
Security patterns based approach to
automatically select mitigations in
ontology-driven threat modelling

Andrei Brazhuk
Yanka Kupala State University of Grodno

Grodno, Belarus
brazhuk@grsu.by

Abstract—Common approach of the threat modelling
includes an analysis of computer system architecture on
early stages of development process and creation of threat
model. Data Flow Diagrams (DFD) are often used to
represent the system organization. The main challenge with
threat modelling is that there are no formal approaches to
describe the computer system architecture and structured
knowledge sources of threats and countermeasures.

To overcome these restrictions we have created ontology-
driven threat modelling (OdTM) framework based on base
threat model, used to develop various domain-specific threat
models. Each domain-specific threat model contains a set of
typical components of some architectural domain, threats
and countermeasures. A system architect describes its com-
puter system with DFD diagram; then automatic reasoning
procedures are used to semantically interpret the diagram
and figure out relevant threats and countermeasures for the
system.

We approach a conception of context security patterns
as countermeasures. Context security pattern contains a
precise description of security problem and its solution. Also
it has criteria that allow to automatically map it to system
component. We propose three ways to integrate context
security patterns with domain-specific threat models: with
data flow templates, through association with threats, and
the use of labels.

All the models, discussed in this work, can be imple-
mented as OWL (Web Ontology Language) ontologies with
Description logics (DL) as a mathematical background.

Keywords—software security, knowledge management,
threat modelling, OWL, DFD

I. INTRODUCTION

Threat modelling is a process of identification of
security threats and their countermeasures in order to
increase security level of computer system. Common
approach of the threat modelling includes two stages.
Firstly, an analysis of computer system organization
(i.e. its architecture) happens on the early stages of its
development process (requirements, design, redesign).
Secondly, they build the threat model that represents all
security aspects of the system.

Different informal graphical representations of system
architecture are used during this process, more often
Data Flow Diagrams (DFD) [1]. DFD consists of the

objects (stencils) and data flows between these stencils;
also a special type of entities exists to group objects and
define trust boundaries between them (Figure 1 shows
an example of DFD from cloud computing field). Using
such diagrams, development team can build an informal
threat model of computer system, i.e. figure out possible
threats to the system and their countermeasures, through
discussions, making notes, and evaluations.

Figure 1. Example of DFD

The main challenge with the threat modelling is that it
is too hard to employ formalization and automation there.
There is a lack both of formal approaches to describe the
computer system architecture, and structured knowledge
sources of threats and their countermeasures.

In order to bring a formal approach to this filed [2], we
have created ontology-driven threat modelling (OdTM)
framework. The OdTM framework includes a common

267



approach of the architectural security analysis, method of
semantic interpretation of DFD, and automatic reasoning
procedures of relevant threats and countermeasures. Our
approach is based on the base threat model that en-
ables creation of various domain-specific threat models.
Each domain-specific threat model holds a set of typical
components of some architectural domain, threats and
countermeasures (security patterns) associated with these
components. System architect can describe computer sys-
tem in terms of a domain-specific model with diagram(s).
Then the automatic reasoning procedures can be used to
build threat model of the system.

All the models, proposed in this work, can be imple-
mented as OWL (Web Ontology Language) ontologies.
OWL has description logics (DL) as a mathematical
background. The DL means are able to describe con-
cepts of a domain and relations between them in very
formal way and apply automatic reasoning features with
relatively low computational complexity.

Another challenge, discussed in this work, refers to
employing an approach to choose the mitigations based
on security patterns. Security patterns are known as
descriptions of security problems that appear in specific
contexts and present well proven solution for them [3].
They are created by security experts and represent best
security practices for inexpert computer system archi-
tects.

We approach a conception of context security patterns.
Context security pattern is a security pattern that has
been placed into a context, i.e. contains more precise
interpretation, directly applicable for a system compo-
nent, rather then generic descriptions of problem and
solution. Also, it has criteria that allow to automatically
map it to a system component. We propose three ways to
integrate context security patterns with domain-specific
threat models: with data flow templates, association with
threats, and the use of labels.

Also, a problem of formalization of domain specific
knowledge is discussed in this work.

II. ONTOLOGY-DRIVEN THREAT MODELLING
FRAMEWORK

The Ontology-driven threat modelling (OdTM) frame-
work is aimed to employ formalization and automation
to architectural security analysis of computer systems. It
consists of the ontology-driven models and methods that
enable automatic analysis of DFD diagrams and building
particular threat models. Figure 2 shows structure of the
OdTM framework.

