УДК 621.391

ОЦЕНКА ЭФФЕКТИВНОСТИ КАНАЛОВ РАСПРЕДЕЛИТЕЛЬНОЙ СИСТЕМЫ СТАНДАРТА DVB-C2

Э.Б. ЛИПКОВИЧ, А.А. ПАВЛОВСКИЙ, А.А. СЕРЧЕНЯ

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

Поступила в редакцию 30 октября 2019

Аннотация. Рассмотрены принципы построения и функционирования передающего тракта цифровой распределительной сети стандарта DVB-C2. Представлены расчетные соотношения, по которым определены значения информационной скорости и спектральной эффективности каналов DVB-C2 с различными видами и порядком модуляции. Приведены математические модели расчета помехоустойчивости стандарта DVB-C, использующий многопозиционные виды модуляции и блочное кодирование по алгоритму Рида – Соломона (PC). На основании расчетных моделей выполнен сравнительный анализ эффективности каналов DVB-C2 и DVB-C и отмечены существенные преимущества систем второго поколения. Дана оценка показателей эффективности реальных каналов DVB-C2 по сравнению с теоретически достигаемыми по Шеннону.

Ключевые слова: помехоустойчивость, многопозиционные виды модуляции, кодирование, энергетическая эффективность, вероятность ошибки.

Введение

Возросшие требования к пропускной способности и энергетической эффективности кабельных сетей цифрового телевизионного вещания и мультисервисных услуг привели к разработке нового стандарта DVB-C2 EN 302769 [1]. Стандарт DVB-C2 и рекомендация к нему TS 102 991 [2] утверждены ETSI в 2011 г. Основные положения нового стандарта базируются на спецификациях транспортных стандартов DVB-S2 [3] и DVB-T2 [4], зарегистрированных в ETSI в 2006 и 2008 гг. соответственно.

К числу отличительных особенностей стандарта DVB-C2 по сравнению с DVB-C следует отнести:

- возможность обработки нескольких входных потоков, переносящих разные виды информационных услуг (концепция PLP Phisical Loyer Pipe);
 - двухступенчатое кодирование принятых данных по схеме BCH+LDPC;
 - адаптивный выбор требуемых параметров передачи;
- использование высокоформатных видов модуляции QAM-1024 и QAM-4096
 для повышения спектральной эффективности сети;
- применение устойчивого к интерференции многочастотного режима передачи с защитными интервалами между OFDM-символами;
- внесение в передаваемый поток несущих пилот-сигналов, необходимых для коррекции искажений в распределительной сети и быстрого вхождения приемника в режим синхронизма.

Принципы построения и функционирования передающего тракта системы

На рис. 1 приведена структурная схема передающего тракта системы DVB-C2. На входы тракта могут параллельно поступать независимые потоки данных TS/GS, содержащие транспортные пакеты MPEG-2 TS, IP-пакеты по протоколу GSE (Generic Stream Encapsulation) и непакетированные данные.

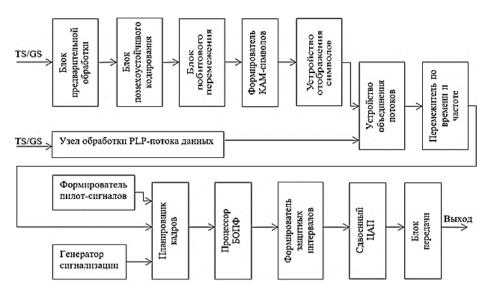


Рис. 1. Структурная схема передающего тракта системы DVB-C2

Каждый отдельный входной информационный поток проходит блок предварительной обработки данных (БПОД), или модуль адаптации режима, структурная схема которого приведена на рис 2. По своей структуре и решаемым задачам этот блок подобен аналогичным модулям обработки PLP-потоков стандартов DVB-S2 и DVB-T2.

Рис. 2. Блок предварительной обработки PLP-потока

В состав БПОД входят: интерфейс сопряжения (ИС); синхронизатор входного потока (СВП) для синхронизации устройств приема по тактовой частоте $F_{\scriptscriptstyle T} = 8\Delta f_{\scriptscriptstyle K} \,/\, 7$; устройство удаления нулевых пакетов (УУНП) из транспортного потока; кодер CRC-8 для обнаружения на приеме ошибок в пакете; формирователь полей данных (ФПД) требуемых размеров; формирователь заголовка базовой полосы (ФЗБП) и скремблер. Заголовок имеет длину 80 бит, содержит сведения о характеристиках потока и располагается перед полем данных.

