate expectation and standard deviation of cus-

tomer demand for every possible price. 

 
In [10]: # collect statistics for ESMR-b 

import numpy as np 

from remote_revenue_env import RemoteRevenueTrainEnv 

 

env = RemoteRevenueTrainEnv(prune_overbook=False) 

 

fares = sorted(env.action_space, reverse=True) 

ngames = 1000  # per price 

d_means = [] 

d_sigmas = [] 

 

for price in fares: 

    demands = [] 

    for _ in range(ngames):         

        obs = env.reset() 

        done = False 

        d = 0  # demand in current episode 

        while not done: 

            obs, reward, done, info = env.step(price) 

            d += info['new_clients'] 

        demands.append(d) 

    d_means.append(np.mean(demands)) 

    d_sigmas.append(np.std(demands)) 

 

fares = np.array(fares) 

d_means = np.array(d_means) 

d_sigmas = np.array(d_sigmas) 

 

print('Fares:', fares) 

print('Means:', d_means) 

print('Sigmas:', d_sigmas) 

Fares: [1000  900  800  700  600  500  400  300] 

Means: [  24.81    37.241   55.357   81.907  120.69   176.262  264.825  

389.253] 

Sigmas: [  6.0549071    8.49640624  11.56873161  15.30961629  22.23910745 

  36.5007309   51.00417998  78.38981433] 

 

Once the data are collected, implement the strategy, coded below. 

 
In [11]: def emsrb_strategy(capacity_left, fares, protection_levels): 

    for j in reversed(range(len(fares))): 

        if capacity_left >= protection_levels[j]: 

            return fares[j] 
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Run the strategy and visualize the results. 

 
In [16]: from remote_revenue_env import RemoteRevenueEnv 

from revpy.revpy import protection_levels 

 

env = RemoteRevenueEnv(episode_duration=100, plotting=True, re-

draw_seconds=0.05) 

n_games = 1 

 

for i in range(n_games): 

    obs = env.reset() 

    done = False 

    subepisodes_left = env.time_horizon 

    while not done: 

        fractiontime_left = subepisodes_left / env.time_horizon 

        pl = protection_levels(fares, d_means*fractiontime_left,  

                               d_sigmas*np.sqrt(fractiontime_left), 

method='EMSRb') 

        action = emsrb_strategy(obs[0], fares, pl) 

        obs, reward, done, info = env.step(action) 

        subepisodes_left -= 1 

    print(f'Episode # {i+1}, revenue: {info["revenue"]}, capacity 

left: {obs[0]}') 

 
Episode # 1, revenue: 50000, capacity left: 20 

 

References 
[1] [SuttonBarto]: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning 

series), © 2018 Richard S. Sutton, Andrew G. Barto, The MIT Press 

[2] [GosaviBandlaDas]: A reinforcement learning approach to a single leg airline revenue management 

problem with multiple fare classes and overbooking, Gosavi, A., Bandla, N. & Das, T.K. IIE Transactions (2002) 

34: 729. https://doi.org/10.1023/A:1015583703449 

[3] [RanaOliveira]: Real-time dynamic pricing in a non-stationary environment using model-free reinforce-

ment learning, Rupal Rana, Fernando S. Oliveira, Omega, © 2013, Elsevier 

  

https://doi.org/10.1023/A:1015583703449

