МОДЕЛИРОВАНИЕ ПРОЦЕССА ЛАЗЕРНОЙ ПРОШИВКИ ОТВЕРСТИЙ В КРЕМНИИ ПРИ ФОРМИРОВАНИИ 3D СТРУКТУР

Лаппо А. И., Боброва Т. С., Кузнецова О. В.

Кафедра информационных технологий автоматизированных систем, Белорусский государственный

университет информатики и радиоэлектороники

Минск, Республика Беларусь

E-mail: {lappo, t.bobrova, ovkuznetsova}@bsuir.by

Математическое моделирование температурно-временных зависимостей и распределение тепловых полей нагрева кремневой пластины при формирование переходных отверстий лазерным источником.

3D электронные модули, которые способны интегрировать множество микросхем на основе различных технологий в один единый корпус, позволяют создать устройств малых размеров, широким набором функций и доступных по стоимости. Одно из современных направлений реализации 3D-модулей является технология TSV (Through Silicon Vias – сквозные отверстия в кремнии) (рис. 1). Применение традиционного сверления при формировании отверстий необходимого диаметра, не всегда соответствует технологическим требованиям уровня качества. Лазерная обработка - один из методов формирования переходных отверстий. При воздействии лазерного излучения на подложку происходит образование отверстия за счет плавления и испарения материала [1].

Рис. 1 – Конструкция 3D модуля на основе технологии TSV

I. Математического моделирования лазерного нагрева

Целью математического моделирования является получение зависимостей распределения тепла на поверхности кремневой пластины подверженной лазерному нагреву. Физику и термодинамику лазерного нагрева можно описать следующими математическими зависимостями, приведенными ниже.

Температура поверхности зависит от мощности, поглощенной единицей площади. Тогда энергия поглощенного излучения [2]:

$$E = P \cdot \tau = q \cdot S \cdot \tau(1)$$

где q – плотность мощности; Р –мощность введенная через поверхность; S – площадь облучаемой поверхности; au – длительность воздействия.

Соотношение между распределением температуры по поверхности $\mathrm{T}(\mathbf{x},\mathbf{y},\mathbf{z})$ в зависимости

от времени воздействия и плотностью мощности q может быть определено из уравнений теплопроводности типа [2]:

$$\frac{\delta T(x, e, z, t)}{\delta t} - \alpha \cdot \Delta T(x, y, z, t) = \frac{Q(x, y, z, t)}{\rho \cdot c} \quad (2)$$

где Δ - оператор Лапласса, Q – объемная плотность поглощенного светового потока, α – температуропроводность ($\alpha = k/\rho c$, где k – теплопроводность, ρ – плотность, с – теплоемкость).х, у, z, t - аргументы функции.

Объемная плотность поглощенного светового потока с учетом поглощательной способности и направлением по оси z [2]:

$$Q(x, y, z, t) = q_0 \cdot A \cdot e^{-\alpha z} \qquad (3)$$

где q0 – плотность мощности падающего излучения, – поглощательная способность на волне излучения; а – линейный коэффициент поглощения на волне излучения, m^{-1} ; z – координата отсчитываемая от поверхности в глубь материала. Особенностью задач, связанных с нагревом материалов лазерным излучением является то, что распределение излучения и, следовательно, тепловой источник, как правило, обладает резко изменяющимися пространственновременными характеристиками. Поэтому идеализация свойств тепловых источников, часто допускаемая в расчетных схемах для уменьшения математических трудностей, может приводить к отклонениям расчетных данных от экспериментальных. [2] Таким образом, функция гауссового импульса позволяет описать профиль излучения лазерного источника и задать нормальное распределение плотности мощности падающего лазерного излучения. Распределение тепла по поверхности будем считать равным во всех направлениях от точки (x_0, y_0) нормального падения луча:

$$Q(x, y, z, t) = q_0 \cdot A \cdot e^{-\alpha z} \cdot \frac{\alpha}{\pi r^2} \cdot e^{-(\frac{(x-x_0)^2 + (y-y_0)^2}{2r^2})}$$
(4)

где Q(x, y, z, t) - функция, характеризующая распределение плотности поглощения светового потока на поверхности материала и изменение его

во времени, z – ось перпендикулярная поверхности и отсчитываемая от поверхности вглубь материала, r - радиус пятна излучения.

