INTEGRALS RELATED TO THE MULTIDIMENSIONAL-MATRIX GAUSSIAN DISTRIBUTION

V.S. Mukha, N.F. Kako
Belarusian State University of Informatics and Radioelectronics
Minsk, Republic of Belarus
e-mails: mukha@bsuir.by, kako.nancy@gmail.com

Abstract

The three integrals, total probability formula and Bayes' formula connected with the multidimensional-matrix Gaussian distribution are presented. These results can be used in the various tasks of the statistical decision theory, particularly in the dual control theory.

1 Introduction

Integrals related to the probability distributions are the part of the statistical decision theory. One example of using of the statistical decision theory is the dual control [4], [2]. Some integrals related to the vector Gaussian distribution are developed in the paper [2]. More complicated problems in the framework of the statistical decision theory require generalizations of the results of the paper [2] in various directions. In this paper, such generalizations for the multidimensional-matrix Gaussian distribution are developed. The three integrals, total probability formula and Bayes' formula related to the multidimensional-matrix Gaussian distribution are presented.

2 The integrals related to the multidimensionalmatrix Gaussian distribution

The random q-dimensional matrix $\xi=\left(\xi_{\bar{i}_{q}}\right), \bar{i}_{q}=\left(i_{1}, i_{2}, \ldots, i_{q}\right), i_{\alpha}=1,2, \ldots, m_{\alpha}$, $\alpha=1,2, \ldots, q$, is distributed according to the normal or Gaussian law if its probability density is defined by the following expression [3]:

$$
\begin{equation*}
f(\xi)=\frac{1}{\sqrt{(2 \pi)^{r_{q}}\left|d_{\xi}\right|}} \exp \left(-\frac{1}{2}^{0,2 q}\left(d_{\xi}^{-1}\left(\xi-\nu_{\xi}\right)^{2}\right)\right), \xi \in E^{r_{q}} \tag{1}
\end{equation*}
$$

where: ν_{ξ}, d_{ξ} are the parameters of the Gaussian multidimensional-matrix distribution, herewith $\nu_{\xi}=\left(\nu_{\xi, \bar{i}_{q}}\right), \bar{i}_{q}=\left(i_{1}, i_{2}, \ldots, i_{q}\right), i_{\alpha}=1,2, \ldots, m_{\alpha}, \alpha=1,2, \ldots, q$, is the mathematical expectation of the random q-dimensional matrix ξ and $d_{\xi}=\left(d_{\xi, \bar{i}_{q}, \bar{j}_{q}}\right)$, $\bar{i}_{q}=\left(i_{1}, i_{2}, \ldots, i_{q}\right), \bar{j}_{q}=\left(j_{1}, j_{2}, \ldots, j_{q}\right), i_{\alpha}, j_{\alpha}=1,2, \ldots, m_{\alpha}, \alpha=1,2, \ldots, q$, is the dispersion matrix of the random q-dimensional matrix $\xi ; d_{\xi}^{-1}$ is the matrix $(0, q)$-inverse to the matrix $d_{\xi} ;\left|d_{\xi}\right|$ is the determinant of the matrix $d_{\xi} ; r_{q}=\prod_{i=1}^{q} m_{i}$ is the number of the
elements of the matrix $\xi ; E^{r_{q}}$ is the r_{q}-dimensional Euclidean space; $\bar{i}_{q}=\left(i_{1}, i_{2}, \ldots, i_{q}\right)$, $\bar{j}_{q}=\left(j_{1}, j_{2}, \ldots, j_{q}\right)$ are the multi-indexes either of which contains q indexes.

