T. 86, № 4

V. 86, N 4

JOURNAL OF APPLIED SPECTROSCOPY

ИЮЛЬ — АВГУСТ 2019

JULY — AUGUST 2019

ОСОБЕННОСТИ ВХОЖДЕНИЯ САМАРИЯ В КВАРЦЕВЫЕ ГЕЛЬ-СТЕКЛА, ЛЕГИРОВАННЫЕ АЛЮМИНИЕМ И БАРИЕМ

Г. Е. Малашкевич ^{1*}, А. Н. Шимко ¹, А. П. Ступак ¹, И. В. Прусова ¹, К. Н. Нищев ², В. М. Кяшкин ², А. А. Корниенко ³, Е. Б. Дунина ³, А. В. Семченко ⁴, И. И. Сергеев ⁵

УДК 535.37

¹ Институт физики НАН Беларуси,

220072, Минск, просп. Независимости, 68-2, Беларусь; e-mail: g.malashkevich@ifanbel.bas-net.by

² Мордовский государственный университет. им. Н. П. Огарёва, 430000 Саранск, Россия

³ Витебский государственный технологический университет, 210035 Витебск, Беларусь

⁴ Гомельский государственный университет им. Ф. Скорины, 256699 Гомель, Беларусь

⁵ Белорусский государственный университет информатики и радиоэлектроники,

220013 Минск, Беларусь

(Поступила 22 марта 2019)

Исследованы кварцевые гель-стекла, полученные остекловыванием на воздухе или в газовой смеси H_2 : Ar ксерогелей, легированных Sm, Al и Ba. Установлено, что при их синтезе возможно формирование примесных гексагональных и тетрагональных кристаллитов SiO₂ и тетрагональных кристаллитов SmSi₂. При использовании восстановительных условий синтеза имеет место вхождение самария в стекло одновременно в двух состояниях окисления 3+ и 2+. При этом в Sm-Al-codepжащих стеклах реализуется достаточно эффективная сенсибилизация люминесценции ионов Sm²⁺ ионами Sm³⁺, а в Sm-Al-Ba-содержащих стеклах она отсутствует, так как ионы Sm²⁺ локализуются в основном в подрешетке стекла, сформированной с участием ионов Ba²⁺. На основе полученных спектров рассчитаны положения энергетических состояний ионов Sm²⁺ и Sm³⁺ в таких стеклах.

Ключевые слова: люминесценция, перенос возбуждений, внутренний фильтр, фазовое разделение, положение энергетических состояний.

We study the silica gel-glasses obtained by vitrification in air or in a gas mixture of H_2 : Ar xerogels doped with Sm, Al, and Ba. It is found that during their synthesis it is possible to form impurity hexagonal and tetragonal crystallites of SiO₂ and tetragonal crystallites of SmSi₂. When the reducing synthesis conditions are applied, the incorporation of samarium in glass simultaneously in two oxidation states (3+ and 2+) takes place. Meanwhile, Sm-Al-containing glasses provide a sufficiently effective sensitization of the luminescence of Sm²⁺ ions by Sm³⁺ ions, while in Sm-Al-Ba-containing glasses this effect is absent because Sm²⁺ ions are localized mainly in the glass sublattice formed with the participation of Ba²⁺ ions. Based on the spectra obtained, the positions of the energy states of the Sm²⁺ and Sm³⁺ ions in such glasses are calculated.

Keywords: luminescence, transfer of excitations, intrinsic filter, phase separation, position of energy states.