Теплообменом облучаемой поверхности с окружающей средой можно пренебречь. Задаем действие источника на поверхности (z = 0) граничным условием [4]:

$$-k\cdot \frac{\delta T(x,y,z,t)}{\delta z}|(z=0)=Q(x,y,t)$$

Если размеры нагреваемого тела достаточно велики $(l_x, l_y, l_z >> \sqrt{\alpha} \tau)$, то его можно считать полубесконечной средой:

$$T_{x\pm\infty} = T_{y\pm\infty} = T_z = T_H, \qquad (5)$$

где T — начальная температура ($T_{t=0} = T_H = 293, 15$). Теплообменом облучаемой поверхности с окружающей средой можно пренебречь. Репив уравнение теплопроводности, получаем распределение температуры по поверхности при использовании источника с гауссовым профилем [3]:

$$T(x, y, z, t) = \frac{2p}{\rho c (4\pi\alpha)^{3/2}} \int_0^t \frac{1}{(\tau + t)\sqrt{t}} \cdot$$
(5)
$$\cdot e^{-\frac{z^2}{4\alpha t} - \frac{x^2 + y^2}{4\alpha(t+\tau)}} dt$$

где ρ – мощность излучения, введенная в материал через площадку $s;\,\tau=\alpha/4r;\,r$ - радиус пятна излучения; a- коэффициент теплопроводности; – удельная теплоемкость; ρ - плотность материала; t- текущее время.

II. Результаты моделирования в среде Comsol Multiphysics 5.3a

В качестве источника лазерного нагрева выбран: Lotis TII LS-2132UTF с длиной волны 1064мкм, энергия импульса 170мДж, длительность импульса 5-6нс, частота импульса 15Гц, диаметр выходного пучка 5мм, мощность - 750Вт.

Моделирование распределения температуры по поверхности кремневой пластины и зависимостей скорости роста температур, выполнено в программном пакете Comsol Multiphysics 5.3a. Для расчета были заданы исходные и граничные условия, и характеристики лазерного источника. Окружающая среда – воздух в нормальных условиях.

В качестве модели использовалась кремневая пластина с диаметром 25.4мм, толщина -200мкм, bзлучательная способность поверхности пластины - 0.8, плотность - 2329кг/м3, теплоемкость - 700Дж/(кг*К), температура кипения и испарения - 2623К.

В результате моделирования получены температурно-временные зависимости (рис 2) и тепловые поля на поверхности кремневой пластины (рис 3). По температурно-временным зависимостям видно, что профиль температуры имеет мнговенный рост до температуры 2000 после чего, в течении 3 секунд температура достигает своего пика. При продолжении процесса происходить нагрев всего объема кремневой пластины.

минимальная температура в точке воздеиствия, 2 - минимальная температура кремневой пластины

Рис. 3 – Распределение тепловых полей на поверхности кремневой пластины

Заключение

По результатом распределение тепловых полей на поверхности кремневой пластины, видно, что для получения искомой температуры испарения кремня необходимой для формирования переходного отверстия, составляющей $2400^{\circ}C$ для лазера потребовалось 3 секунды. Так же выявлено что с ростом продолжительности процесса растет температура всей пластины, что может негативно сказаться на качестве формируемых отверстий из-за формирования наплывов на большей площади от точки воздействия.

- Васильев А. Современные технологии 3D интеграции // Компоненты и технологии, 2010. – №1. – С. 156–158.
- COMSOL Multiphysics ПО для мультифизического моделирования [Электронный ресурс]. – 2019. – Режим доступа: https://www.comsol.ru/
- Либенсон М.Н., Яковлев Е.Б., Шандыбина Г.Д. Взаимодействие лазерного излучения с веществом (силовая оптика). Часть II. Лазерный нагрев и разрушение материалов. Учебное пособие. Под общей редакцией В.П. Вейко – СПб: НИУ ИТМО, 2014. –181с.
- Вейко В.П., Шахно Е.А. Сборник задач по лазерным технологиям. Изд. 3-е, испр. и дополн. – СПб: СПб-ГУ ИТМО, 2007. – 67 с.