The mathematical expectation of the random q-dimensional matrix ξ is the q dimensional matrix with the same size as the matrix ξ. It is defined by the expression

$$
\nu_{\xi}=E(\xi)=\left(E\left(\xi_{\bar{i}_{q}}\right)\right)=\left(\nu_{\xi, \bar{i}_{q}}\right), \bar{i}_{q}=\left(i_{1}, i_{2}, \ldots, i_{q}\right), i_{\alpha}=1,2, \ldots, m_{\alpha}, \alpha=1,2, \ldots, q,
$$

so that $\nu_{\xi, \bar{i}_{q}}=E\left(\xi_{\bar{i}_{q}}\right), E$ is the symbol of the mathematical expectation [3].
The dispersion matrix d_{ξ} of the random q-dimensional matrix ξ is the $2 q$-dimensional matrix defined by the expression

$$
\begin{gathered}
d_{\xi}=E\left(\left(\xi-\nu_{\xi}\right)^{2}\right)=\left(E\left(\left(\xi_{\bar{i}_{q}}-\nu_{\xi, \bar{i}_{q}}\right)\left(\xi_{\bar{j}_{q}}-\nu_{\xi, \bar{j}_{q}}\right)\right)\right)=\left(d_{\xi, \bar{q}_{q}, \bar{j}_{q}}\right), \\
\bar{i}_{q}=\left(i_{1}, i_{2}, \ldots, i_{q}\right), \bar{j}_{q}=\left(j_{1}, j_{2}, \ldots, j_{q}\right), i_{\alpha}, j_{\alpha}=1,2, \ldots, m_{\alpha}, \alpha=1,2, \ldots, q,
\end{gathered}
$$

so that $d_{\xi, \bar{i}_{q}, \bar{j}_{q}}=E\left(\left(\xi_{\bar{i}_{q}}-\nu_{\xi, \bar{i}_{q}}\right)\left(\xi_{\bar{j}_{q}}-\nu_{\xi, \bar{j}_{q}}\right)\right)$, E is the symbol of the mathematical expectation, and $\left(\xi-\nu_{\xi}\right)^{2}=\left(\left(\xi_{\bar{i}_{q}}-\nu_{\xi, \bar{i}_{q}}\right)\left(\xi_{\bar{j}_{q}}-\nu_{\xi, \bar{j}_{q}}\right)\right)$ is the (0,0)-rolled square of the matrix $\xi[3]$.

The determinant $\left|d_{\xi}\right|$ of the matrix d_{ξ} is defined as the determinant of the twodimensional matrix $\tilde{d}_{\xi, q, 0, q}$ that is the $(q, 0, q)$-associated matrix with the $2 q$-dimensional matrix d_{ξ} [3].

We have proved the following equalities connected with the function (1):

$$
\begin{gathered}
\int_{E^{r_{q}}} \exp \left(-\frac{1}{2}{ }^{0,2 q}\left(A \xi^{2}\right)+{ }^{0, q}(B \xi)\right) d \xi=\sqrt{(2 \pi)^{r_{q}}\left|A^{-1}\right|} \exp \left(\frac{1}{2}^{0,2 q}\left(A^{-1} B^{2}\right)\right), \\
\int_{E^{r_{q}}} 0, q(C \xi) \exp \left(-\frac{1}{2}^{0,2 q}\left(A \xi^{2}\right)+{ }^{0, q}(B \xi)\right) d \xi= \\
\left.=\sqrt{(2 \pi)^{r_{q}}\left|A^{-1}\right|} \exp \left(\frac{1}{2}^{0,2 q}\left(A^{-1} B^{2}\right)\right)\right)^{0, q}\left(C^{0, q}\left(A^{-1} B\right)\right) \\
\quad \int_{E^{r_{q}}}{ }^{0,2 q}\left(U \xi^{2}\right) \exp \left(-\frac{1}{2}{ }^{0,2 q}\left(A \xi^{2}\right)+{ }^{0, q}(B \xi)\right) d \xi= \\
\left.=\sqrt{(2 \pi)^{r_{q}}\left|A^{-1}\right|} \exp \left(\frac{1}{2}^{0,2 q}\left(A^{-1} B^{2}\right)\right)\right)^{0,2 q}\left(U\left(A^{-1}+{ }^{0,0}\left(0^{0, q}\left(A^{-1} B\right)\right)^{2}\right)\right)
\end{gathered}
$$