DISTINCTIVE FEATURES OF THE INCORPORATION OF SAMARIUM INTO SILICA GEL-GLASSES DOPED BY ALUMINUM AND BARIUM

G. E. Malashkevich ^{1*}, A. N. Shimko¹, A. P. Stupak¹, I. V. Prusova¹, K. N. Nischev², V. M. Kyashkin², A. A. Kornienko³, E. B. Dunina³, A. V. Semchenko⁴, I. I. Sergeev⁵ (¹ B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 68-2 Nezavisimosti Prosp., Minsk, 220072, Belarus; e-mail: g.malashkevich@ifanbel.bas-net.by; ² N. P. Ogarev National Research Mordovian State University, Saransk, 430000, Russia; ³ Vitebsk State Technological University, Vitebsk, 210035, Belarus; ⁴ F. Skaryna Gomel State University, Gomel, 256699, Belarus; ⁵ Belarusian State University of Informatics and Radioelectronics, Minsk, 220013, Belarus) **Введение.** Интерес к Sm-содержащим стеклам появился вскоре после получения генерации на кристаллах CaF₂:Sm²⁺ [1]. Известно, что стекла с ионами Sm³⁺ и Sm²⁺ способны проявлять интенсивную люминесценцию в видимой области спектра благодаря переходам из метастабильных состояний ${}^{4}G_{5/2}$ и ${}^{5}D_{0}$ [2—9]. При этом ионы Sm³⁺ характеризуются отсутствием наведенного поглощения из состояния ${}^{4}G_{5/2}$, интенсивными абсорбционными переходами в области 1030—1610 нм и способностью восстанавливаться во многих матрицах под действием рентгеновского [10], γ [11], β [12] и лазерного [13] излучения. В свою очередь ионы Sm²⁺ могут относительно легко фотоионизироваться, что делает возможным выжигание стабильных спектральных провалов [14]. Данные свойства Sm-содержащих стекол открывают определенные перспективы их использования в квантовой электронике, фотонике, оптоинформатике, дозиметрии и системах светодиодного освещения. Естественно, Sm-содержащие кварцевые стекла, полученные золь-гель методом, имеют ряд преимуществ перед стеклами других основ благодаря высоким эксплуатационным параметрам возможности инкорпора-

Sm-содержащие кварцевые стекла, полученные золь-гель методом, имеют ряд преимуществ перед стеклами других основ благодаря высоким эксплуатационным параметрам, возможности инкорпорации [15] либо формирования [16] активаторсодержащих наночастиц и более высокой степени легирования. К настоящему времени относительно полно исследовано влияние на структуру и свойства ионов Sm в SiO₂ лишь алюминия и щелочных металлов [4, 5, 7, 17]. В частности, показано, что присутствие в матрице кварцевого стекла алюминия значительно облегчает восстановление в нем Sm³⁺ до Sm²⁺, а добавление щелочи (Na₂O) еще более увеличивает долю Sm²⁺. Однако нам не удалось найти сообщений о влиянии на спектрально-люминесцентные свойства данного активатора в кварцевом стекле щелочноземельных модификаторов структурного каркаса, в частности бария. Интерес к последнему обусловлен сведениями о фазовом разделении в стеклах систем SiO₂-BaO [18, 19], что должно отразиться на особенностях вхождения в них разнозарядных ионов самария. Этому вопросу посвящена настоящая работа. Дополнительно определены положения 4*f*-состояний ионов самария в исследуемом стекле, информация о которых в литературе также отсутствует.

Эксперимент. Образцы синтезировались прямым золь-гель методом, описанным в [20]. Активация осуществлялась пропиткой пористых ксерогелей водно-спиртовыми растворами азотнокислых солей самария, алюминия и бария. Реактивы соответствовали категории XЧ. Остекловывание ксерогелей до прозрачного состояния проводилось при $T \approx 1230$ °C, охлаждение происходило инерционным образом. Восстановление ионов Sm³⁺ до двухзарядного состояния осуществлялось путем остекловывания ксерогелей в газовой смеси 5H₂:95Ar. Полученные стекла имели состав (мас. %): 0.3Sm₂O₃-99.7SiO₂ (образец 1), 2.0Sm₂O₃-95.0SiO₂ (образец 2) и 1.0Sm₂O₃-0.5Al₂O₃-1.0BaO-97.5SiO₂ (образец 3). Фазовый состав контролировался с помощью рентгеновского дифрактометра ДРОН-2.0 ($\lambda = 1.54050$ Å). Спектрально-люминесцентные свойства исследовались на модернизированной установке на основе спектрометра СДЛ-1. Полученные спектры исправлялись с учетом спектральной чувствительности системы регистрации и распределения спектральной плотности возбуждения) на единичный интервал длин волн $dN/d\lambda$ от λ .