По выделенному на приеме идентификатору PLP ID все пакеты, не принадлежащие к затребованной услуге, не обрабатываются. Скремблер выполнен на сдвиговом регистре с обратной связью, описывается полиномом $G(x) = 1 + x^{14} + x^{15}$ и упрощает восстановление тактовой частоты на приеме при длинных сериях нулей и единиц на стороне передачи. Исходное состояние скремблера устанавливается через интервалы поля данных инициализирующей последовательностью 100101010000000. С выхода БПОД скремблированный поток поступает на внешний кодер с кодом Боуза-Чоудхури-Хоквингема (ВСН — Bose Chaudhuri Hocquenghem) блока помехоустойчивого кодирования. Кодер ВСН является циклическим, двоичным и работает с длинными кодами. Длина информационной части кода $K_{BCH} = (n_L \cdot R_L - 16t)$. Она зависит от относительной скорости внутреннего LDPC-кодера с низкой плотностью проверок на четность $R_L = k_L / n_L$ и является частью (рис. 3) общей длины кодового слова $n_L = 64 800$ бит (стандартный формат), или $n_L = 16200$ бит (сокращенный формат), где t — исправляющая способность кода ВСН, 16t — проверочная часть кода ВСН.

Относительная скорость кода ВСН близка к единице и рассчитывается по формуле

$$R_{BCH} = K_{BCH} / N_{BCH} = 1 - (16t / R_L \cdot n_L). \tag{1}$$

Для кодера LDPC значения R_L установлены равными: 2/3, 3/4, 4/5, 5/6, 9/10 при n_L =64 800 бит и 1/2, 2/3, 3/4, 4/5, 5/6, 8/9 при n_L =16200 бит. Задача процесса кодирования состоит в определении состава кодового слова и его проверочной части (n_L – k_L).

$$R_{\kappa} = R_{L} - (16t / n_{L}).$$
 (2)

Принятый в DVB-C2 двухступенчатый способ кодирования с разной структурой построения отдельных устройств по схеме BCH + LDPC обеспечивает лучшую помехоустойчивость приема по сравнению с одноступенчатым декодированием по алгоритму Рида – Соломона, принятому в DVB-C.

С выхода кодера с кодом с низкой плотностью проверок на четность (LDPC – Low Density Parity Checking) данные поступают на блок побитового перемежения, в котором по определенному правилу в зависимости от значений R_{L} и $Q_{L} = 180(1 - R_{L})$ осуществляется перемежение проверочных бит. После этой операции следует повторное перемежение на базе блочного перемежителя со сдвигом начала стартовых позиций в столбцах. Запись данных в блочный перемежитель производится по столбцам, считывание – по строкам. Число столбцов и строк зависит от кратности модуляции m. При m = 4, 6, 8, 10 и = 64 800 бит их число составляет 2m и $n_r/2m$ соответственно. Например, при использовании QAM-16 (m=4) число столбцов равно 8, а число строк в каждом столбце -8100. Для QAM-4096 (m=12) число столбцов и строк равно 12 и 5400 соответственно. Стартовая позиция в столбцах сдвигается на определенную величину, принятую в стандарте. Например, для QAM-16 с восемью столбцами величина сдвига в столбцах равна 0; 0; 2; 4; 4; 5; 7; 7. В формирователе QAM -символов поток демультиплексируется кортежи. Их число ланных на составляет а число бит в картеже -m. Имеющееся сочетание бит в каждом кортеже с учетом кода Грея отображается на сигнальном созвездии модулятора определенным вектором сигнала. Положение этого вектора представляется в устройстве отображения символов комплексным числом \dot{Z}_{q} . Для усреднения выходной мощности передатчика при использовании в системе разных видов модуляции значения $\dot{Z}q$ нормируются на величину $\sqrt{E_{\rm CP}} = \sqrt{2(M-1)/3}$, т. е. на $\sqrt{2}, \sqrt{10}, \sqrt{42}, \sqrt{70}$, $\sqrt{170}$, $\sqrt{682}$, $\sqrt{2138}$, для QAM с M, равными 4, 16, 64, 256, 1024 и 4096 соответственно.

