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Abstract—The paper describes an approach to remodel
the capacity of high-speed transportation corridors seg-
ments. Tho proposed remodelling scheme is based on apply-
ing neural network model combining results of stochastic
capacity estimation during congested and free-flow regimes.
Based on the obtained model it is proposed to analyze the
impact of factors affecting on the estimated capacity with
the methods of Analysis of Finite Fluctuations. There is
also presented scheme how to form production rules into
intelligent transportation system based on the presented
approaches.
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I. INTRODUCTION

Due to the increasing number of personal vehicles and
the geographical location of many Russian regions the
idea to build the one unified intelligent transportation
and logistic system delivering the minimum travel time
within it, is now the leading one. Such system could be
decomposed into similar items with the identical struc-
tural scheme but taking into account specific features of
the region.

The organizations developing intelligent transportation
systems actively implement projects to forecast traffic
volumes and flow-control all over the world. They im-
plement systems in Japan, America, European Union,
Australia, Brazil, China, Canada, Chile, Korea, Malaysia,
New Zealand, Singapore, Taiwan, the UK. In India, Thai-
land and some countries of South Africa such scientific
schools and organizations are just beginning to develop
the concept of smart roads ( [1], [2]).

Nowadays, the most advanced technologies in the
field of intelligent transportation control are designed
in Japan, the USA, Singapore and South Korea. The
main directions of developing intelligent systems in these
countries are connected vehicle technologies, connected
corridors, well-managed and resilient traffic flows, Smart
Roads and integration these technologies into Smart City
Systems and Internet of Things.

The reported study was supported by the Russian Science Foundation
within the project 18-71-10034.

According to the inner policy of the Russian Feder-
ation the transportation infrastructure and consequently
intelligent transportation systems have to be the prior-
ity projects. In 2018 there were determined 7 global
economic markets supposed to be the leading world
projects in the next 10-15 years [3]. These markets are
focused on the person as the main subject of public
relations and provide all needs of the person. One of
the most important market providing the perspectives of
transportation mobility is AutoNet with its road map
including the most relevant problems to be solved to
reach the main goal, which is to connect Europe and Asia
with the high-speed transportation corridors for manned
and unmanned vehicles.

The purpose of the presented study is to construct the
scheme of forming production rules to control traffic flow
parameters in intelligent transportation system.

II. REGIONAL INTELLIGENT TRANSPORTATION
SYSTEM: INFORMATION INFRASTRUCTURE AND

USED ALGORITHMS

Long-term studies conducted in Lipetsk State Techni-
cal University have formed the basis of Lipetsk Regional
Centre to Control Traffic Flow being the intelligent
transportation system of Lipetsk region. The main task
conducted by this centre is to control the traffic situation
of manned and unmanned vehicles within the region (cf.
Figure 1).

As it could be seen on Figure 1 one of the main tasks
of the described centre is to store data on traffic flow and
to produce control influences controlling parameters of
intelligent transportation system.

A. Methods to Estimate and Analyze Capacity

It is reasonable to model high-speed transportation cor-
ridor as a set of freeway segments, each with its capacity.
There are two types of ways to estimate freeway capacity.
The first strategy is connected with taking it as a constant
value defined on empirical results or on simulation series.
It is typically used way in many national guidelines like
Highway Capacity Manual (HCM) [4], HBS (German
HSM) [5] or appropriate Russian guidelines [6]. The
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Figure 1. Conceptual scheme of regional intelligent transportation system module

main lack here is that not only each segment has its
unique geometrical and physical features, but also each
moment of time could have different characteristics,
which is explained for example by drivers’ behaviour and
weather conditions. Such idea has formed the strategy
to take freeway segment capacity as a random value
specificaly distributed with unique parameters [7]. This
strategy is more realistic and could be used in controlling
traffic flow via intelligent transportation system.

Based on Mathematical Remodeling approach, involv-
ing the substitution of one model by another in compli-
cated system or even mixing models [8], there was build
a neural network model to estimate freeway capacity
taking into account a set of parameters effecting it [9],
[10] (namely they are given in Table II-C). Further it is
described the way of constructing such kind of model.
Being a stochastic parameter of a transportation system,
capacity could be measured only in a time interval prior
to the congestion and is precisely equal to the number of
vehicles within the survey section during the congestion.