The base threat model, implemented as OWL on-
tology, enables the automatic reasoning features and
contains basic concepts and individuals, representing
components of the diagrams, threats, countermeasures,
and their properties.

To involve the threat modelling of a particular type
(domain) of computer systems (e.g. Cloud computing,

Figure 2. Structure of OdTM framework.

Fog/Edge computing, SaaS, IaaS, or Software Defined
Networks), it requires the following steps:

• Building domain-specific threat model. To build
the model, security experts should extend the base
model with specific components, threats and coun-
termeasures, related to the domain. The domain-
specific threat model can be considered as a meta
model, which depicts the security aspects of this
type of computer systems. They are represented as
OWL ontologies and can be connected to various
external linked data sources (OWL ontologies and
RDF data sets).

• Building domain-specific library of DFD compo-
nents. Background procedures automatically extract
the component hierarchy from the domain-specific
threat model and create the library of DFD stencils,
which can be used to draw DFD diagrams.

To create a threat model of a particular computer
system, it requires the following steps:

• Depiction of an architecture of the system as DFD.
A system architect draws a structure of its computer
system as the DFD diagram (or the set of diagrams),
using the stencils of DFD component library.

• Semantic interpretation of the DFD. The back-
ground procedures automatically interpret the dia-
gram as a set of semantic instances (components,
data flow, boundaries and relations between them)
and combine this set with the domain-specific threat
model.

• Automatic reasoning of relevant threats and coun-
termeasures. Automatic reasoning procedures in-
fer relevant threats and countermeasures from the

268



semantic interpretation and domain-specific threat
model. This allows the background procedures to
build lists of the threats and countermeasures for
the system.

III. SEMANTIC INTERPRETATION OF DATA FLOW
DIAGRAMS

Common ontology description with the DL means
uses separation of axioms to the TBox (concepts and
properties) and ABox (individuals and their relations)
parts. Also, it is supposed that automatic reasoning
procedures exist, which allow to get extra facts from an
ontology (inferred axioms).

The OdTM base threat model, implemented as OWL
ontology, enables semantic interpretation of the diagrams
and automatic reasoning of threats and countermeasures.
To model a DFD diagram we use a set of concepts
(classes) and their properties, described by Figure 3 as
DL axioms.

Figure 3. Semantic interpretation of DFD diagram (a part of TBox).

Axioms (Ax.) 01-09 in Figure 3 model the hierarchy
of the DFD base stencils. Three main concepts are
derived from the “Stencil” concept: “Targets”, “Trust-
Boundaries”, and “DataFlows”.

An instance of the "DataFlow" concept represents a
directional flow from a source "Target" instance to a
target "Target" instance. To model this, a data flow should
have two properties: “hasSource” (Ax. 10) and “hasTar-
get” (Ax. 13); for both of them a range is supposed
to be Target. The properties “isSourceOf” (Ax. 11) and
“isTargetOf” (Ax. 14) are inverse to previous two ones
(Ax. 12, 15) and allow to infer that a target is a starting
edge or ending edge of some data flow.

A data flow can cross some instance of the “Trust-
LineBoundary”; to tell this, the “crosses” property is used
(Ax. 16). Also, a line boundary might divide some data
flow; to describe this, the “divides” property is used (Ax.
17). The last two properties are inverse (Ax. 18).

A target might be included into some “TrustBor-
derBoundary” instance; to model this, the “isIncluded”
property is used (Ax. 20). Also, a TrustBorderBoundary
instance contains, or “includes” (Ax. 19) some targets.
The “include” and “isIncluded” properties are reverse
(Ax. 21).

To semantically model a diagram that describes an
architecture of a computer system, we should apply the
ABox axioms to the ontology. This includes instances
of the base concepts (or derived of them) and their
properties: “Targets”, “DataFlows” with “hasSource”
and “hasTarget”, “TrustLineBoundaries “with “crosses”,
“TrustBorderBoundaries” with “includes”.

Figure 4. A simple DFD diagram.