Результаты и их обсуждение. На рис. 1 приведены дифрактограммы остеклованных на воздухе образцов 2 и 3, полученные с шагом сканирования 0.04°. Как видно, в обоих случаях помимо широкой диффузной полосы, обусловленной аморфной матрицей, наблюдаются достаточно узкие рефлексы, указывающие на наличие кристаллической фазы. Сопоставление приведенных дифрактограмм с данными каталога JCPDS-1998 свидетельствует о том, что для образца 3 брэгговские рефлексы при углах $2\theta = 20.8^{\circ}$, 26.7° , 36.6° , 39.5° , 42.4° , 50.2° и 60.0° с относительной интенсивностью 0.20, 0.49, 1.00, 1.00, 0.08, 0.26 и 0.12 удовлетворительно соответствуют гексагональной, а при $2\theta = 21.9^{\circ}$ и 36.0° с относительной интенсивностью 1 и 0.15 — тетрагональной кристаллической решетке SiO₂ (Ref. Codes 01-085-0865 и 01-076-0938). Аналогично для образца 2 рефлексы при 20 = 22.4°, 26.7°, 29.5 и 34.3° соответствуют по положению, но не по относительной интенсивности, тетрагональной решетке SmSi₂ (Ref. Code 01-074-0234). Сравнение кривой 2 с эталонной дифрактограммой кристаллической фазы SmSi₂ (табл. 1) показывает отсутствие ряда характерных рефлексов. Причиной этого может быть формирование в процессе остекловывания достаточно крупных совершенных кристаллитов данной фазы, ориентированных таким образом, что отдельные семейства отражающих плоскостей не будут находиться в условиях брэгговского отражения. Действительно, оценка с помощью формулы Шеррера среднего размера таких кристаллитов

где K — безразмерный коэффициент формы частиц (0.9 для сферических); λ — длина волны рентгеновского излучения; β — ширина рефлекса на полувысоте (в радианах и единицах 2 Θ); Θ — угол дифракции, дает d > 200 нм, что выходит за пределы ее применимости.

В образце 1 присутствие какой-либо кристаллической фазы не обнаружено. При остекловывании образцов в смеси 5H₂:95Ar новые брэгговские рефлексы также не появляются. По-видимому, отсутствие примеси однотипных кристаллических фаз в образцах 2 и 3 обусловлено различием скоростей нагрева при остекловывании (для последнего она больше в 1.5 раза) и концентраций легирующих элементов.

Рис. 1. Дифрактограммы остеклованных на воздухе образцов 2 и 3

Таблица 1.	Положение (20) и о	тносительные	интенсивности	і (I) основных ре	флексов
	эталонной дифра	актограммы ф	оазы SmSi2 и обј	разца 2	

Индексы	Эталон		Обра	Образец 2		
Миллера	20, град	<i>I</i> , отн. ед.	20, град	<i>I</i> , отн. ед.		
101	22.932	38.6	22.4(9)	<5		
004	26.668	20.8	26.71	100		
103	29.799	49.8	29.55	26		
112	34.041	100	34.27	11		
105	40.412	37.3	—	—		
200	44.728	28.9				

На рис. 2 приведены спектры люминесценции исследуемых стекол. Подавляющая доля излучения в спектре остеклованного на воздухе однолегированного стекла при $\lambda_{B036} = 402$ нм приходится на полосы ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ ($\lambda_{max} \approx 570$ нм), ${}^{6}H_{7/2}$ (≈ 605 нм) и ${}^{6}H_{9/2}$ (≈ 650 нм) ионов Sm³⁺ (рис. 2, *a*, кривая *I*). Спектр аналогично полученного Sm-Al-содержащего стекла отличается меньшим в ~1.5 раза коэффициентом ветвления люминесценции в "сверхчувствительной" полосы ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ (ср. кривые *I* и 2). Это указывает на вхождение атомов алюминия в первую катионную оболочку Sm³⁺. Остекловывание Sm-содержащего стекла в газовой смеси H₂:Ar практически не сопровождается изменением спектра люминесценции (не приведен), в то время как для Sm-Al- и Sm-Al-Ba-содержащих стекол при $\lambda_{B036} = 350$ нм появляются новые полосы в красной и ближней ИК областях спектра, обусловленные переходами ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ ионов Sm²⁺(рис. 2, *б*, кривые 2 и 3). Широкий пьедестал под этими полосами обусловлен межконфигурационными 4f⁵5d ${}^{1} \rightarrow 4f^{6}$ -переходами ионов Sm²⁺. Причиной восстановление и водородом ионов Sm³⁺ до Sm²⁺ в присутствии Al в стекле является компенсация положительного заряда не структурными дефектами SiO₂, а отрицательным зарядом полиэдров [AlO₆], вызывая увеличение

