УДК 621.391

СЖАТИЕ ИЗОБРАЖЕНИЙ БЕЗ ПОТЕРЬ НА ОСНОВЕ КОМБИНИРОВАННОГО ЭФФЕКТИВНОГО КОДИРОВАНИЯ БИТОВЫХ ПЛОСКОСТЕЙ

Б.Д.С. САДИК, В.Ю. ЦВЕТКОВ, М.Н. БОБОВ

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

Поступила в редакцию 02 ноября 2019

Аннотация. Разработана структура и исследована эффективность комбинированного кодека сжатия изображений без потерь в пространственной области, использующего алгоритмы арифметического и RLE-кодирования для компактного представления различных битовых плоскостей изображения.

Ключевые слова: комбинированное эффективное кодирование, сжатие изображений без потерь.

Введение

На изображениях различных типов наибольший коэффициент сжатия показывают разные кодеки. Это обусловлено тем, что распределения значений в битовых плоскостях изображений отличаются. Можно также предположить, что различные битовые плоскости одного изображения могут лучше сжиматься с помощью разных кодеков. При этом для изображений различных типов (спутниковых, медицинских, тепловизионных, гиперспектральных и т.д.) наибольшие коэффициенты сжатия возможны при различных комбинациях кодеков битовых плоскостей. Такой подход, предполагающий использование для сжатия изображений кодера комбинированной структурой, сочетающей несколько различных кодеров, систему их подключения к различным битовым плоскостям и систему управления этими подключениями, в настоящее время практически не исследован. В современных кодеках сжатия изображений [1-6] используется один алгоритм обработки для всех битовых плоскостей. Косвенные подтверждения эффективности комбинированного кодирования можно обнаружить в структурах кодеков EZW, SPIHT, SPECK [7–9], обеспечивающих раздельное кодирование битовых плоскостей и предусматривающих возможность использования младших битовых плоскостей с равновероятным повтором нулей и единиц без кодирования, а также в структуре кодека JPEG 2000 [6], предусматривающего возможность использования двух алгоритмов для сжатия изображений без и с потерями. Однако, в рассмотренных кодеках не предусмотрено применение разных алгоритмов кодирования к различным битовым плоскостям. Эффективность раздельного кодирования битовых плоскостей анализируется в работах [10, 11], но только для кодера RLE [12]. Результаты исследования эффективности использования комбинации арифметического и RLE-кодирования приведены в работе [13], но только для нескольких типов изображений. Недостаточное исследование комбинированного подхода к кодированию изображений связано с ростом вычислительной сложности: временной (из-за дополнительных затрат на выбор алгоритма кодирования) и пространственной (из-за дополнительных затрат памяти для реализации нескольких алгоритмов кодирования). Однако, с развитием элементной базы рост вычислительной сложности кодирования становиться менее критичным в сравнении с увеличением коэффициента сжатия, особенно для приложений, предусматривающих передачу

изображений в реальном времени по каналам с ограниченной пропускной способностью. Кроме того, возможно использование комбинации кодеков со сложной и простой структурой, что ведет к относительно небольшому росту вычислительной сложности. Наибольший интерес в этом плане представляют арифметический [14, 15] и RLE [12] кодеки. Арифметический кодек входит в состав ядра кодека JPEG 2000 и позволяет достичь высоких коэффициентов сжатия изображений. RLE-кодек имеет относительно низкую вычислительную сложность, благодаря чему нашел широкое применение в составе различных кодеков сжатия изображений и архиваторов.

Цель работы: разработка структуры и исследование эффективности комбинированного кодека сжатия изображений различных типов без потерь в пространственной области на основе алгоритмов арифметического и RLE-кодирования.

Раздельное эффективное кодирование битовых плоскостей изображений

Для разработки структуры комбинированного кодека сжатия изображений без потерь в пространственной области проведено исследование эффективности раздельного кодирования битовых плоскостей изображений с помощью арифметического и RLE-кодеров. Сущность раздельного эффективного кодирования состоит в использовании для сжатия старших и младших битовых плоскостей изображения или их комбинаций независимых кодеров одного типа или одного кодера, подключаемого к плоскостям поочередно (рис. 1).