Figure 4 depicts a simple example of DFD, and
below is shown a possible semantic interpretation of the
diagram:

Process(pr1)
Process(pr2)
DataF low(flow)
hasSource(flow, pr1)
hasTarget(flow, pr2)
TrustLineBoundary(line)
crosses(flow, line)
TrustBorderBoundary(box)
includes(box, pr1)

Note, the automatic reasoning procedures would be
able to infer additional facts from the ABox sets like
this. We do not need to tell in this example, that “pr1”
is a source of “flow”, “pr2” is its target, “line” divides
“flow”, “pr1” is included into “box”. These facts would
be inferred by the automatic reasoning procedures (see
Ax. 12, 15, 18, 21).

269



IV. AUTOMATIC SELECTION OF SECURITY PATTERNS

In modern computer systems data flows are origins of
security issues, because most of the attacks are remote
and sourced from the local and remote networks. Usually
threats are applied to computer system by data flows.
Also, reasons for adding a countermeasure (security
pattern) to particular architecture depend on the presence
of a data flow.

To model threats and countermeasures we use a set of
concepts and their properties, described by Figure 5.

Figure 5. Countermeasures and threats (a part of TBox).

An instance of the “Threat” concept (Ax. 22) “affects”
some data flow. Also the inverse property called “isAf-
fectedBy” is used (Ax. 26, 27).

An instance of the “Countermeasure” concept “pro-
tects” (Ax. 28) some data flow, and a data flow “isPro-
tected by a countermeasure (Ax. 29, 30). Also, counter-
measure “mitigates” (Ax. 31) some threat, and a threat
“isMitigated” by some countermeasure (Ax. 32, 33).

Security patterns in the model are extended to the
“ContextSecurityPattern” concepts. They are derived
concepts of “Countermeasures” (Ax. 24). The base threat
model has three ways to enable the automatic reasoning
of context security patterns, as well as other kinds
of mitigations, through countermeasures: A) data flow
templates, B) association with threats, C) the use of
labels.

A) The first option is the use of data flow templates.
A flow template should be defined as a concept with the
“hasSource”, “hasTarget”, “crosses” (and other) proper-
ties like:

Template1 ≡ DataF low
∩ ∃hasSource.Process
∩ ∃hasTarget.Process
∩ ∃crosses.TrustLineBoundary

To enable automatic reasoning, it requires to create a
instance of context security pattern and associate it with
a data flow template, like:

ContextSecurityPattern(pattern1)
Template1 ⊆ ∃isProtectedBy.{pattern1}

Using last three axioms, the “flow” instance (from Fig-
ure 4) would be recognized by the automatic reasoning
procedures as an instance of the “Template1” concept, so
“flow” would be protected by “pattern1”, and “pattern1”
would protect “flow”.

By creation flow templates and descriptions of pat-
terns, like shown above, it is possible to form a model
of context security patterns. The same way it can be
possible to create a model of threats by mapping the
Threat instances to data flow patterns with the “isAf-
fected” property.

B) The next way to employ the context security pat-
terns is to map them to threats with the “mitigates”
property, like:

Threat(threat2)
Template1 ⊆ ∃isAffectedBy.{threat2}
ContextSecurityPattern(pattern2)
mitigates(pattern2, threat2)

C) For more precise classification of threats and
countermeasures a set of security objectives (SO) and
the STRIDE model can be used. STRIDE stands from
Spoofing, Tampering, Repudiation, Information Disclo-
sure, Denial of Service, and Elevation of Privilege. A
list of the security objectives used here includes: Confi-
dentiality, Integrity, and Availability (the CIA triad) and
extra objectives like Authentication, Non-Repudiation,
and Authorization.

Using the “labelsSO” and “labelsSTRIDE” properties
(Ax. 34-35), it is possible to label threats, countermea-
sures and context security patterns:

labelsSO(pattern2, SOAvailability)
labelsSTRIDE(threat2, STRIDEDenialofService)

Figure 6. Automatic reasoning example in Protege.

It would be easy to implement the discussed
above model (Figures 3 and 5) as OWL ontol-
ogy and, using a reasoner (like HermiT, Fact++,
or Pellet), check the feasibility of proposed ideas.

270



Our implementation of the OdTM base threat model
has freely been published with the GitHub service
(https://github.com/nets4geeks/OdTM) as the OdTM-
BaseThreatModel.owl file.

Figure 6 shows the properties of the “flow” instance
from Figure 4 after the automatic reasoning performed
with Protege.

V. BUILDING DOMAIN-SPECIFIC THREAT MODELS

Figure 7 shows the process of the domain specific
knowledge formalization, used to build domain-specific
threat models.

