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INTRODUCTION 

 
 The presence of haze significantly degrades the quality of an image captured at 

night. Similar to daytime haze, the appearance of nighttime haze is due to tiny particles 

floating in the air that adversely scatters the line of sight of lights rays entering the 

imaging sensor. In particular, light rays are scattered-out to directions other than the 

line of sight, while other light rays are scattered-in to the line of sight. The scattering-

out process causes the scene reflection to be attenuated. The scattering-in process 

creates the appearance of a particles-veil (also known as air light) that washes out the 

visibility of the scene. These combined scattering effects adversely affect scene 

visibility that in turns negatively impacts subs equation sent processing for computer 

vision applications. 

In contrast to these methods, we model nighttime haze images by explicitly 

taking into account the glow of active light sources and their light colors. This new 

model introduces a unique set of new problems, such as how to decompose the glow 

from the rest of the image and how to deal with varying atmospheric light. By resolving 

these problems, we found our results are visually more compelling than both existing 

daytime and nighttime methods. 

Figure a, shows a diagram of the standard daytime haze model. The model 

assumes that the atmospheric light is globally uniform and contributes to the brightness 

of the air light. The model has another term called the direct transmission, which 

describes light travelling from the object or scene reflection making its way to the 

image plane.  

Figure b, shows a diagram of our proposed nighttime haze model. Aside from 

the air light and direct transmission, the model also has a glow term, which represents 

light from sources that gets scattered multiple times and reaches the image plane from 

different directions. In our model, light sources potentially have different colors that 

contribute to the appearance of the air light. 

 

 
                                          a                            b 

 

a – Daytime haze imaging model; b – Nighttime haze imaging model 

diagram of the daytime and nighttime haze models 
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GENERAL DESCRIPTION OF WORK 

 

The proposed algorithm focuses on dehazing nighttime images. Most existing 

dehazing methods use models that are formulated to describe haze anytime. Daytime 

models assume a single uniform light color attributed to a light source not directly 

visible in the scene. Nighttime scenes, however, commonly include visible lights 

sources with varying colors. These light sources also often introduce noticeable 

amounts of glow that is not present in daytime haze. To address these effects, we 

introduce a new nighttime haze model that accounts for the varying light sources and 

their glow. Our model is a linear combination of three terms: the direct transmission, 

air light and glow. The glow term represents light from the light sources that is scattered 

around before reaching the camera. Based on the model, we propose a framework that 

first reduces the effect of the glow in the image, resulting in a nighttime image that 

consists of direct transmission and air light only. We then compute a spatially varying 

atmospheric light map that encodes light colors locally. This atmospheric map is used 

to predict the transmission, which we use to obtain our nighttime scene reflection 

image. We demonstrate the effectiveness of our nighttime haze model and correction 

method on a number of examples and compare our results with existing daytime and 

nighttime dehazing methods’ results. 

 

Algorithm for single image haze removal using the dark channel prior. 

 

Haze Imaging Model. The haze imaging equation: 

 

𝐼(𝑥)  =  𝐽(𝑥)𝑡(𝑥)  +  𝐴(1 −  𝑡(𝑥)). 
 

where 𝑥 =  (𝑥, 𝑦) is a 2D vector representing the coordinates (𝑥, 𝑦) of a pixel’s 

position in the image. 

 I represent the hazy image observed. 𝐼(𝑥) is a 3D RGB vector of the color at a pixel. 

 J represents the scene radiance image. 𝐽(𝑥) is a 3D RGB vector of the color of the light 

reflected by the scene point at x. It would be the light seen by the observer if this light 

were not through the haze. So we often refer to the scene radiance J as a haze-free 

image  

 

        
                                    I                                      J                                         t 

 

Figure 1 – Variables in the haze imaging equation. The transmission map t 

is shown as white when t=1, and black when t=0. 
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The neural network for removal of haze 
 

The neural network for removal of HAZE. The atmospheric scattering model in 

Section II-A suggests that estimation of the medium transmission map is the most 

important step to recover a haze-free image. To this end, we propose DehazeNet, a 

trainable end-to-end system that explicitly learns the mapping relations between raw 

hazy images and their associated medium transmission maps. In this section, we 

present layer designs of DehazeNet, and discuss how these designs are related to ideas 

in existing image dehazing methods. The final pixel-wise operation to get a recovered 

haze-free image from the estimated medium transmission map will be presented in 

Section IV. 