Рис. 1. Раздельное эффективное кодирование битовых плоскостей изображения

Битовые плоскости B(r) формируются из одинаковых разрядов r пикселей i(R,y,x)R-разрядного изображения $I(R) = \|i(R, y, x)\|_{(y=0,Y-1, x=0, X-1)}$ и представляют собой матрицу $B(r) = \|b(r, y, x)\|_{(y=0,Y-1, x=0, X-1)}$, состоящую из нулей и единиц $(b(r, y, x) = \{0, 1\})$, размер $Y \times X$ которой совпадает с размером $Y \times X$ исходного изображения I(R). Значения i(R, y, x) и b(r, y, x) связаны выражением

$$i(R, y, x) = \sum_{r=0}^{R-1} 2^r b(r, y, x)$$

при $y = \overline{0, Y-1}, x = \overline{0, X-1}.$

Комбинация из нескольких r_c битовых плоскостей $(0 < r_c < R)$ с r_L по r_H $(r_H > r_L, r_C = r_H - r_L + 1)$ представляет матрицу $I_c(r_L, r_H) = \|i_c(r_L, r_H, y, x)\|_{(y=0,Y-1, x=0, X-1)}$, значения $i_c(r_L, r_H, y, x)$ которой имеют r_c разрядов. В этом случае

$$i_{C}(r_{L}, r_{H}, y, x) = \sum_{r=r_{L}}^{r_{H}} 2^{r-r_{L}} b(r, y, x)$$
 при $y = \overline{0, Y-1}, x = \overline{0, X-1}.$

Для частного случая $r_H = r_L$ справедливо равенство $i_C(r_L, r_H, y, x) = b(r_L, y, x)$.

В табл. 1–3 приведены средние коэффициенты сжатия битовых плоскостей 8-разрядных (R = 8) спутниковых, портретных, медицинских полутоновых и ландшафтных тепловизионных изображений, а также разностей спектральных каналов 16-разрядных (R = 16) гиперспектральных изображений (ГСИ), полученные с использованием RLE и арифметического кодеров (AC). Усреднение значений коэффициентов сжатия произведено по 8-ми тестовым изображениям каждого типа.

Кодер RLE применен отдельно для каждой битовой плоскости $(f_{\text{RLE}}(B(r))$ при $r = \overline{0, R-1})$, где $f_{\text{RLE}} - \phi$ ункция RLE-кодирования. На основе получаемого при этом объема $\langle f_{\text{RLE}}(B(r)) \rangle$. кода (в битах) вычисляются частичные коэффициенты сжатия с помощью выражения

$$CR_{\text{RLE}}(r) = YX / \langle f_{\text{RLE}}(B(r)) \rangle$$
 при $r = \overline{0, R-1},$

где () – оператор вычисления объема кода.

Кодирование тестовых изображений целиком (без разделения на битовые плоскости) с помощью кодера RLE не приводит к сжатию ($\langle f_{RLE}(I(R)) \rangle \ge RYX$).

	Частичные и полные коэффициенты сжатия битовых плоскостей изображений						
Битовые	Полутоновые	Полутоновые	Полутоновые	Ландшафтные	Разности		
плоскости	спутниковые	портретные	медицинские	тепловизионные	спектральных		
					каналов		
7 (15)	1,74466	1,56655	10,47579	1,17699	18318,4105 (1,4104)		
6 (14)	1,12429	0,86344	3,50286	0,5182	18318,8455(50909,6075)		
5 (13)	0,63831	0,6439	2,12782	0,34866	1157,6183(50909,6075)		
4 (12)	0,42969	0,43127	1,10178	0,36688	1,1011 (50909,6075)		
3 (11)	0,39203	0,40328	0,74446	0,33853	0,2947 (50909,6075)		
2 (10)	0,40096	0,48656	0,50431	0,33297	0,2553 (50909,6075)		
1 (9)	0,39986	0,50185	0,38566	0,36361	0,2450(45954,3425)		
0 (8)	0,40006	0,44505	0,33411	0,38925	0,2494(36585,6001)		
Bce	0,51390	0,52599	0,73092	0,40438	0,81049		