Поскольку PLP-потоки могут переносить разные объемы данных и ввиду того, что кабельная распределительная сеть является закрытой средой без ограничений на выбор полосы каналов, то в стандарте DVB-C2 рекомендуется объединять потоки в устройстве объединения потоков (УОП) в слайсы (блоки). Ширина полосы каждого блока определяется объемом данных и числом несущих, выделенных ему для передачи. При базовом формате передачи в режиме работы 4k суммарное число несущих $N_{\Sigma}=3408$, частотный разнос между ними $\Delta f_{\rm P}=1/T_{\rm H}=2,232\,{\rm к}$ Гц и ширина полосы блока $\Delta f_{\rm C}=N_{\Sigma}\cdot\Delta f_{\rm P}=7,61\,{\rm M}$ Гц. Здесь $T_{\rm H}=1/T_{\rm H}=1/T$

Рис. 3. Структура кадра системы DVB-C2

Для сохранения единства в ширине полосы приемников разных стандартов в DVB-C2 рекомендован сегментированный способ передачи и приема, подобно принятому в японской системе ISDB-T. Суть сегментации состоит в выделении для конкретного вида услуг и объема переносимых данных определенного числа несущих. Объединенные блоки данных PLP-потоков подвергаются временному и частотному перемежению. При временном перемежении задействованы два блока буферной памяти: в первый вносятся данные, а из второго они считываются. Далее происходит переключение режимов. При частотном перемежении осуществляется изменение порядка следования QAM-символов в цифровой последовательности, что исключает их передачу на близлежащих несущих OFDM-символов. В этом отношении частотное перемежение можно трактовать как способ борьбы с узкополосными помехами, поскольку перемежение QAM-символов эквивалентно частотному перемежению несущих.

Следующим устройством в системе DVB-C2 является планировщик кадров. Планирование кадров начинается с формирования преамбулы (заголовка), которая занимает полосу частот 7,61 МГц и состоит из одного или нескольких OFDM-символов длительностью $T_{\rm u}$. Каждая шестая несущая преамбулы предназначена для передачи пилотных данных, поступающих от генератора сигнализации L1. В частности, в преамбулу вносятся сведения о начальных и конечных значениях частот отдельных блоков (слайсов), значение оптимальной частоты настройки приемника на требуемый блок, данные, описывающие состав преамбулы и др. Благодаря этой информации достигается точная настройка приемника на требуемый сегмент обшей полосы, переносящий заданный вид услуг.

Преамбула и 448 OFDM-символов с $T_{\rm u}=448$ мкс образуют кадр общей длительностью около 200 мс. Для обеспечения устойчивого приема сигналов при меняющихся параметрах в среде передачи в каждый кадр вносятся несущие пилот-сигналов, отличающиеся от информационных несколько большей амплитудой. Делятся пилотные несущие на три группы: с постоянными позициями в OFDM-символе, рассеянные по кадру и граничные, указывающие на края каждого символа. Общее число пилотных несущих $N_{\rm пс}$ в OFDM-символе может варьироваться и составлять некоторую часть от общего числа информационных несущих $N_{\rm u}$. Наибольшее применение при построении системы данного стандарта получили два значения отношений $N_{\rm nc}$ / $N_{\rm u}$, равные 1/48 и 1/96.

Величина спектральных потерь от наличия в полосе канала пилотных несущих составляет

$$N_{\Sigma} / N_{H} = 1 + (N_{\Pi C} / N_{H}).$$
 (3)

Согласно (3) для $N_{\Sigma} = 3800$ и отношений 1/48 и 1/96 число пилотных несущих равно 70 и 36, а число информационных несущих – 3338 и 3372 соответственно.

В процессорном блоке быстрого обратного преобразования Фурье (БОПФ) осуществляется процедура модуляции несущих, состоящая в матричном перемножении дискретных значений несущих N_{Σ} и комплексных значений QAM-символов. В базовом режиме работы 4k размерность процессорного блока составляет 4096×4096 . С увеличением общей полосы, превышающей Δf_K , используются режимы работы 8k, 16k, 32k, для которых процессорная емкость в 2, 4 и 8 раза больше, чем в режиме 4k.

