ОЦЕНКА ЭФФЕКТИВНОСТИ СИСТЕМЫ ЭЛЕКТРОННОГО ОБУЧЕНИЯ

Ю. А. СКУДНЯКОВ, А. В. ГОРДЕЮК, Н. И. ВАСИЛЕВСКАЯ

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» филиал «Минский радиотехнический колледж»

Аннотация: Проведена оценка эффективности системы электронного обучения (СЭО). Рассмотрены основные показатели качества СЭО. На основе результатов проведенного анализа сформулирован вывод о целесообразности разработки, использования и развития СЭО в силу имеющихся у нее досто-инств: гибкости, оперативности, комфортности процесса обучения, обеспечение высокого уровня усвояемости изучаемого материала.

Введение. Электронное обучение — обучение, реализованное на базе всестороннего применения мультимедиа, удаленного доступа к распределенным образовательным ресурсам на основе веб-технологий, с автоматизированным контролем и анализом результатов обучения и широким использованием разнообразных сетевых средств взаимодействия обучаемых между собой и с преподавателем.

Развитие электронного обучения вызвано недостаточной эффективностью традиционных систем обучения, таких как лекционные и практические занятия, вследствие их малой информативности и сложностями в выработке индивидуального подхода к обучаемому. С использованием технологии электронного обучения, обучаемый получает возможность самостоятельно работать с учебным материалом, проходить контроль знаний и анализировать его результаты. Задания для контроля знаний подбираются с учетом успеваемости обучаемого. Таким образом, вырабатывается индивидуальный подход к обучению.

Оценка эффективности СЭО. Эффективность СЭО можно определить по его основным показателям качества, таким как:

- трудность решаемой задачи, определяемая числом правильных ответов;
- доля правильных ответов $p_j = \frac{R_j}{N}$, где R_j трудность задачи, или общее количество правильных решений задачи в группе обучаемых; N количество обучаемых;
- доля неправильных ответов $q_j = \frac{W_j}{N}$, где W_j количество неправильных ответов на задание в группе обучаемых, N –количество обучаемых;
- логит трудности задания L_d , определяющий меру трудности задания: $L_d = ln \frac{q_j}{p_j}$, где q_j доля неправильных ответов, p_j доля правильных ответов.

Чем выше значение данного показателя, тем труднее задание для группы обучаемых.

Доля правильных ответов обучаемого на тестовые задания определяется как отношение количества правильных ответов к общему количеству заданий: $p_i = \frac{Y_i}{K}$, где Y_i – количество правильных ответов обучаемого; K – количество заданий.

Доля неправильных ответов q_i определяется как доля неверных ответов к количеству заданий: $q_i = \frac{Z_i}{K}$, где Z_i – количество неправильных ответов обучаемого; K – количество заданий.

Логит уровня знаний L_k определяется как отношение доли правильных ответов к доле неправильных ответов обучаемого: $L_k = ln \frac{p_i}{a_i}$,

где p_i – доля правильных ответов обучаемого, q_i – доля неправильных ответов обучаемого.

Зная значения логитов трудности задания и уровня знаний, можно подобрать обучаемому задания согласно его уровню знаний.

На основании логитов трудности задания и успеваемости обучаемых можно рассчитать вероятность решения задания обучаемым P при помощи метрической системы Γ . Раша [1]: $P=\frac{e^{1.7(L_k-L_d)}}{1+e^{1.7(L_k-L_d)}}$, где L_k — логит уровня знаний обучаемого, L_d — логит трудности задания. Такая модель, однако, будет эффективна только в том случае, если тест не содержит задания с различной дифференцирующей способностью или дискриминативностью.

Более универсальное решение рассматриваемой проблемы предложено с помощью использования четырехпараметрической модели, описанной в работе [1]. Однако, данная модель при больших объемах данных требует для своей реализации значительных вычислительных ресурсов.

Заключение. Таким образом, результаты проведенного анализа ряда основных показателей качества СЭО позволяют оценить ее эффективность с точки зрения обеспечения гибкости, оперативности современного образовательного процесса, глубокого и полного освоения изучаемого материала.

Список литературы

1. Мазорчук, М. С. Методы и модели анализа качества тестовых заданий и моделирование компьютерного адаптивного тестирования в системах адаптивного дистанционного обучения / М. С. Мазорчук, В. С. Добряк, П. С. Емельянов // Открытые информационные и компьютерные интегрированные технологии. – N = 73. – 2016.