Таблица 1. Средние коэффициенты сжатия битовых плоскостей изображений для кодера RLE

Таблица 2. Средние коэффициенты сжатия битовых плоскостей изображений для арифметического кодера

Битовые	Частичные (полные) коэффициенты сжатия старших/младших битовых плоскостей изображений					
плоскости	Полутоновые	Полутоновые	Полутоновые	Ландшафтные		
(старшие/	спутниковые	портретные	медицинские	тепловизионные		
младшие)						
7/6–0	25,7676/1,0804 (1,2272)	13,0135/1,2382 (1,3941)	13,0135/1,6706 (1,8720)	27,4541/1,1168 (1,2689)		
7-6/5-0	3,5595/1,0246 (1,2150)	2,2076/1,1635 (1,2982)	6,39613/1,5153 (1,8473)	2,8637/1,0581 (1,2550)		
7-5/4-0	3,0243/1,0015 (1,3113)	1,9414/1,1058 (1,2886)	3,9399/1,3923 (1,7935)	2,2112/1,0244 (1,2816)		
7-4/3-0	2,2277/0,9912 (1,3543)	1,7919/1,0650 (1,3209)	3,2933/1,2982 (1,8250)	1,9459/1,0045 (1,3239)		
7-3/2-0	1,8680/0,9870 (1,3905)	1,6408/1,0244 (1,3295)	2,8619/1,2243 (1,8878)	1,7454/0,9925 (1,3578)		
7-2/1-0	1,6625/0,9806 (1,4111)	1,5466/1,0208 (1,3577)	2,5539/1,1666 (1,9586)	1,5976/0,9827 (1,3810)		
7-1/0	1,5246/0,9621 (1,4186)	1,4963/0,9358 (1,3821)	2,3217/1,0958 (2,0332)	1,4915/0,9649 (1,3958)		

Арифметический кодер применен отдельно для старших $(f_{AC}(i_C(r_{HL}, r_{HH}, y, x))))$ и младших $(f_{AC}(i_C(r_{LL}, r_{LH}, y, x))))$ битовых плоскостей $(r_{HH} > r_{HL}, r_{LH} = r_{HL} - 1, r_{LH} > r_{LL}, r_{LL} \ge 0)$, где f_{AC} – функция арифметического кодирования. Частичные коэффициенты сжатия вычисляются с помощью выражений

$$CR_{AC}(r_{HL}, r_{HH}) = (r_{HH} - r_{HL} + 1)YX / \langle f_{AC}(I_C(r_{HL}, r_{HH})) \rangle,$$

$$CR_{AC}(r_{LL}, r_{LH}) = (r_{LH} - r_{LL} + 1)YX / \langle f_{AC}(I_C(r_{LL}, r_{LH})) \rangle.$$

Битовые плоскости (старшие/младшие)	Частичные (полные) коэффициенты сжатия старших/младших			
	битовых плоскостей изображений			
15/14–0	0,5706/2,4806 (2,0414)			
14/13–0	15,6852/2,3152 (2,6180)			
14-13/12-0	31,3705/2,1498 (2,6180)			
14-12/11-0	47,0557/1,9844 (2,6180)			
14-11/10-0	62,7409/1,8191 (2,6180)			
14-10/9-0	78,4262/1,6537 (2,6180)			
14-9/8-0	94,1114/1,4883 (2,6180)			
14-8/7-0	109,7933/1,3235 (2,6191)			
14-7/6-0	119,2902/1,1660 (2,6355)			
14-6/5-0	92,6252/1,0025 (2,6136)			
14-5/4-0	94,0904/0,8537 (2,6491)			
14-4/3-0	93,4257/0,7415 (2,7321)			
14-3/2-0	22,6167/0,6888 (2,9558)			
14-2/1-0	6,5078/0,6497 (3,0008)			
14-1/0	3,9643/0,6073 (3,0477)			