Рис. 2. Спектры люминесценции образцов 1, 2 и 3, остеклованных на воздухе (*a*) и в смеси H₂:Ar (δ); $\lambda_{B03\delta} = 402$ (*a*) и 350 нм (δ); $\Delta\lambda_{per} = 2$ нм, $\Delta\lambda_{B03\delta} = 4$ нм

размеров междоузлий и, следовательно, давая возможность повышения координационного числа активатора при переходе Sm³⁺ в Sm²⁺. На рис. 2, δ видно, во-первых, изменение (уменьшение) при введении Ва относительной интенсивности люминесценции в межконфигурационном переходе ионов Sm²⁺, во-вторых, значительное ослабление внутриконфигурационных переходов ионов Sm³⁺ и, в-третьих, практически полное совпадение положения *f*–*f*-полос ионов Sm²⁺ для обоих стекол. Первый факт естественно объяснить большей чувствительностью к локальному окружению внешней 4f ⁵5*d* ¹-оболочки, второй — более полным восстановлением ионов Sm³⁺ до Sm²⁺ и, соответственно, лучшим экранированием межконфигурационной полосой поглощения последних внутриконфигурационных полос первых, а третий свидетельствует о слабом влиянии локального окружения на 4f-оболочку ионов Sm²⁺. Можно полагать, что рассмотренные кристаллиты SmSi₂ не вносят какоголибо вклада в описанные спектры люминесценции ионов Sm³⁺ и Sm²⁺, поскольку энергии переходов ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2,7/2,9/2}$ и ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ значительно превосходят ширину запрещенной зоны редкоземельных дисилицидов, которая <1.0 эВ, судя по спектру их поглощения [21].

На рис. 3 представлены спектры возбуждения люминесценции исследуемых стекол. Спектр остеклованного на воздухе однолегированного стекла, полученный при $\lambda_{per} = 650$ нм (кривая 1), характеризуется интенсивной полосой переноса заряда О²⁻→Sm³⁺ при λ ≈ 215 нм и серией слабых полос, обусловленных *f*-*f*-переходами ионов Sm³⁺. Спектр аналогично остеклованного Sm-Al-содержащего стекла в общих чертах подобен кривой / и поэтому не приведен. Наоборот, при остекловывании в газовой смеси H₂:Ar и регистрации в области излучения ионов Sm²⁺ ($\lambda_{per} = 685$ нм) в спектре этого стекла с длинноволнового края от интенсивной полосы О²⁻→Sm³⁺ появляется слабая и широкая полоса с максимумом при ≈ 350 нм (кривая 2), обусловленная межконфигурационным $4f^6 \rightarrow 4f^55d^{-1}$ переходом этих ионов, на которую накладывается ряд узких внутриконфигурационных f-f-полос ионов Sm³⁺. Наличие в спектре возбуждения люминесценции ионов Sm²⁺ полос, обусловленных ионами Sm³⁺, свидетельствует о достаточно эффективной миграции возбуждений с последних на первые в Sm-Al-содержащем стекле. В спектре же Sm-Al-Ba-содержащего стекла, остеклованного в используемой газовой смеси, при λ_{per} = 685 нм на месте внутриконфигурационных полос возбуждения ионов Sm³⁺ появляются узкие провалы, а полоса переноса заряда O^{2−}→Sm³⁺ вообще отсутствует. Данный факт свидетельствует о том, что полосы поглощения ионов Sm³⁺ являются внутренним фильтром по отношению к полосам возбуждения люминесценции ионов Sm²⁺. Такая ситуация возможна лишь при преимущественном вхождении последних в подрешетку стекла, сформированную с участием ионов Ba²⁺, и неэффективной миграции электронных возбуждений с ионов Sm³⁺, находящихся в основной подрешетке стекла, на ионы Sm²⁺ в "бариевой" подрешетке.