Для борьбы в кабельных сетях с интерференцией и эхо-сигналами, возникающими в виде задержанных копий, стандартом предусматривается размещение между OFDM-символами защитных интервалов (ЗИ) длительностью T_3 . Длительность T_3 обычно составляет небольшую часть от информационной длительности символа $T_{\rm H}$ и превышает типовую задержку эхо-сигналов в каналах. В стандарте DVB-C2 отношение $T_3/T_{\rm H}$ имеет два значения 1/64 и 1/128. Эти значения относительно принятых в DVB-T/T2 небольшие и оказывают гораздо меньшее влияние на снижение информационной скорости данных, чем в системах НЦТВ [4]. На выходе

блока БОП Φ присутствуют двухканальный ЦАП, фильтры нижних частот в I- и Q-каналах и блок передачи, оснащенный переносчиками частоты радиосигнала на частоту передачи.

Математические модели расчета эффективности передающего тракта системы

Информационная скорость данных в тракте системы с учетом потерь от наличия ЗИ, пилотных несущих, заголовка и преамбулы составляет

$$B_{0} = \frac{\Delta f_{_{3K}} \cdot m \cdot R_{_{K}}}{\left(1 + N_{_{IIC}}/N_{_{II}}\right) \cdot \left(1 + T_{_{3}}/T_{_{II}}\right) \cdot \left(1 + 80/n_{_{K}}\right) \cdot \left(1 + \delta/448\right)}, \text{ бит/c},$$
(4)

где Δf_{∞} — эквивалентная ширина полосы, занимаемая информационным сигналом в канале, Гц; δ — число OFDM-символов в преамбуле.

В табл. 1 приведены результаты расчета B_0 для используемых в DVB-C2 видов модуляции и кодовых скоростей R_L при условии, что $\Delta f_{\rm sk} = 7,61\,{\rm MFu}$, $T_{\rm s}/T_{\rm u} = 1/128$, $N_{\rm nc}/N_{\rm u} = 1/96$, $n_L = 64800$ и $\delta = 2$.

R_L	QAM-16	QAM-64	QAM-256	QAM-1024	QAM-4096
2/3	20,22	30,32	40,44	50,55	60,66
3/4	22,74	34,11	45,48	56,85	68,22
4/5	23,69	35,53	47,38	59,22	71,07
5/6	24,7	37,04	49,39	61,74	74,09
9/10	26.69	40.03	53.38	80.72	80.07

Таблица 1. Значения информационной скорости передачи данных, бит/с

При оценке эффективности характеристик системы DVB-C2 важно исследовать спектральные, энергетические и информационные показатели.

Спектральная эффективность каналов $\gamma_{\rm C}$ и удельная скорость данных γ_0 рассчитываются по формулам

$$\gamma_{\rm C} = B_0 / \Delta f_{\rm K} = m \cdot R_{\rm K} / b_{\rm p} \cdot L_{\rm H}$$
, бит/с · Гц; (5)

$$\gamma_0 = B_0/B_{\rm c} = m \cdot R_{\rm k}/L_{\rm H}$$
, бит/симв; (6)

$$L_{_{II}} = (1 + T_{_{3}}/T_{_{II}}) \cdot (1 + 80/n_{_{L}}) \cdot (1 + v/448), \tag{7}$$

где $B_{\rm c}$ — символьная скорость, симв/с; $L_{\rm n}$ — потери в скорости передачи; $b_{\rm p}$ — коэффициент, определяющий потери в использовании полосы канала, равный

$$b_{\rm p} = \Delta f_{\rm K} \cdot \left(1 + N_{\rm IIC}/N_{\rm H}\right) / \Delta f_{\rm SK}. \tag{8}$$

Для типовых параметров канала ($\Delta f_{\rm K}=8\,{\rm M\Gamma u}$, $\Delta f_{\rm 9K}=7,61\,{\rm M\Gamma u}$, $N_{\rm HC}/N_{\rm H}=1/48\,{\rm u}\,1/96$) значения коэффициентов $b_{\rm P}$ равны 1,073 и 1,062 соответственно. Эти значения меньше принятого в системе DVB-C $b_{\rm P}=1,15$ и, следовательно, в DVB-C2 лучше используется полоса канала.

В табл. 2 приведены значения γ_c (бит/с· Γ ц) и отношения несущая/шум ρ_κ (дБ) для каналов формата DVB-C2.