Таблица 3. Средние коэффициенты сжатия битовых плоскостей разностей каналов ГСИ для арифметического кодера

Битовая плоскость 15 разностей спектральных каналов ГСИ содержит коды знаков значений разностей: 0 – плюс, 1 – минус и кодируется отдельно $(f_{AC}(B(15)))$. В таблицах приведены также полные коэффициенты сжатия $CR_{RLE}(R)$ и $CR_{AC}(R)$ всех битовых плоскостей изображений, учитывающие объемы кодов отдельных битовых плоскостей и их сочетаний, вычисляемые с помощью выражений

$$CR_{\text{RLE}}(R) = \frac{RYX}{\sum_{r=0}^{R-1} \left\langle f_{\text{RLE}}(B(r)) \right\rangle},$$

$$CR_{AC}(R) = \frac{RYX}{\left\langle f_{AC}\left(I_{C}\left(r_{HL}, r_{HH}\right)\right)\right\rangle + \left\langle f_{AC}\left(I_{C}\left(r_{LL}, r_{LH}\right)\right)\right\rangle}.$$

Из табл. 1 следует, что кодер RLE позволяет сжимать две старшие (r = 7, 6) битовые плоскости медицинских и одну старшую (r = 7) битовую плоскость портретных 8-разрядных полутоновых изображений, а также 9–11 старших битовых плоскостей, начиная с 14-й, разностей спектральных каналов ГСИ. Для остальных битовых плоскостей его использование не приводит к сжатию. Причем, даже в случае сжатия RLE-кодер уступает в эффективности арифметическому кодеру на всех типах изображений ($CR_{\text{RLE}}(r) > 1$, $CR_{\text{RLE}}(r) < CR_{\text{AC}}(r_{HL}, r_{HH})$), $CR_{\text{RLE}}(r) < CR_{\text{AC}}(r_{LL}, r_{LH})$), кроме разностей каналов ГСИ, что связано с относительно высокой вероятностью нулей в их старших битовых плоскостях.

Использование арифметического кодера для младшей битовой плоскости 8-разрядных полутоновых изображений $\left(\left\langle f_{AC}(I_c(0,0))\right\rangle > YX \Rightarrow CR_{AC}(0,0) < 1\right)$ и 2-х младших битовых плоскостей 16-разрядных разностей каналов ГСИ $\left(\left\langle f_{AC}(I_c(0,1))\right\rangle > 2YX \Rightarrow CR_{AC}(0,1) < 1\right)$, как правило, не эффективно. В остальных случаях арифметический кодер обеспечивает сжатие отдельных битовых плоскостей и их комбинаций. Причем, при кодировании старших битовых плоскостей разностей каналов ГСИ арифметический кодер показывает худшие результаты в сравнении с кодером RLE.

При кодировании тестовых изображений целиком (без разделения на битовые плоскости) с помощью арифметического $(f_{AC}(I(R)))$ и RLE $(f_{RLE}(I(R)))$ кодеров получены следующие

средние коэффициенты сжатия: спутниковые изображения – $CR_{AC} = 1,22$ и $CR_{RLE} = 0,95$ раз; портретные изображения – $CR_{AC} = 1,35$ и $CR_{RLE} = 1,04$ раз; медицинские изображения – $CR_{AC} = 1,86$ и $CR_{RLE} = 1,62$ раз; ландшафтные тепловизионные изображения – $CR_{AC} = 2,13$ и $CR_{RLE} = 1,69$ раз; разности каналов ГСИ – $CR_{AC} = 2,29$ и $CR_{RLE} = 1,02$ раз. Сопоставление этих результатов с данными, приведенными в табл. 1–3, показывает, что раздельное кодирование битовых плоскостей $(f_{RLE}(B(r)))$ при $r = \overline{0,R-1}$ и $f_{AC}(I_C(r_{HL},r_{HH})), f_{AC}(I_C(r_{LL},r_{LH}))$ при $r_{HH} = R - 1, r_{HH} > r_{HL}, r_{LH} = r_{HL} - 1, r_{LH} > r_{LL}, r_{LL} = 0)$ позволяет повысить коэффициент сжатия изображений по сравнению с их непосредственным кодированием $(f_{RLE}(I(R)))$ и $f_{AC}(I(R)))$.