A.Layer Designs of DehazeNet. The proposed DehazeNet consists of cascaded 

convolutional and pooling layers, with appropriate nonlinear activation functions 

employed after some of these layers. shows the architecture of DehazeNet. Layers and 

nonlinear activations of DehazeNet are designed to implement four sEquation   

uentlyial operations for medium transmission estimation, namely, feature extraction, 

multi-scale mapping, local extremum, and nonlinear regression.  

 

 
Figure 2 – The architecture of DehazeNet. DehazeNet conceptually consists of four equations   

Consequently, operations (feature extraction, multi-scale mapping, local extremum and non-linear 

regression), which is constructed by 3 convolution layers, a max-pooling, a Maxout unit and a 

BReLU activation function. 

 

The algorithm for image dehazing based on MLP 

 

The atmospheric scattering model. The atmospheric scattering is a physical 

phenomenon where the light passing through the particles in the atmosphere is deviated 

from its straight path. The formation of an image can be explained using the 

atmospheric scattering model proposed by McCartney et al., and it is defined as 

follows: 

 

𝐼(𝑥, 𝑦)  =  𝐽(𝑥, 𝑦)𝑡(𝑥, 𝑦)  +  𝐴(1 −  𝑡(𝑥, 𝑦)), 
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where 𝐼(𝑥, 𝑦) corresponds to the captured image,  𝐽(𝑥, 𝑦) is the image of the original 

scene without affectations, A is the color of atmospheric light, and 𝑡(𝑥, 𝑦) is called 

transmission, which can be defined in a homogeneous atmosphere as: 

 

𝑡(𝑥, 𝑦)  =  e−β𝑑(𝑥,𝑦), 
 

where 𝛽 is the scattering coefficient of the atmosphere and 𝑑(𝑥, 𝑦) is the scene depth. 

In order to get a haze-free image, the equation can be expressed as follows: 

 

𝐽(𝑥, 𝑦) =
𝐼(𝑥, 𝑦) −  𝐴

𝑡(𝑥, 𝑦)
+ 𝐴 

 

It is important to point out that in Equation    [119], additionally to the input 

image 𝐼(𝑥, 𝑦), the transmission map 𝑡(𝑥, 𝑦) and atmospheric light A must to be 

determined . The DCP method makes possible to obtain an accurate estimation of the 

variables 𝑡(𝑥, 𝑦) and A. 

The training step of a MLP requires quires two vectors of samples: the input data 

and the target vectors. In this work, each sample was acquired from a square window 

of size l centered in positions (𝑥, 𝑦) where the length for each sample is l ×  l. The 

input vector was obtained from 𝑡min(𝑥, 𝑦) and the target vector from 𝑡̅(𝑥, 𝑦). The setup 

to perform the training stage is illustrated in Figure 4.3. 

 

 

 
Figure 3 – Training process for the MLP based on transmission maps. 

 

 
Application of MLP 

 

 Application of MLP. As it is shown in, to compute the transmission map 𝑡′(𝑥, 𝑦) 

using the trained MLP, an input vector is generated from square-windows of tmin(x, y).  

Each two-dimensional square-window of size s is converted to a one-dimensional 

signal of size 𝑠 ×  𝑠. The interval of each sampling in the image is expressed by the 

variable δ. If δ =  s the sampling has not intersection in the pixels positions, and if δ 
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= 1 the sampling is realized in every pixel. The value of each pixel in the transmission 

map 𝑡′(𝑥, 𝑦) is the minimum value of the superposition of windows. 

In Figure 4.5 an example of the proposed algorithm in four real-world images and the 

results of applying the proposed method are presented, along with the input 𝑡min(𝑥, 𝑦) 

and output 𝑡′(𝑥, 𝑦) transmission maps of the MLP are shown. The parameters values 

are  δ = 16 and 𝑠 =  8. 
 

 

 
                 a                                    b              c     d 

Figure 4 – Examples of the processing the proposed method: (a) - input images 𝐼(𝑥, 𝑦),  
(b) - initial transmission 𝑡min(𝑥, 𝑦) (c) - final transmission 𝑡′(𝑥, 𝑦), (d) - recovered images 

𝐽(𝑥, 𝑦). 
Eval metrics. In order to measure the performance of the proposed method, two 

different metrics have been adopted: Mean Absolute Error (MAE), and Structural 

Similarity (SSIM) index. 