D OAM-16		M-16	OAM-64		OAM-256		OAM-1024		QAM-4096	
R_{K}	γc	ρς	γc	ρς	γ_c	ρς	γc	ρς	γ_c	ρς
2/3	2,53	8,9	3,79	13,5	5,05	17,8	6,32	_	7,58	_
3/4	2,84	10,0	4,26	15,1	5,68	20,0	7,11	24,8	8,53	_
4/5	2,96	10,7	4,44	16,1	5,92	21,3	7,40	-	8,88	_
5/6	3,09	11,4	4,63	16,8	6,18	22,0	7,72	27,2	9,26	32,4
9/10	3,34	12,8	5,01	18,5	6,68	24,0	8,34	29,5	10,01	35,0

Таблица 2. Значения параметров γ_c , γ_0 и ρ_κ для стандарта DVB-C2

Чтобы выявить преимущества в помехоустойчивости и спектральной эффективности каналов DVB-C2 по сравнению с DVB-C, выполним соответствующие расчеты для каналов DVB-C, использующих на стороне приема декодирование по алгоритму Рида — Соломона с жестким принятием решения. Величина отношения, несущая/шум для заданной вероятности ошибки на выходе декодера PC взаимосвязана с величиной ОСШ $h_{\rm K}$ и рассчитывается по формулам

$$\rho_{k} = h_{\kappa} + 10 \lg \gamma_{0}, \ \partial E. \tag{9}$$

$$h_{\text{\tiny KPC}} = 10 \lg[2, 3(B_i - \lg\sqrt{2, 3B_i / \mu_{PC}}) / \mu_{PC}], \, \text{дБ}.$$
 (10)

$$B_{i} = -\lg P_{b} - \lg(\sqrt{\pi q_{i} / C_{i}}) + \lg \sqrt{\mu_{PC} / q_{i}}], \tag{11}$$

$$\mu_{PC} = R_{PC}(t+1)\beta_{PC}q_i \tag{12}$$

$$\beta_{PC} = \left[1 - (L_{PC} / (3.5L_{PC}\sqrt{P_b} - \lg P_b))\right] / Q_{PC}, \tag{13}$$

$$L_{PC} = \lg[R_{PC}(t+1)\sqrt{d_M q_i}], \ Q_{PC} = 1 + \lg[(t+1)n/2t(-\lg P_b)]. \tag{14}$$

где μ_{PC} — показатель эффективности процесса декодирования; β_{PC} — показатель взаимосвязи между параметрами кода и вероятностью ошибки на бит P_b ; t=(n-k)/2 — количество исправляемых символов декодером PC в кодовом слове; $d_M=(2t+1)$ — минимальное кодовое расстояние по Хэммингу; q_i — квадрат коэффициента помехоустойчивости; $R_{PC}=k/n=188/204$ — кодовая скорость недвоичного кода PC, принятая в системе DVB-C; $\gamma_0=m\cdot R_{\rm K}$ — удельная скорость; бит/симв.

Спектральная эффективность каналов DVB-C составляет

$$\gamma_{\rm c} = \gamma_{\rm o} / b_{\rm p} = m \cdot R_{\rm k} / 1{,}15$$
, бит/с · Гц. (15)

Результаты расчета значений ρ_{κ} , h_{κ} и γ_{c} для $R_{PC}=k/n=188/204$ и пяти видов модуляции в предположении вероятности ошибки на выходе декодера РС $P_{b}=10^{-11}$ представлены в табл. 3.

Таблица 3. Результаты расчетов значений ρ_s , h_s и γ_c для каналов стандарта DVB-C, дБ

Помолготи	Вид модуляции						
Параметр	QAM-16	QAM-32	QAM-64	QAM-128	QAM-256		
ρ _κ , дБ	17,76	21,02	23,85	26,94	29,78		
$h_{\!\scriptscriptstyle K}$, дБ	12,1	14,39	16,43	18,85	21,11		
γ _с , бит/с·Гц	3,205	4,0	4,808	5,61	6,41		

В табл. 4 приведены результаты сравнения энергетической эффективности каналов стандартов DVB-C2 и DVB-C при одинаковом формате модуляции и близких для них значений спектральных эффективностей γ_c .