Рис. 3. Спектры возбуждения люминесценции образцов, остеклованных на воздухе (*I*) и в смеси H₂:Ar (2, 3); $\lambda_{per} = 650$ (*I*) и 685 нм (2, 3); $\Delta\lambda_{B036} = 1$ (*I*), 3 (2), 6 нм (3); $\Delta\lambda_{per} = 4$ нм

Используя спектр люминесценции образца 2 (рис. 2, б), можно определить положения энергетических состояний ионов Sm²⁺ и Sm³⁺. С этой целью вычислим энергии их мультиплетов в приближении свободного иона с помощью гамильтониана

$$\hat{H} = \hat{H}_e + \hat{H}_{SO} + \hat{H}', \tag{2}$$

где \hat{H}_e описывает электростатическое взаимодействие электронов с ядром и друг с другом. Разложение электростатического взаимодействия через полиномы Лежандра позволяет разделить угловую и радиальную части. В результате матричные элементы \hat{H}_e можно записать через параметры E_0, E_1, E_2, E_3 :

$$H_e = \sum_{k=0}^{3} e_k E^k.$$
 (3)

Матричные элементы гамильтониана спин-орбитального взаимодействия \hat{H}_{SO} вычисляются как

$$\langle l^{N}\gamma SLJM | \hat{H}_{SO} | l^{N}\gamma' S \mathcal{L} \mathcal{I} \mathcal{M} \rangle = \zeta_{nl} (-1)^{S'+L+J} \delta(J\mathcal{I}') \delta(MM') \begin{cases} S & S' & 1 \\ L & L' & J \end{cases} \sqrt{l(l+1)(2l+1)} \times \langle l^{N}\gamma SL\mathcal{I} | l^{N}\gamma' S \mathcal{L} \mathcal{I} \rangle.$$

$$(4)$$

Гамильтониан *Ĥ*' учитывает воздействие возбужденных конфигураций:

$$\hat{H}' = \alpha L(L+1) + \beta G(G_2) + \gamma G(R_7), \tag{5}$$

где α , β , γ — линейные комбинации интегралов, которые трактуются как варьируемые параметры; $G(G_2)$ и $G(R_7)$ — собственные значения операторов Казимира для групп G_2 и R_7 .

Результаты расчетов с параметрами гамильтониана (2)—(4) $E_1 = 4896.19 \text{ см}^{-1}$, $E_2 = 25.634 \text{ см}^{-1}$, $E_3 = 495.232 \text{ см}^{-1}$ и $\zeta = 1073 \text{ см}^{-1}$ для Sm^{2+} из [22] и $E_1 = 5496.9 \text{ см}^{-1}$, $E_2 = 25.809 \text{ см}^{-1}$, $E_3 = 556.40 \text{ см}^{-1}$ и $\zeta = 1157.3 \text{ см}^{-1}$ для Sm^{3+} из [23] представлены в табл. 2. Для более однозначного соотнесения межмультиплетных переходов и полос излучения выполнено разложение спектра люминесценции образца 2 на рис. 2, δ на лоренцевы пики (табл. 3). При составлении табл. 3 кроме вычисленных положений мультиплетов из табл. 2 использована информация о положении полос излучения спектра люминесценции иона Sm^{3+} в кристалле $\text{KY}(\text{WO}_4)_2$ из [24]. Как видно из табл. 2, метастабильное состояние ${}^4G_{5/2}$ ионов Sm^{3+} находится в резонансе с состоянием 5D_2 ионов Sm^{2+} , что способствует эффективному переносу возбуждений от первых на вторые. Вместе с тем из-за небольшой энергетической щели (≈4100 см⁻¹) между метастабильным состоянием 5D_0 ионов Sm^{2+} и ближайшим к нему нижним состоянием ${}^6F_{11/2}$ ионов Sm^{3+} люминесценция Sm^{2+} относительно эффективно тушится соседними ионами Sm^{3+} . Естественно, такие сенсибилизация и тушение люминесценции реализуются лишь в Sm-Al-содержащем стекле. В случае Sm-Al-Ba-содержащего стекла, где ионы Sm^{2+} и Sm^{3+} практически отсутствует.