Комбинированное эффективное кодирование битовых плоскостей изображений

Для повышения коэффициента сжатия изображений без потерь предлагается использовать комбинированное эффективное кодирование. Его сущность состоит в использовании для сжатия старших битовых плоскостей изображения или их комбинаций нескольких кодеров различных типов $(f_{\text{RLE}}(B(r))$ и $f_{\text{AC}}(I_c(r_{\text{HL}}, r_{\text{HH}})))$, лучше учитывающих распределение их значений, и непосредственном включении в результат кодирования младших битовых плоскостей $(f_{\text{NC}}(B(r)))$ при $r \ge 0$ или $f_{\text{NC}}(I_c(0, r_{\text{LH}}))$ при $r_{\text{LH}} \ge 0)$, кодирование которых не эффективно $(\langle f_{\text{RLE}}(B(r)) \rangle \ge YX$ при $r \ge 0$ или $f_{\langle \text{AC}}(I_c(0, r_{\text{LH}})) \rangle \ge (r_{\text{LH}} + 1)YX$ при $r_{\text{LH}} \ge 0)$ (рис. 2), где $f_{\text{NC}} - ф$ ункция непосредственного переноса младших битовых плоскостей без кодирования.

Из табл. 1–3 следует, что комбинированное кодирование эффективно для сжатия разностей каналов ГСИ. В табл. 4 приведены наиболее эффективные комбинации арифметического и RLE кодеров для битовых плоскостей четырех разностей соседних каналов тестовых ГСИ, взятых из базы Aviris [16], и коэффициенты сжатия CR_{c} , соответствующие этим комбинациям.

Коэффициент сжатия $CR_{\rm C}$ при комбинированном эффективном кодировании вычисляется с помощью выражения

$$CR_{\rm C} = \frac{RYX}{\sum_{m=1}^{M} \langle f_{\rm RLE}(B(r(m))) \rangle + \sum_{n=1}^{N} \langle f_{\rm AC}(I_C(r_L(n), r_H(n))) \rangle + \sum_{p=0}^{P-1} \langle f_{\rm NC}(B(p)) \rangle}$$

при R = M + N + P, $r_H(n) > r_L(n)$, $M \ge 0$, $N \ge 0$, $P \ge 0$,

где M – число битовых плоскостей, кодируемых с помощью кодера RLE; N – число битовых плоскостей, кодируемых с помощью арифметического кодера; P – число битовых плоскостей, непосредственно переносимых в результирующий код.

Битовые	Комбинации арифметического и RLE кодеров для разностей каналов ГСИ							
плоскости	Разность 1		Разность 2		Разность 3		Разность 4	
15 7	RLE	RLE	AC	RLE	AC		RLE	
14 6	RLE	RLE	RLE	RLE	RLE		RLE	AC
13 5	RLE	RLE	RLE	RLE	RLE	AC	RLE	
12 4	RLE	AC	RLE		RLE		RLE	NC
11 3	RLE		RLE	AC	RLE		RLE	NC
10 2	RLE	NC	RLE		RLE	NC	RLE	NC
9 1	RLE	NC	RLE	NC	RLE	NC	RLE	NC
8 0	RLE	NC	RLE	NC	RLE	NC		NC
CR_{C}	3,72917		3,16748		3,15484		2,80657	
CR_{AC}	2,53492		2,29310		2,16147		2,18485	
CR _{RLE}	1,02866		0,97902		1,04260		1,03313	
\overline{CR}_C	2,46175		3,16773		3,07913		1,93187	

Таблица 4. Наиболее эффективные комбинации арифметического и RLE кодеров и коэффициенты сжатия