Таблица 4. Результаты сравнения ОНШ стандартов DVB-C2 и DVB-C

R	Вид модуляции				
K_{K}	QAM-16	QAM-64	QAM-256		
5/6	6,3	7,05	7,78		
9/10	4,96	5,35	5,78		

Данные табл. 4 отражают заметный выигрыш в ОНШ при использовании составных схем кодирования/декодирования, принятых в DVB-C2, по сравнению с кодированием/декодированием по алгоритму РС с жестким решением. Сравнение данных табл. 2 и 3 показывает, что при QAM-1024 для DVB-C2 требуемое значение ОНШ

 $(\rho_k = 29,5 \text{ дБ}, R_L = 9/10)$ близко к ОНШ при QAM-256 $(\rho_k = 29,78 \text{ дБ})$ для каналов DVB-C.Однако при равенстве значений ρ_k новый стандарт позволяет при QAM-1024 получить выигрыш в спектральной эффективности 48,6 %.

Таким образом, выполненные исследования и полученные результаты позволяют количественно оценить преимущества DVB-C2 над DVB-C по базовым показателям, а также установить, насколько энергетическая эффективность каналов DVB-C2 проигрывает пределу по Шеннону.

Проигрыш в ОНШ для реального канала по сравнению с потенциально возможным значениям ρ_{III} по Шеннону рассчитывается по формуле

$$\delta \rho = \rho_k - \rho_{III} = \rho_k - 10 \lg \left(10^{0.3 \gamma} - 1 \right), \text{ дБ.}$$
 (16)

Подставляя в (16) данные из табл. 2, получим, что энергетический проигрыш δ_{ρ} в случае $\gamma = \gamma_{o} = \gamma_{c} b_{\rho}$ находится в диапазоне значений от 2 до 3 дБ. Этот результат показывает, что при условии обеспечения квазибезошибочного приема сигналов в системе DVB-C2 ее характеристики еще не позволяют вплотную приблизиться к границе Шеннона.

Заключение

Изложены механизмы функционирования передающего тракта распределительной системы стандарта DVB-C2. Разработаны модели расчета спектральной эффективности и информационной скорости передачи данных по каналам системы. Приведены расчетные соотношения для оценки помехоустойчивости систем стандарта DVB-C, использующие многопозиционные виды модуляции и блочное кодирование по алгоритму Рида — Соломона. Дана сравнительная оценка показателей эффективности каналов стандартов DVB-C2 и DVB-C. Определены отклонения энергетической эффективности реальных каналов DVB-C2 от пороговой эффективности по Шеннону.

EVALUATION OF EFFICIENCY OF DVB-C2 DISTRIBUTION SYSTEM CHANNELS

E.B. LIPKOVICH, A.A. PAULOUSKI, A.A. SERCHENYA

Abstract. The principles of construction and functioning of the transmission path of the digital distribution network of DVB-C2 standard are considered. The calculated relations are presented, according to them the values of information speed and spectral efficiency of DVB-C2 channels with different types and modulation order are determined. Mathematical models of noise immunity calculation of DVB-C standard using multi – position modulation and block coding by Reed-Solomon algorithm (RS) are presented. On the basis of the calculated models, a comparative analysis of the efficiency of DVB-C2 and DVB-C channels was performed and significant advantages of the second generation systems were noted. The estimation of efficiency indicators of real DVB-C2 channels in comparison with theoretically reached on Shannon was given.

Keywords: noise immunity, multi-position modulation types, coding, energy efficiency, error probability.

Список литературы

- 1. ETSI EN 302 769. Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2) [Electronic resource]. URL: http://www.etsi.org/deliver. (date of access: 21.10.2019).
- 2. ETSI TS 102 991. Digital Video Broadcasting (DBV); Implementation Guidelines for a second generation digital cable transmission system (DVB-C2). [Electronic resource]. URL: http://www.etsi.org/deliver. (date of access: 21.10.2019).
- 3. ETSI EN 302 307. Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2). [Electronic resource]. URL: http://www.etsi.org/deliver. (date of access: 21.10.2019).
- 4. ETSI TS 302 775. Digital Video Broadcasting (DBV); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2). [Electronic resource]. URL: http://www.etsi.org/deliver. (date of access:21.10.2019).
- 5. ETSI EN 300 429. Framing structure, channel coding and modulation for cable systems [Electronic resource]. URL: http://www.etsi.org/deliver. (date of access:21.10.2019).