Sı	m^{2+}	Sm^{3+}		
Мультиплет	Энергия, см ⁻¹	Мультиплет	Энергия, см ⁻¹	
$^{7}F_{0}$	0	${}^{6}H_{5/2}$	0	
$^{7}F_{1}$	299	${}^{6}H_{7/2}$	1038	
$^{7}F_{2}$	828	${}^{6}H_{9/2}$	2253	
$^{7}F_{3}$	1517	${}^{6}H_{11/2}$	3592	
$^{7}F_{4}$	2310	${}^{6}H_{13/2}$	5014	
$^{7}F_{5}$	3169	${}^{6}F_{1/2}$	6376	
$^{7}F_{6}$	4067	${}^{6}H_{15/2}$	6485	
${}^{5}D_{0}$	14604	${}^{6}F_{3/2}$	6620	
${}^{5}D_{1}$	15928	${}^{6}F_{5/2}$	7112	
${}^{5}D_{2}$	17888	${}^{6}F_{7/2}$	7960	
${}^{5}L_{6}$	20098	${}^{6}F_{9/2}$	9121	
${}^{5}D_{3}$	20238	${}^{6}F_{11/2}$	10506	
${}^{5}L_{7}$	20934	${}^4G_{5/2}$	17889	
${}^{5}L_{8}$	21690	${}^{4}F_{3/2}$	18853	
${}^{3}P_{2}$	21997	${}^{4}G_{7/2}$	19992	
${}^{5}G_{3}$	22101	$^{4}I_{9/2}$	20491	
${}^{5}G_{4}$	22133	${}^{4}M_{15/2}$	20604	
${}^{5}G_{5}$	22138	${}^{4}I_{11/2}$	21071	
${}^{5}G_{6}$	22139	$^{4}I_{13/2}$	21624	
${}^{5}L_{9}$	22327	${}^{4}F_{5/2}$	22090	
${}^{5}L_{10}$	22777	${}^{4}M_{17/2}$	22354	
${}^{5}G_{4}$	22929	${}^{4}G_{9/2}$	22696	
${}^{5}H_{3}$	25228	$^{4}I_{15/2}$	22952	
${}^{5}H_{7}$	25471	$^{4}M_{19/2}$	23890	

Таблица 2. Вычисленные с помощью гамильтонианов (2)—(4) энергии мультиплетов ионов Sm²⁺ и Sm³⁺

T a C	блица З	Интерп	ретация	спектра	люминесценции	образца 2	2 при	$\lambda_{B030} = 3$	50 н	M
-------	---------	--------------------------	---------	---------	---------------	-----------	-------	----------------------	------	---

λ, нм	E, cm^{-1}	Переход
565.40	17687	$4C \rightarrow 6H$
575.36	17380	$G_{5/2} \rightarrow \Pi_{5/2}$
603.28	16576	$4C \rightarrow 6H$
616.25	16227	$G_{5/2} \rightarrow \Pi_{7/2}$
649.92	15386	40.611
660.90	15131	$G_{5/2} \rightarrow H_{9/2}$
684.07	14618	${}^{5}D_{0} \rightarrow {}^{7}F_{0}, {}^{5}D_{1} \rightarrow {}^{7}F_{3}$
695.91	14370	${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$
706.29	14158	${}^{5}D_{0} \rightarrow {}^{7}F_{1}$
727.21	13751	${}^{5}D_{0} \rightarrow {}^{7}F_{2}$
765.62	13061	${}^{5}D_{0} \rightarrow {}^{7}F_{3}$
811.21	12327	${}^{5}D_{0} \rightarrow {}^{7}F_{4}$

Заключение. При остекловывании Sm-Al- и Sm-Al-Ва-содержащих ксерогелей возможно формирование примесных кристаллических фаз, соответствующих гексагональной и тетрагональной кристаллическим решеткам SiO₂, а также тетрагональной решетке SmSi₂. При остекловывании Sm-Al-содержащих ксерогелей в газовой смеси H₂:Ar формируются оптические центры Sm³⁺ и Sm²⁺, для которых имеет место достаточно эффективная сенсибилизация люминесценции последних первыми. Для Sm-Al-Ba-содержащих ксерогелей, остеклованных в такой же газовой смеси, реализуется преимущественное вхождение ионов Sm²⁺ в подрешетку стекла, сформированную с участием ионов Ba²⁺, и отсутствие передачи возбуждений между ионами активатора, локализованными в разных подрешетках стекла. Данный факт может представлять интерес для случаев, когда требуются оптические среды с двумя типами радикально различающихся спектров люминесценции и ее возбуждения.