Основываясь на табл. 4, для повышения коэффициента сжатия предлагается следующее правило комбинированного кодирования разностей соседних каналов ГСИ, определяющее формирование результирующего кода C_c : необходимо использовать арифметический кодер для старшей знаковой плоскости и битовых плоскостей 8–2, кодер RLE – для битовых плоскостей 14–9, перенос без кодирования – для битовых плоскостей 1–0, что определяется выражением

$$C_{\rm C} \leftarrow f_{\rm AC}(B(15)) \oplus f_{\rm RLE}(B(14)) \oplus \dots \oplus f_{\rm RLE}(B(9)) \oplus f_{\rm AC}(I_{\rm C}(2,8)) \oplus f_{\rm NC}(I_{\rm C}(0,1)),$$

обеспечит объем кода $\langle C_c \rangle$, равный

$$\langle C_{\rm C} \rangle = \langle f_{\rm AC}(B(15)) \rangle + \sum_{r=9}^{14} \langle f_{\rm RLE}(B(r)) \rangle + \langle f_{\rm AC}(I_{\rm C}(2,8)) \rangle + \langle f_{\rm NC}(I_{\rm C}(0,1)) \rangle$$

и коэффициент сжатия \overline{CR}_{C} , равный

$$\overline{CR}_C = \frac{16YX}{\left\langle C_C \right\rangle},$$

где \oplus – оператор конкатенации, обеспечивающий формирование результирующего кода из фрагментов, соответствующих битовым плоскостям и их комбинациям.

Из табл. 4 следует, что комбинированное кодирование позволяет повысить коэффициент сжатия разностей соседних каналов ГСИ в среднем в $CR_{\rm C}/CR_{\rm AC} = 1,4$ и $CR_{\rm C}/CR_{\rm RLE} = 3,1$ раза по сравнению с арифметическим и RLE-кодированием соответственно.

Предложенное правило позволяет синтезировать структуру кодера ГСИ (рис. 3). Она состоит из комбинированного кодера разностей каналов ГСИ и кодера опорного канала ГСИ. Комбинация арифметического и RLE кодеров в части кодера разностей каналов ГСИ отличается от эффективных комбинаций, рассмотренных в табл. 4, что приводит к снижению коэффициента сжатия, однако не требует использования в кодеках дополнительных коммутационного

и управляющего блоков. Выигрыш в коэффициенте сжатия разностей соседних каналов ГСИ составляет в среднем в $\overline{CR}_C/CR_{AC} = 1,2$ и $\overline{CR}_C/CR_{RLE} = 2,6$ раза по сравнению с арифметическим и RLE-кодированием соответственно. Для кодирования опорного канала ГСИ используется арифметический кодер, на который подаются 12 старших битовых плоскостей опорного канала, а 4 младших битовых плоскости непосредственно переносятся в результирующий код. Такая структура следует из анализа эффективности раздельного кодирования битовых плоскостей каналов ГСИ, который показывает, что, как правило, от 2 до 6 младших битовых плоскостей каналов ГСИ, который показывает, что, как правило, от 2 до 6 младших битовых плоскостей не сжимаются с помощью арифметического кодера [17]. Наиболее вычислительно сложными элементами кодера ГСИ являются блоки арифметического кодирования (AC), работающие на частотах $YXC_{AC}f$ и $YXC_{AC}f/(N-1)$ в части кодеров разностей спектральных каналов и опорного канала ГСИ соответственно, где N - число спектральных каналов; $C_{AC} > 1 -$ коэффициент учитывающих вычислительную (временную) сложность арифметического кодера в сравнении с RLE (работает на частоте YXf); f – тактовая частота $f = Nf_I$; f_I – частота формирования ГСИ. Экспериментально установлено, что $C_{AC} \approx 11$.

Рис. 3. Структура кодера гиперспектральных изображений

Структура кодера ГСИ включает также мультиплексоры спектральных каналов, работающие на частоте f по входам управления и на частоте 16YXf по входам данных; мультиплексор кодов битовых плоскостей разностей спектральных каналов, работающий на частоте 10f; мультиплексор кодов битовых плоскостей опорного канала, работающий на частоте 5f/(N-1); мультиплексор кодов опорного и разностей каналов ГСИ, работающий на частоте f/(N-1). При последовательной реализации вычислительная сложность комбинированного кодера составляет примерно $2YXC_{AC}f + 6YXf$ при большом числе спектральных каналов, что примерно в 2,5 и 28 раз больше по сравнению с арифметическим и RLE-кодированием соответственно.

