2015

УДК 66.087.3+666.265

МЕМБРАНЫ ПОРИСТОГО АНОДНОГО ОКСИДА АЛЮМИНИЯ, СОДЕРЖАЩИЕ КСЕРОГЕЛЬ, ДЛЯ ЛЮМИНЕСЦЕНЦИИ И ФОТОКАТАЛИЗА

Н.В. ГАПОНЕНКО

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 29 декабря 2014

Приведена методика синтеза мембраны пористого анодного оксида алюминия, содержащей аморфный ксерогель, соответствующий составу титаната стронция. Мембрана приготовлена в электролите щавелевой кислоты и демонстрирует интенсивную синюю фотолюминесценцию с широкой полосой с максимумом около 400 нм после термообработки при температуре 700 °С как с ксерогелем, так и без него. Обсуждается возможное влияние кислородных вакансий в структурах мембрана/ксерогель на их люминесценцию и фотокаталитическую активность.

Ключевые слова: золь-гель, титанат стронция, люминесценция, фотокатализ.

Введение

Пористый анодный оксид алюминия (ПАОА), представляющий собой пленочную ячеистую структуру с вертикальными каналами пор, привлекает внимание исследователей различных направлений [1–3]. Контролируемое изменение периода структуры и диаметра пор, а также материала, заполняющего пористый объем, обеспечивает возможность модифицировать ряд физико-химических свойств мембран и пленочных структур на основе ПАОА [4, 5]. Многократное рассеяние электромагнитного излучения ансамблем упорядоченных цилиндров пористого анодного оксида алюминия приводит к фильтрации излучения, проходящего через мембрану или пленку ПАОА, выращенную на прозрачной подложке кварца, и появлянию отрезающей коротковолновой границы, характерной для рассеивающих дисперсионных фильтров [6, 7]. Многократное рассеяние излучения может быть одним из факторов усиления люминесценции тербия и европия в структурах ксерогель/пористый анодный оксид алюминия, что подтверждается появлением дополнительной полосы в спектре возбуждения люминесценции лантаноидов [8]. Известно, что наряду с люминесценцией материалов, синтезированных в пористых матрицах, пористый анодный оксид алюминия, выращенный в определенных условиях, также демонстрирует интенсивную фото- и хемилюминесценцию в видимом диапазоне [9–12]. О природе этих центров люминесценции до сих пор ведутся дискуссии, и практическое использование люминесцентных материалов на его основе требует дальнейшего изучения физико-химических закономерностей синтеза и оптических свойств структур на основе пористого анодного оксида алюминия. Недостаточно изучено влияние полимеров и ксерогелей на собственную люминесценцию ПАОА.

В работе приводятся результаты синтеза и исследования оптических свойств мембраны ПАОА, содержащей ксерогель титаната стронция. Композиты оксида титана, легированные стронцием и тербием, синтезированные золь-гель методом (ксерогели) в пористом анодном оксиде алюминия, демонстрируют фото-, катодо- и радиолюминесценцию тербия [13]. Контролируемый синтез ксерогелей в высокоупорядоченном пористом анодном оксиде алюминия позволит в дальнейшем целенаправленно модифицировать наблюдаемую ранее анизотропию плотности фотонных состояний с максимальным распределением излучения вдоль каналов пор [14, 15].

№ 1 (87)

Методика эксперимента

Проведенные ранее исследования показали, что наиболее упорядоченная структура пленок пористого анодного оксида алюминия толщиной 0,5–150 мкм получается из электролитов на основе серной, ортофосфорной и щавелевой кислот с размером пор 20–120 нм и диаметром ячейки 45–250 нм. Мембрану пористого анодного оксида алюминия получали из алюминия A99 размером 2×2 см, который подвергался двухстадийному анодированию для формирования более упорядоченной структуры. Перед анодированием алюминиевую фольгу обезжиривали в хромовой смеси, затем полировали химически в растворе: HNO₃ (65 %) – 70 мл, H₃PO₃ (80 %) – 780 мл, H₂SO₄ (98 %) – 150 мл, Cu(NO₃)₂ – 5,0 г при температуре 95 °C в течение 1–1,5 мин. После промывки и сушки образцы полировали электрохимически в смеси этанола и HClO₄ (5:1) при $T \le 15$ °C и плотности тока 250 мА/см² в течение 1–2 мин.