Figure 7. Formalization of domain specific knowledge.

Steps to build a domain-specific threat model are
following:

• Create a sub model of architectural components.
That includes findings all the items (components,
relations, boundaries) that a computer system of par-
ticular domain can have. This enumeration should
be used to extend the component hierarchy of the
base threat model with domain specific concepts.

• Create a sub model of threats. This includes an
enumeration creation of possible domain specific
threats, giving proper definitions for the threats,
mapping them to data flows and patterns. To make
easier the threat analysis, it is possible to build addi-
tional semantic models. In particular, we have built
the OWL ontology [4] that is based on the attack
pattern (CAPEC - Common Attack Pattern Enu-
meration and Classification) and weakness (CWE
- Common Weakness Enumeration) concepts, and
it is able to classify security concepts according
given criteria. To process raw sources of vulnerabil-
ity information, like NVD (National Vulnerability
Database), it strongly requires implying various
NLP (natural language processing) methods [5].

• Create a sub model of context security patterns.
This includes an enumeration creation of context
security patterns and mapping them to data flows
and threats. However, well-known security patterns
are textual descriptions of security problems, made
in some format in technology-independent way, e.g.
the POSA (Pattern Oriented Software Architecture)
templates. Security experts are able to understand
generic descriptions of security patterns and employ
them as design decisions to specific computer sys-
tems. But applying them as automatically inferred
solutions (i.e. putting in a context) requires some
extra adaptation steps. It can be argued about two
hundred common security patterns exist [6], and
there are hardly any sources able to create pat-
terns automatically. So, manual and semi automatic
methods of creation of context security patterns are
preferred for this kind of job.

• Label the threats and context security patterns to
the security objectives and STRIDE items.

VI. RELATED WORK

Works [6] and [7] have presented an ontological
approach to manage security patterns. The ontologies
facilitates mapping between the context aspects and secu-
rity patterns themselves, and therefore enables automatic
pattern selection during the secure system development
process.

The most powerful effort for the threat modelling
automation has made by Microsoft with the Threat Mod-
elling (TM) software. Microsoft TM consists of a drag-
and-drop DFD editor, simple rule-based reasoner, report
subsystem, and built-in threat template editor. Microsoft
uses a simple rule language to describe associations
threats with data flows. The XML format is used to save
threat templates.

Some works have used the Microsoft approach for
research and creation of security threat models based
on DFD [8], [9], [10]. Hovewer, there are some issues
with the Microsoft implementation. The Microsoft tool
only operates with two level hierarchy of objects (stencils
and derived stencils) and threats (categories and threat
types), however for description of complex computer
systems and their threats it usually requires more layers
of abstraction. Also there is a lack of full-featured
countermeasure hierarchy, which would allow a user to
choose a countermeasure to a threat from a relevant list.
Our work has gone to find a way to overcome these
restrictions with creation of semantic models with well-
formed hierarchies of components, threats and counter-
measures.

Work [11] has proposed an approach to architectural
risk analysis that leverages the threat modelling by
introduction of extended Data Flow Diagrams (EDFD),
declaring a few improvements to DFD (their knowledge

271



base uses a domain-specific rule language, based on a
graph query language), and creation of a visual EDFD
viewer. Work [12] has proposed very similar findings to
what our research has offered. They have researched a
challenge of automatic correction of security issues in
declarative deployment models of cloud services based
on the ontological approach and security patterns. It can
be argued that our OdTM approach conceptually satisfies
their topology-based deployment meta model. However,
their implementation is directly based on First-order logic
(FOL) and the low-level logical programming (Prolog).

An advantage of our approach to compare with other
works [11] and [12] is the use of Description logics
(DL) through OWL and the automatic reasoning features
as an implementation. This allows to employ an object-
oriented approach to the knowledge management system
design, i.e. provide better representation for users, stricter
formalization, and easier ways to implement. Also it is
possible to apply (if necessary) various high-level means,
like the SWRL (Semantic Web Rule Language) rules, the
SPARQL (SPARQL Protocol and RDF Query Language)
queries. And an implementation based on OWL enables
integration with linked open data (LOD) sources.

