

196

55-я Юбилейная Научная Конференция Аспирантов, Магистрантов И Студентов БГУИР, 2019
г.

4. E. Nezhnikova. IOP Conf. Series: Earth and Environmental Science 90 012161 (2017) doi:10.1088/1755-
1315/90/1/012161

MICROSERVICES VIRTUALIZATION

Khmyl V.A.

Belarusian State University of Informatics and Radioelectronics,
Minsk, Belarus

Microservices is the most popular architecture style and effective management of them makes development faster and deployment
easier.Docker offers solution to virtualize microservices based on containers. Containers make microservices lightweight, scalable,
independent and more stable.

For the past couple of decades, the most common way for enterprise software to be developed
and sold was as monolithic packaged applications and even larger platforms – all fully built and inte-
grated in a big chunk. Today, due in large part to the growth of cloud computing, agile development
processes, performance improvements, and the need for scalable, lightweight applications and enter-
prise architecture flexibility, the movement has been toward microservices and containerization.

Microservices is an approach to application development in which a large application is built as
a suite of modular, single-use services. The idea is that microservices should focus on one component
of the application and do that one thing exceptionally well. Each module supports a specific business
goal and uses a simple, well-defined interface to communication with other modules (Figure 1.1).

Figure 1.1 – Architecture styles of applications

Containers are the tools and methodology used to organize and develop microservices. Con-

tainer-based virtualization uses a single kernel to run multiple instances of an operating system. A
container is an isolated part of system that includes everything it needs to run: code base, system
tools and libraries, configuration and setting. Each instance runs in a completely isolated environment,
so there is no risk that one container can gain access to another’s files. This allows for different teams
to work on different microservices simultaneously.

Microservices approach offers several benefits, including the ability to scale individual micro-
services, keep the codebase easier to understand and test, and enable the use of different program-
ming languages, databases, and other tools for each microservice. Although this technique solves
many problems, it also has several disadvantages [1].

Some problems in a microservice architecture that you can face are:
Once your number of microservices grow, it can be hard to keep track of them;
You will need to consider things such as: how to handle the communication between micro-

services, handle errors to avoid disrupting other microservices, and add more test cases in each com-
ponent;

Finding and tracing the bugs/errors in your application;
Microservices could consume more resources compared to a monolithic app.

197

55-я Юбилейная Научная Конференция Аспирантов, Магистрантов И Студентов БГУИР, 2019
г.

Docker is an excellent tool that can make managing and deploying of microservices easier.
Each microservice can be further broken down into processes running in separate Docker containers,
which can be specified with Dockerfiles and Docker Compose configuration files. Specifying an envi-
ronment in this way also makes it easy to link microservices together to form a larger application. In a
way, Virtual machines are the precursors to Docker containers. But unlike a virtual machine, rather
than creating a whole virtual operating system, Docker allows applications to use the same Linux ker-
nel as the system that they're running on and only requires applications be shipped with things not
already running on the host computer (Figure 1.2).

Figure 1.2 – Comparison of virtual machines and docker containers

A Dockerfile is a file with instructions for how Docker should build your image. A Docker image

is an executable package that includes everything needed to run an application. The Dockerfile refers
to a base image that is used to build the initial image layer. Popular official base images include py-
thon, ubuntu, and alpine. Additional layers can then be stacked on top of the base image layers, ac-
cording to the instructions in the Dockerfile. Each layer is read only, except the final container layer
that sits on top of the others. This is a small volume layer containing a program that will run in a con-
tainer. The Dockerfile tells Docker which layers to add and in which order to add them. Layer are just
files with the changes since the previous layer. A Dockerfile instruction is a capitalized word at the
start of a line followed by its arguments. Each line in a Dockerfile can contain an instruction. Instruc-
tions are processed from top to bottom when an image is built. The simplest instruction can be the
following:

FROM ubuntu:18.04
COPY . /app
Only the instructions FROM, RUN, COPY, and ADD create layers in the final image. Other in-

structions (ENV, ARG, EXPOSE, VOLUME, LABEL, ENTRYPIONT) configure things, add metadata,
or tell Docker to do something at run time, such as expose a port or run a command.

If you want other people to be able to make containers from your image, you send the image to
a container registry. Docker Hub is the largest registry and the default [2].

For developers who are starting to build their applications, they should decide whether it would
be beneficial to them to use a microservices architecture rather than a monolithic one. They should
consider the long-term usability and scalability of their application. Managing multiple microservices
can be challenging, but useful tools such as Docker, Kubernetes, etc. help developers minimize dis-
advantages of microservices. By introducing Docker in your development, you will get all the benefits
of using microservices and containers: stable working, independent deployment, application portabil-
ity, resource utilization, vertical and horizontal scalability.

Above were considered the basic principles of microservices and Docker containerization which
will help to get into this topic deeper or decide to use them. Docker is easily integrated and can be
adopted by technical and business needs, that’s why it becomes more popular and widely used.

References:
1. S. Newman, “Building Microservices: Designing Fine-Grained Systems”, 1st edition, O'Reilly Media, February 2015.
2. Docker Docs [Internet resource]. – Available at: https://docs.docker.com (Accessed 15 March 2019).

https://docs.docker.com/