Для формирования структуры мембрана/ксерогель требуется изготовление мембраны, обладающей определенной прочностью. Это требование обусловлено деформацией мембраны в процессе термообработки при усадке геля и ксерогеля, заполнившего пористый объем матрицы. Поэтому было предложено для анодирования использовать щавелевокислый электролит, а мембрану готовить для двухстороннего нанесения ксерогеля. Получение мембраны ПАОА анодированием проводили в щавелевокислом электролите 0,3 моль/л при напряжении 80 В и температуре 10–12 °C. Полученный в процессе первой стадии анодирования анодный оксид алюминия толщиной 10–15 мкм удаляли в растворе на основе ортофосфорной кислоты (30 %) и хромового ангидрида (10 %) при температуре 60-95 °C, в результате чего формируется упорядоченная нанотекстурированная поверхность алюминия, которая использовалась для второго анодирования.

После получения достаточной толщины анодной пленки в процессе второй стадии анодирования проводилось утонение барьерного слоя оксида алюминия в донной части структуры между оксидом алюминия и алюминиевой подложкой. Остатки алюминиевой фольги удалялись травлением в растворе на основе соляной кислоты (15%) и хлорной меди (0,5%). Далее проводилось химическое удаление барьерного слоя анодного оксида алюминия травлением в 5% H_3PO_4 при 35 °C в течение 20 мин, промывка в проточной дистиллированной воде в течение 2 мин и сушка при 110 °C в течение 15 мин.

Синтезированные мембраны использовались для формирования в них ксерогеля титаната стронция, легированного тербием, SrTiO3:Tb. Для синтеза золя использовали изопропоксид титана, Ti(OC₃H₇)₄, уксуснокислые соли стронция (Sr(CH₃COO)₂·1/2H₂O) $(Tb(CH_3COO)_3 \cdot 4, 6H_2O),$ ацетилацетон и воду. Золи наносили методом и тербия центрифугирования на мембрану ПАОА со скоростью 1500 об/мин. На каждую сторону мембраны было нанесено по 5 слоев. После нанесения каждого слоя SrTiO₃:Tb образец подвергался предварительной обработке при температуре 100 °C в течение 10 мин. Затем образец прошел высокотемпературную обработку при 700 °С в течение 60 мин, скорость составила 3.3 °С/мин. Спектры люминесценции нагрева регистрировались спектрофлуориметре Solar 2203. Для регистрации индикатрис рассеяния использовался неодимовый лазер с длиной волны излучения 531 нм [15].

Результаты и их обсуждение

Опыт работы с описанными выше и полученными ранее мембранами позволяет заключить, что пропитка мембран золями и гелями с последующей термообработкой, переводящей гель в твердотельный материал (ксерогель), повышает их прочность. Улучшение прочности мембранных структур актуально для их возможного применения как для оптического дизайна, так и фотокаталитической очистки воды и воздуха [16]. При этом влияние золей, гелей и ксерогелей на люминесценцию мембран, пропускание и рассеяние света практически не изучено, несмотря на установление интенсивной люминесценции лантаноидов в структурах ксерогель/пористый анодный оксид алюминия с анизотропной индикатрисой люминесценции с максимумом вдоль каналов пор [15].

На рис. 1 приведены РЭМ-изображения мембраны. Средний диаметр пор составляет 60–70 нм при диаметре ячейки около 140 нм. Толщина мембраны составляет около 100 мкм.

Рис. 1. Микрофотографии мембраны ПАОА: *а* – после травления барьерного слоя; *б* – изображение поверхности; *в* – скол

После формирования ксерогеля цвет мембраны изменился от прозрачно-желтого до бледно-мутного, сохраняя визуально однородность (рис. 2). Край мембраны незначительно изогнулся, скорее всего, за счет усадки геля при термообработке. Дальнейшая термообработка при температуре 750 °C приводит к большему изгибу мембраны, приподнимая край мембраны на высоту до 4 мм.

Рис. 2. Внешний вид мембраны пористого анодного оксида алюминия: *а* – после формирования ксерогеля титаната стронция и термообработки при температуре 700 °C длительностью 1 ч; *б* – исходная мембрана без ксерогеля и отжига

Следует обратить внимание, что деформированный и плоский участки мембраны демонстрируют неодинаковое рассеяние – рис. 3. При облучении мембраны со стороны выпуклого участка интегральная интенсивность рассеяния меньше, чем для плоского участка, что может быть связано с увеличением отражения падающего лазерного луча для выпуклого участка.