Заключение

Разработана структура комбинированного кодера сжатия битовых плоскостей изображений без потерь в пространственной области на основе арифметического и RLE-кодеров. Установлена эффективность комбинированного кодирования для сжатия разностей каналов гиперспектральных изображений. Выбор оптимальных комбинаций битовых плоскостей для арифметического и RLE кодирования позволяет повысить коэффициент сжатия разностей соседних каналов ГСИ в среднем в 1,4 и 3,1 раза по сравнению с арифметическим и RLE-кодированием соответственно. Разработано правило комбинированного кодирования разностей соседних каналов гиперспектральных изображений, использующее арифметическое кодирование для старшей знаковой плоскости и битовых плоскостей 8–2, кодирование RLE – для битовых плоскостей 14–9, перенос без кодирования – для битовых плоскостей 1–0, что позволило повысить коэффициент сжатия разностей соседних каналов гиперспектральных изображений в среднем в 1,2 и 2,6 раза по сравнению с арифметическим и RLE-кодированием соответственной сложности в 2,5 и 28 раз. На основе данного правила разработана структура кодера гиперспектральных изображений.

LOSSLESS IMAGE COMPRESSION BASED ON THE COMBINED EFFICIENT CODING OF BIT PLANES

B.J.S. SADIQ, V.Yu. TSVIATKOV, M.N. BOBOV

Abstract. A structure of the efficiency of the combined image compression codec without loss in the spatial domain using arithmetic and RLE-coding algorithms for compact representation of various bit planes of the image was developed and researched.

Keywords: combined efficient coding, lossless image compression.

Список литературы

1. Ватолин Д. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М: Диалог-МИФИ, 2003.

2. Сэломон Д. Сжатие данных, изображений и звука. М: Техносфера. 2004.

3. Тропченко А.Ю., Тропченко А.А. Методы сжатия изображений, аудиосигналов и видео: учеб. пособие. СПб: СПбГУ ИТМО. 2009.

4. Гонсалес Р., Вудс. Р. Цифровая обработка изображений. М: Техносфера. 2006.

5. Ziv J., Lempel A. // IEEE Transactions on Information Theory. IT-23. 1977. P. 337-343.

6. Taubman D.S., Marcellin M.W. JPEG2000: image compression fundamentals, standards, and practice. Springer-Verlag. 2002.

7. Shapiro J.M. // IEEE Trans. Signal Processing. 1993. № 41. P. 3445–3462.

8. Said A., Pearlman W.A. // IEEE Trans. on Circuits and Systems for Video Technology. 1996. Vol. 6. P. 243-250.

9. Islam A., Pearlman W.A. // ISO/IEC/JTC1/SC29, WG1. 1998. № 873. P. 312–326.

10. Аль-Бахдили Х.К., [и др.] // Докл. БГУИР. 2016. № 2 (96). С. 63–69.

11. Al-Bahadily H.K., [et. al.] // International Journal of Advanced Computer Science and Applications. 2016. Vol. 7. P. 250–255.

12. GolombS.W. // IEEE Transactions on Information Theory. 1966. P 399–401.

13. Abdmouleh M.K., [et. al.] // Journal of Software Engineering and Applications. 2012. № 5. P. 41-44.

14. Abramson N. Information Theory and Coding. McGraw-Hill, New York. 1963.

15. Rubin F. // IEEE Trans. If. Theory IT-25, 6. 1979. P. 672–675.

16. Airborne Visible/Infrared Imaging Spectrometer [Electronic resource]. URL: https://aviris.jpl.nasa.gov/data/index.html. (date of access: 02.11.2019).

17. Садик Б.Дж., Бобов М.Н. // Телекоммуникации: сети и технологии, алгебраическое кодирование и безопасность данных: материалы междунар. научно-технич. семинара, ч. 2. Минск. БГУИР, 2016. С. 61–67.