where: $\xi=\left(\xi_{\bar{i}_{q}}\right), \bar{i}_{q}=\left(i_{1}, i_{2}, \ldots, i_{q}\right)$, is the q-dimensional $\left(m_{1} \times m_{2} \times \ldots \times m_{q}\right)$-matrix; $r_{q}=\prod_{i=1}^{q} m_{i}$ is the number of the elements of the matrix $\xi ; B=\left(b_{\bar{i}_{q}}\right), C=\left(c_{\bar{i}_{q}}\right)$ are the q dimensional $\left(m_{1} \times m_{2} \times \ldots \times m_{q}\right)$-matrices of the parameters; $A=\left(a_{\bar{q}_{q}}, \bar{j}_{q}\right), U=\left(u_{\bar{i}_{q}, \bar{j}_{q}}\right)$ are the $2 q$-dimensional $\left(m_{1} \times m_{2} \times \ldots \times m_{q} \times m_{1} \times m_{2} \times \ldots \times m_{q}\right)$-matrices of the parameters that are positive-definite and symmetric relative their q-multi-indexes \bar{i}_{q}, $\bar{j}_{q} ; A^{-1}$ is the matrix $(0, q)$-inverse to the matrix $A ;\left|A^{-1}\right|$ is the determinant of the matrix A^{-1}.

3 The total probability formula for the multidimensionalmatrix Gaussian distributions

Theorem 1 (the total probability formula for multidimensional-matrix Gaussian distributions). Let ξ is the q-dimensional $\left(m_{1} \times m_{2} \times \ldots \times m_{q}\right)$-matrix, x is the p-dimensional $\left(s_{1} \times s_{2} \times \ldots \times s_{p}\right)$-matrix, $r_{q}=\prod_{i=1}^{q} m_{i}$ is the numbers of the elements of the matrix $\xi, r_{p}=\prod_{i=1}^{p} s_{i}$ is the numbers of the elements of the matrix $x, f(\xi)$ is the probability density of the matrix $\xi, f(x / \xi)$ is the conditional probability density of the matrix x, $R^{r_{q}}$ is the r_{q}-dimensional Euclidean space. If in the total probability formula

$$
\begin{equation*}
f(x)=\int_{E^{r q}} f(x / \xi) f(\xi) d \xi \tag{2}
\end{equation*}
$$

the probability density $f(x / \xi)$ is represented in the form

$$
f(x / \xi)=\frac{1}{\sqrt{(2 \pi)^{r_{p}}\left|d_{x}\right|}} \exp \left(-\frac{1}{2}^{0,2 q}\left(S \xi^{2}\right)+{ }^{0, q}(V \xi)-\frac{1}{2} W\right)
$$

and probability density $f(\xi)$ is represented in the form

$$
f(\xi)=\frac{1}{\sqrt{(2 \pi)^{r_{q}}\left|d_{\xi}\right|}} \exp \left(-\frac{1}{2}{ }^{0,2 q}\left(d_{\xi}^{-1} \xi^{2}\right)+{ }^{0, q}\left(0, q\left(d_{\xi}^{-1} \nu_{\xi}\right) \xi\right)-\frac{1}{2}^{0,2 q}\left(d_{\xi}^{-1} \nu_{\xi}^{2}\right)\right)
$$

then the probability density $f(x)$ (2) (total probability formula) determine by the expression

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{r_{p}}\left|d_{x}\right|\left|d_{\xi}\right||A|}} \exp \left(-\frac{1}{2}^{0,2 q}\left(A^{-1} B^{2}\right)-\frac{1}{2} C\right)
$$

where

$$
\begin{gathered}
A=d_{\xi}^{-1}+S \\
B=^{0, q}\left(d_{\xi}^{-1} \nu_{\xi}\right)+V \\
C==^{0,2 q}\left(d_{\xi}^{-1} \nu_{\xi}^{2}\right)+W
\end{gathered}
$$

$\left|d_{x}\right|,\left|d_{\xi}\right|,|A|$ are the determinants of the corresponding multidimensional matrices, and A^{-1} is the matrix $(0, q)$-inverse to the matrix A.