Рис. 3. Индикатрисы рассеяния мембраны ПАОА: *а* – плоский участок, *б* – выпуклый участок, содержащий ксерогель титаната стронция, после термообработки при температуре 700 °C длительностью 1 час

Для исходной мембраны и мембраны, содержащей ксерогель титаната стронция, зарегистрированы спектры фотолюминесценции (рис. 4).

Рис. 4. Спектры люминесценции мембран ПАОА для длины волны возбуждения 280 нм, прошедших термообработку при 700 °С (*a*) и 750 °С (*б*) в течение 60 мин: 1 – исходная мембрана; 2 – исходная мембрана после термообработки; 3, 4 – мембрана с ксерогелем после термообработки

Люминесценция в синем диапазоне мембран ПАОА, приготовленных в растворе щавелевой кислоты, наблюдалась авторами [9], причем максимальная интенсивность достигалась при температуре 500 °С, после чего повышение температуры отжига приводило к уменьшению интенсивности. При этом образцы демонстрировали наличие однократно ионизированных кислородных вакансий (F^+ -центров) по данным ЭПР-спектроскопии. Наблюдаемую зависимость интенсивности ФЛ авторы объясняют диффузией кислорода из воздуха в мембрану и окислением оставшегося алюминия, что в итоге повышает концентрацию F^+ -центров в мембране. При увеличении температуры отжига наступает снижение кислородных вакансий и спад люминесценции. Люминесценцию, которую ассоциировали с наличием F-центров, наблюдали также в керамическом материале α -Al₂O₃, причем термолюминесценция в этих материалах используется для детектирования ионизирующего излучения [17].

Можно предположить, что при упрочнении мембраны ксерогелем титаната стронция (см. рис. 2) кислородные вакансии, ответственные за синюю люминесценцию мембраны, сохраняются после отжига при температуре 700 °С. Дополнительным подтверждением наличия кислородных вакансий может быть сравнительно слабая фотокаталитическая активность структур мембрана/ксерогель диоксида титана, если мембрана приготовлена в электролите щавелевой кислоты [16]. Известно, что неравновесные носители – электроны и дырки, генерируемые при облучении пористого диоксида титана, участвуют в окислительновосстановительных реакциях, что обеспечивает деструкцию вредных органических соединений в водных растворах [18]. Фотокаталитическая активность пористого ксерогеля диоксида сформированного в мембране ПАОА, приготовленной из щавелевокислого титана. электролита, значительно ниже, чем в пленке ПАОА, приготовленной в электролите ортофосфорной кислоты [16]. Возможно, одним из факторов снижения фотокаталитической активности является рекомбинация неравновесных носителей диоксида титана на F⁺-центрах в мембране ПАОА, приготовленной в щавелевокислом электролите, что уменьшает их концентрацию в валентной зоне и зоне проводимости диоксида титана.

Анализ методом рентгеновской дифракции показал, что после термообработки при температуре 700 °С ксерогель титаната стронция в ПАОА является аморфным. Дополнительные уровни энергии в аморфной матрице, а также уровни кислородных вакансий в мембране ПАОА могут быть каналами безызлучательной релаксации трехвалентного тербия с уровнями возбужденных состояний 5D_4 и 5D_3 , что и объясняет отсутствие полос люминесценции тербия в синтезированной мембране после термообработки при температуре 700 °С. Увеличение температуры термообработки до 750 °С приводит к появлению полос люминесценции в длинноволновой части спектра с наиболее интенсивной полосой 545 нм, которые соответствуют термам трехвалентного тербия (рис. 4, б). Отметим, что пленка ксерогеля, сформированная из аналогичного золя на монокристаллическом кремнии, после термообработки при температуре 750 °С, является поликристаллической [19].