- [1] W. Kaiser, C. G. B. Garrett, D. L. Wood. Phys. Rev., 123 (1961) 766-771
- [2] И. Ф. Бурмистров, И. А. Жмырёва, А. А. Каленов, В. П. Колобков, В. Т.Корнев, П. И. Кудряшов. Журн. прикл. спектр., 10 (1969) 73-78
- [3] М. Б. Левин, Г. П. Старостина, А. С. Черкасов. Журн. прикл. спектр., 46 (1987) 432-437
- [M. B. Levin, G. P. Starostina, A. S. Cherkasov. J. Appl. Spectr., 46 (1987) 274-281]
- [4] Е. Л. Демская, С. С. Пивоваров. Физ. и хим. стекла, 16 (1990) 605-611
- [5] R. Morimo, T. Mizushima, Y. Udagawa, N. Kakuta, A. Ueno, H. Okumura, H. Namikawa. J. Electrochem. Soc., 137, N 7 (1990) 2340-2343
- [6] Г. Е. Малашкевич, Е. Н. Подденежный, И. М. Мельниченко, А. В. Семченко. ФТТ, 40, № 3 (1998) 458-465
- [7] V. C. Costa, Y. Shen, A. M. M. Santos, K. L. Bray, J. Non-Cryst. Solids, 304 (2002) 238-243
- [8] Г. Е. Малашкевич, А. В. Семченко, А. А. Суходола, А. П. Ступак, А. В. Суходолов, Б. В. Плющ, В. Б. Сидский, Г. А. Денисенко. ФТТ, 50 (2008) 1408—1415
- [9] G. E. Malashkevich, V. N. Sigaev, N. V. Golubev, E. Kh. Mamadzhanova, A. A. Sukhodola, A. Paleari, P. D. Sarkisov, A. N. Shimko. Mater. Chem. Phys., 137 (2012) 48-54
- [10] G. Okada, F. Nakamura, N. Kawano, N. Kawaguchi, S. Kasap, T. Yanagida. Nuclear Instrum. Methods Phys. Res. B, 435 (2018) 268-272
- [11] E. Malchukova, B. Boizot, D. Ghaleb, G. Petite. Nuclear Instrum. Methods Phys. Res. A, 537 (2005) 411-414
- [12] E. Malchukova, B. Boizot, G. Petite, D. Ghaleb. J. Non-Cryst. Solids, 353 (2007) 2397-2402
- [13] Y. Zheng, Y. Yao, L. Deng, W. Cheng, J. Li, T. Jia, J. Qiu, Z. Sun, S. Zhang. Photon. Res., 6 (2018) 144 - 148
- [14] H. Song, T. Hayakawa, M. Nogami. J. Appl. Phys., 86 (1999) 5619-5623
- [15] Г. Е. Малашкевич, Г. И. Семкова, А. В. Семченко, П. П. Першукевич, И. В. Прусова. Письма в ЖЭТФ, 88 (2008) 855-859
- [16] Г. Е. Малашкевич, В. Н. Сигаев, Г. И. Семкова, Б. Шампаньон. ФТТ, 46 (2004) 534-537
- [17] J. Jin, Sh. Sakida, T. Yoko, M. Nogami. J. Non-Cryst. Solids, 262 (2000) 183-190
- [18] T. P. Seward, D. R. Uhlmann, D. Turnbull, J. Am. Ceram. Soc., 51 (1968) 278-285

[19] Y. Gueguen, P. Houizot, F. Célarié, M. Chen, A. Hirata, Y. Tan, M. Allix, S. Chenu, C. Roux-Langlois, T. Rouxel. J. Am. Ceram. Soc., 100 (2017) 1982-1993

- [20] G. E. Malashkevich, E. N. Poddenezhny, I. M. Melnichenko, A. A. Boiko. J. Non-Cryst. Solids, 188 (1995) 107-117
- [21] K. Benyahia, Z. Nabi, R. Ahuja, F. Boukabrine, A. Khalfi. J. Phys. Chem. Solids, 70 (2009) 1378-1384
- [22] P. Solarz, M. Karbowiak, M. Głowacki, M. Berkowski, R. Diduszko, W. Ryba-Romanowski. J. Alloys Compoun., 661 (2016) 419-427
- [23] W. T. Carnall, P. R. Fields, K. Rajnak. J. Chem. Phys., 45 (1968) 4424-4442
- [24] D. P. Demesh, O. P. Dernovich, N. V. Gusakova, A. S. Yasukevich, A. A. Kornienko, E. B. Dunina, L. A. Fomicheva, A. A. Pavlyuk, N. V. Kuleshov. Opt. Mater., 75 (2018) 821-826