We denote that the matrices $d_{\xi}, d_{\xi}^{-1}, S, A, A^{-1}$ are $2 q$-dimensional symmetrical relative their q-multi-indexes, ν_{ξ}, V, B are q-dimensional, d_{x} is the $2 p$-dimensional symmetrical relative its p-multi-indexes, W, C are zero-dimensional (scalars).

4 The Bayes' formula for the multidimensional-matrix Gaussian distributions

Theorem 2 (Bayes' formula for multidimensional-matrix Gaussian distributions). Let ξ is the q-dimensional $\left(m_{1} \times m_{2} \times \ldots \times m_{q}\right)$-matrix, x is the p-dimensional $\left(s_{1} \times s_{2} \times \ldots \times\right.$ $\left.s_{p}\right)$-matrix, $r_{q}=\prod_{i=1}^{q} m_{i}$ is the numbers of the elements of the matrix $\xi, r_{p}=\prod_{i=1}^{p} s_{i}$ is the numbers of the elements of the matrix $x, f(\xi)$ is the probability density of the matrix ξ, $f(x / \xi)$ is the conditional probability density of the matrix $x, R^{r_{q}}$ is the r_{q}-dimensional Euclidean space. If in the Bayes' formula

$$
\begin{equation*}
f(\xi / x)=\frac{f(x / \xi) f(\xi)}{\int_{E^{r q}} f(x / \xi) f(\xi) d \xi} \tag{3}
\end{equation*}
$$

the probability density $f(x / \xi)$ is represented in the form

$$
f(x / \xi)=\frac{1}{\sqrt{(2 \pi)^{r_{p}}\left|d_{x}\right|}} \exp \left(-\frac{1}{2}{ }^{0,2 q}\left(S \xi^{2}\right)+{ }^{0, q}(V \xi)-\frac{1}{2} W\right)
$$

and the probability density $f(\xi)$ is represented in the form

$$
f(\xi)=\frac{1}{\sqrt{(2 \pi)^{r_{q}}\left|d_{\xi}\right|}} \exp \left(-\frac{1}{2}{ }^{0,2 q}\left(d_{\xi}^{-1} \xi^{2}\right)+{ }^{0, q}\left(0, q\left(d_{\xi}^{-1} \nu_{\xi}\right) \xi\right)-\frac{1}{2}^{0,2 q}\left(d_{\xi}^{-1} \nu_{\xi}^{2}\right)\right)
$$

then the posteriori probability density $f(\xi / x)$ of the random vector ξ determined by the Bayes' formula (3), haves the following form

$$
f(\xi / x)=\frac{1}{\sqrt{(2 \pi)^{r_{q}}\left|A^{-1}\right|}} \exp \left(-\frac{1}{2}^{0,2 q}\left(A\left(\xi-{ }^{0, q}\left(A^{-1} B\right)\right)^{2}\right)\right)
$$

where $A=d_{\xi}^{-1}+S, B==^{0, q}\left(d_{\xi}^{-1} \nu_{\xi}\right)+V$.

References

[1] Mukha V.S., Sergeev E.V. (1976). Dual control of the regression objects. Proceedings of the LETI. Issue 202, pp. 58-64. (In the Russian).
[2] Mukha V.S. (1974). Calculation of integrals connected with the multivariate Gaussian distribution. Proceedings of the LETI. Issue 160, pp. 27-30. (In the Russian).
[3] Mukha V.S. (2004). Analysis of multidimensional data. Technoprint, Minsk, 368 p. (In the Russian).
[4] Feldbaum A.A. (1965). Optimal Control Systems. Academic Press, New York and London, 452 p .