Заключение

Проведен золь-гель синтез титаната стронция в мембране пористого анодного оксида алюминия, полученной в электролите щавелевой кислоты. При температуре термообработки 700–750 °C наблюдается деформация мембраны, содержащей ксерогель. Структура мембрана/ксерогель сохраняет интенсивную ФЛ с максимумом 400 нм после термообработки, которая наблюдалась и после отжига мембраны, не содержащей ксерогель. Наличие F⁺центров, которые могут быть ответственны за синюю люминесценцию, следует учитывать при формировании фотокаталитически активных мезопористых структур ксерогель/мембрана при использовании электролита щавелевой кислоты. Возможно, более эффективные фотокаталитические структуры ксерогель/мембрана ПАОА могут быть получены в электролитах, не вызывающих синюю ФЛ мембраны ПАОА.

Автор выражает благодарность Т.Ф. Райчонок, С.Я. Прислопскому, Т.И. Ореховской, X.А.Сохраби и Л.С. Хорошко за помощь при получении экспериментальных результатов.

POROUS ANODIC ALUMINA MEMBRANES WITH XEROGEL FOR LUMINESCENCE AND PHOTOCATALYSIS

N.V. GAPONENKO

Abstract

The method of synthesis of porous anodic alumina membrane with amorphous xerogel corresponding to chemical content of $SrTiO_3$ is reported. The membrane was prepared in oxalic acid electrolyte and revealed intensive blue photoluminescence with a broad band at 400 nm after heat treatment at 700 °C either with or without xerogel. Possible influence of oxygen vacancies in the structures membrane/xerogel on their luminescence and photocatalytic activity is reported.

Список литературы

- 1. Лыньков Л.М., Мухуров Н.И. Микроструктуры на основе анодной алюмооксидной технологии. Минск, 2002.
- 2. Позняк А.А. Модифицированный пористый анодный оксид алюминия и композитные материалы на его основе. Минск, 2007.
- 3. Сокол В.А. Анодные оксиды алюминия. Минск, 2011.
- 4. Гапоненко Н.В. Пленки, сформированные золь-гель методом на полупроводниках и в мезопористых матрицах. Минск, 2003.
- 5. Shingubara S. // J. of Nanoparticle Research. 2003. Vol. 5. P. 17-30.
- 6. Борисевич Н.А., Верещагин В.Г., Валидов М.А. Инфракрасные фильтры. Минск, 1971.
- 7. Верешагин В.Г., Дынич Р.А., Понявина А.Н. // Оптика и спектроскопия. 1999. Т. 87. №1. С. 126–131
- 8. *Гапоненко Н.В., Молчан И.С., Гапоненко С.В. и др.* // Журнал прикладной спектроскопии. 2003. Т. 70, № 1. С. 57–61
- 9. Du Y., Cai W.L., Mo C.M. et. al. // Applied Physics Letters. 1999. Vol. 74, № 20. P. 2951–2953.
- 10. Belca I., Kasalica B., Zekovic Lj. et. al. // Electrochimica Acta. 1999. Vol. 45. P. 993–996.
- 11. Wu J.H., Wu X.L., Tang N. et. al. // Appl. Phys. A. 2001. Vol. 72. P. 735–737.
- 12. Vrublevsky I., Chernyakova K., Ispas A. et. al.// J. of Luminescence. 2011. Vol. 131. P. 938–942.
- 13. Gaponenko N.V., Kortov V.S., Rudenko M.V. et. al. // J.of Applied Physics. 2012. Vol. 111. P. 103101.
- 14. Masuda H., Ohya M., Ason H. et. al. // Japan. J. Appl. Phys. 1999. Vol. 38, Part 2, № 12 A P. L1403–L1405.
- 15. Lutich A. A., Gaponenko S. V., Gaponenko N. V. et. al. // Nano Lett. 2004. Vol. 4, № 9. P. 1755–1758.
- 16. Linnik O., Smirnova N., Zhukovskiv M. et. al. // Adv. Sci. Eng. Med. 2013. Vol. 5, № 4. P. 371-376.
- 17. Кортов В.С., Мильман И.И., Никифоров С.В. и др. // Физика твердого тела. 2004. Т. 46, Вып 12. С. 2143–2147.
- 18. Poznyak S.K., Talapin D.V., Kulak A.I. // J. Phys. Chem. B. 2001. Vol. 105. P. 4816–4823.
- 19. *Сохраби Анараки Х., Гапоненко Н.В., Руденко М.В. и др. //* Физика и техника полупроводников. 2014. Т. 48, вып. 12. С. 1724–1726.