VII. CONCLUSIONS

The OdTM framework is based on domain-specific
threat models with appropriate libraries of DFD com-
ponents. Each domain-specific threat model is a meta
model of threats of particular computer system domain,
represented as the DL compatible formalization. It con-
tains axioms that can be considered as a TBox (mixed
with the instances of threats and countermeasures). To
model a DFD diagram that describes an architecture of
a particular computer system, it requires to interpret the
diagram as a set of instances (ABox). Using these ABox
and mixed TBox, the automatic reasoning procedures
can infer relevant threats and countermeasures for the
computer system.

Informally, to build domain-specific threat it is nec-
essary to extend the base threat model by creation of
a hierarchy of domain typical components, association
of threats and context security patterns to data flow
templates, mapping threats and patterns to each other,
and labeling them by the security objectives and STRIDE
items. However, formalization of domain specific secu-
rity knowledge should be considered as its transformation
to sub models of architectural components, threats and
context security patterns. In future research we are going
to learn these processes in order to create methods and
models that enable (semi) automatic building of domain-
specific threat models.

A special field of interest there would be transfor-
mation of general security patterns to context security
patterns. A system architect thinks of a computer system
in domain specific terminology and expects that proposed

solutions would be described the same way. Also, criteria
to map or not a pattern to a system design are quite
important.

REFERENCES

[1] M. Abi-Antoun, D. Wang, P.Torr, "Checking threat modeling data
flow diagrams for implementation conformance and security,"
Proceedings of the twenty-second IEEE/ACM international con-
ference on Automated software engineering. ACM, pp. 393-396,
2007.

[2] E.V. Olizarovich, A.I. Brazhuk "Kontseptual’nye osnovy analiza
modelei informatsionnoi bezopasnosti oblachnykh sistem klassa
«infrastruktura kak usluga»" [Conceptual framework of analysis
of information security models of cloud systems of the class «In-
frastructure as a Service»], Doklady BGUIR, 2019. vol. 6(124),
pp. 12-20.

[3] M. Schumacher, et al. Security Patterns: Integrating security and
systems engineering. John Wiley and Sons, 2013.

[4] A. Brazhuk "Semantic model of attacks and vulnerabilities based
on CAPEC and CWE dictionaries," International Journal of Open
Information Technologies vol. 7, no. 3, pp. 38-41, 2019.

[5] A. Brazhuk "Building annotated semantic model of software
products towards integration of DBpedia with NVD vulnerability
dataset." IJOIT, vol. 7, no. 7, pp. 35-41, 2019.

[6] A.P. Vale, E. B. Fernández, “An Ontology for Security Patterns”.
In 2019 38th International Conference of the Chilean Computer
Science Society (SCCC), pp. 1-8, 2019.

[7] H. Guan, H. Yang, J Wang, "An ontology-based approach to
security pattern selection." International Journal of Automation
and Computing 13.2, pp. 168-182, 2016

[8] M. Tasch, et al. "Security analysis of security applications for
software defined networks." Proceedings of the AINTEC 2014
on Asian Internet Engineering Conference. ACM, 2014.

[9] M. Abomhara, M. Gerdes, and G. M. Køien. "A stride-based
threat model for telehealth systems." Norsk informasjonssikker-
hetskonferanse (NISK) 8.1, p. 82-96, 2015.

[10] L. Sion, et al. "Solution-aware data flow diagrams for security
threat modeling." Proceedings of the 33rd Annual ACM Sympo-
sium on Applied Computing. ACM, 2018.

[11] B.J. Berger, K. Sohr, R. Koschke. "Automatically extracting
threats from extended data flow diagrams." International Sym-
posium on Engineering Secure Software and Systems. Springer,
Cham, p. 56-71, 2016.

[12] K.Saatkamp, et al. "An Approach to Determine and Apply So-
lutions to Solve Detected Problems in Restructured Deployment
Models using First-order Logic." SICS Software-Intensive Cyber-
Physical Systems, vol, 34, no. 2-3, pp.85-97, 2019.

Подход на основе шаблонов безопасности
для определения контрмер в

онтологическом моделировании угроз
Бражук А.И.

Описан подход к моделированию угроз компьютерных си-
стем на основе предметно-ориентированных моделей угроз,
который позволяет автоматически определять угрозы и
контрмеры по графическому представлению структуры си-
стемы в виде диаграми потоков данных. Описана базовая
онтологическая модель угроз. Предложена концепция кон-
текстных шаблонов безопасности для определения контр-
мер. Для реализации предлагается использовать язык онто-
логий OWL ифункции автоматического логического вывода.

Received 26.11.19

272