The Mean Absolute Error (MAE) frequires Consequently,ly used in statistics 

provides a measure of disparity between the restored image 𝐼𝑜(𝑥, 𝑦) and the target 

image 𝐽(𝑥, 𝑦) using the width (ω) and height (ℎ) of the input image, it is defined as: 

 

𝑀𝐴𝐸 =  
1

(𝜔∗ ℎ)
  ∑ ∑ |𝐽(𝑥, 𝑦)  −  𝐼𝑜(𝑥, 𝑦)|ℎ

𝑦=1
𝜔
𝑥=1  ,                          (4.16) 

 

The Structural similarity index (SSIM) is a normalized metric based on a 

perception-based model, and it is defined as: 

 

𝑆(𝑥, 𝑦)  =  𝑓(𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦), 𝑠(𝑥, 𝑦)),                                 (4.17) 

 

where 𝑙(𝑥, 𝑦) is the luminance comparison, 𝑐(𝑥, 𝑦) is the contrast comparison, and 

𝑠(𝑥, 𝑦) is the structure comparison. 

The eval performance of the proposed method was assessed using a database of 

120 rgb images. The database was divided into two subsets: a training set of 80 images 

and a test set of 40 images. The test set of images consists of 30 real-world images and 

10 synthetic images obtained from Fattal et al. [30] Furthermore, the computational 

experiments were performed using the Matlab software, version R2016a on a computer 

with 3.10 GHz Intel Core i5-2400 and 12 GB RAM memory. 
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Parameters tuning. To obtain the best possible performance of the proposed 

method, several tests with different MLP configuration s using the training set of 80 

images were realized. In Figure 4.6, the results of the most significant configurations 

in terms of the MSE metric are shown. The best MLP performance is presented by the 

configuration  256 − 1024, which corresponds to a window size 𝑠 =  16. 
 

 
 

Figure 5 – Relation between MLP architecture and performance using the training set of images. 

 

Parameters tuning 

 

Once the value s was determined, in order to obtain the optimal value of δ 

(window sliding value), the method was tested over the training set varying the δ value 

in the range [1, .., 16]. Three aspects were considered to choose the δ value: a 

quantitative analysis using the index SSIM (Figure 4.7 (a)), a time processing analysis 

(Figure 4.7 (b)), and a qualitative analysis(Figure 4.8).Based on the obtained results, 

the best value was δ = 8, representing the highest SSIM and lowest processing time. 

 

 
(a)           (b)                 (c)                (d)                  (e)                (f) 

Figure 6 – Transmissions and results generated using different δsliding windows: 

 (a) δ = 1, (b) δ = 2, (c) δ = 4, (d) δ = 8, (e) δ = 12, (f) δ = 16. 
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CONCLUSION 

 
We have presented a novel deep learning approach for single image dehazing. 

Inspired by traditional haze-relevant features and dehazing methods, we show that 

medium transmission estimation can be reformulated into a trainable end-to-end 

system with special design, where the feature extraction layer and the non-linear 

regression layer are distinguished from classical CNNs. In the first layer F1, Maxout 

unit is proved similar to the priori methods, and it I more effective to learn haze-

relevant features. In the last layer F4, a novel activation function called BReLU is 

instead of ReLU or Sigmoid to keep bilateral restraint and local linearity for image 

restoration. With this lightweight architecture, DehazeNet achieves dramatically high 

efficiency and outstanding dehazing effects than the state-of-the-art methods. Although 

we successfully applied a CNN for haze removal, there are still some extensibility 

researches to be carried out. That is, the atmospheric light _ cannot be regarded as a 

global constant, which will be learned together with medium transmission in a unified 

network. Moreover, we think atmospheric scattering model can also be learned in a 

deeper neural network, in which an end-to-end mapping between haze and haze-free 

images can be optimized directly without the medium transmission estimation.  

The single image dehazing method was proposed. This method uses an artificial 

neuronal network Multi-Layer Perceptron (MLP) to estimate the transmission map of 

a haze image. To obtain the optimal MLP conFigureuration a training set of 80 real-

world images was used. In experiments a number of hidden layers containing different 

number of neurons was tested, where the best performance in terms of the Mean 

Squared Error (MSE) was achieved using a 256−1024 MLP conFigureuration with a 

MSE = 0.000151. In order to evaluate the restoration quality of the proposed method, 

the Structural Similarity (SSIM) index and the Mean Absolute Error (MAE) were used. 

The experimental results have proven that the proposed method achieves a superior 

performance than seven state-of-art methods in terms of restoration quality, obtaining 

aMAE value of 27.28 and SSIM index of 0.84 over a test set of synthetic images. In 

addition, a comparative analysis using the test set of 40 images between the proposed 

and comparative methods, reveals that the lowest computational time was obtained by 

the proposed method (0.52 seconds). Given the suitable results in terms of restoration 

quality and execution time of the proposed method with respect to the state-of-art 

dehazing methods, it can be highly appropriate to be used in real time systems. 