Using the available congested data and statistical as-
sumptions, one can form input-output array dividing all
time intervals into two subsets:

• O (“observed”): congested intervals, section capac-
ity is precisely equal to the observed traffic volume;

• E (“estimated”): fluid intervals, section capacity is

estimated using the stochastic capacity approach.

These two subsets form an array of initial data to train
the chosen structure for further prediction.

B. Algorithm to Remodel Capacity

Step 1. To divide the whole available data into subsets
of “observed” and “estimated” intervals. The criteria of
this separation must be predefined at this step. Normally
it is an average speed threshold, pointing the transition
of the traffic flow into a congested regime.

To estimate capacity within congested intervals it has
to be applied the Weibull distribution model [11]:

Fc(q) = 1− exp
(
−
(q
b

)a)
, (1)

where Fc(q) is the distribution function of the capacity
rate, q is the traffic volume of the vehicles (veh / h),
a, b are Weibull distribution parameters, responsible for
the capacity rate variation and for the systematic average
value of the capacity rate caused by such constant factors
as the number of lanes, the slope, the number of drivers,
respectively.

Step 2. Using the data sample obtained on Step 1, to
train neural network model with the predefined structure.
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A general form of neural network model to be applied
on this step is

c = φ(k)(w
(k)
0 +W

(k)
1 φ(k−1)(...(w

(2)
0 +

+W
(2)
1 φ(1)(w

(1)
0 +W

(1)
1 x))...)),

(2)

where c ∈ R is the output scalar describing capacity,
x ∈ Rn is the input vector, φ(i), i = 1, ..., k are vector
functions of vector arguments, activation functions, W (i)

1

are matrices of weights from layer (i˘1) to i, w(i)
0 , i =

1, ..., k are bias weights.
On this step the analysis of the model accuracy must

be done and the adjustment (in case of unsatisfied
accuracy) should be applied.

Step 3. Using the model obtained on Step 2, to
estimate capacity rate within the new data set.

There were conducted numerical experiments data
obtained from loop and radar detectors describing the
capacity and factors affecting it (cf. paper [10] and study
[9]). As an output there was taken nominal capacity
for the determination of standardized capacity values in
one-hour intervals obtained by applying Kaplan-Meier
approach to fit Weibull distribution function. Basis neural
network model applied to fit the model of the capacity
was:

c = φ(w0 +W1x), (3)

where c is the capacity values (veh/h), x ∈ R8 is inputs
vector (according to study [Nina]), φ(net) = tanh(net)
is the hyperbolic tangent activation function, w0 and
W1 are estimated weights for bias and input factors
respectively.

Model (3) was fitted in RStudio free software with
“nnet” package. Initial data were firstly standardized
to obtain weights and then unstandardized to calculate
predicted capacity values. It should be noted, that the
level of remodeling approximation error was 5.58%,
which is acceptable for the described problem.

C. Sensitivity Analysis as a Way of Defining the Most
Significant Factors Affecting Capacity

In many applied problems it is very important to
find, which input factors are the most significant in
order, for example, to control the process or system, ets.
Commonly the answer to such kind of question could be
obtained after applying approaches of Sensitivity Anal-
ysis [12], which is based on statistical and probabilistic
techniques and allows to estimate the influence of each
model input value (independent variable, argument of the
function, factor of the system, etc.) on the output value
(dependent variable, function value, index of the system,
etc.). Considering the existing mathematical model

y = f(X), (4)

where X ∈ Rn are inputs, y ∈ R is output and f(·)
can be a function, a system of differential equations,

etc., even a program code, the procedure of Sensitivity
Analysis is made through the individuation of some indi-
cators, called impact factors, determining quantitatively
the influence, that each input has on the output, and
consequently, allowing to understand which of them have
to be changed the least possible, so that the output of the
model does not change too much [12]. Many well-known
techniques of Sensitivity Analysis have drawbacks (like
stochastic nature or high computational costs, etc.). In
contrast to them it is possible to use the approach based
on applying Lagrange mean value theorem and called
Analysis of Finite Fluctuations [13], [14].

According to the idea of Analysis of Finite Fluctua-
tions let us take the initial instant of time t0, where the
input factors vector is

X(t0) = (x
(t0)
1 , ..., x(t0)n )

and respectively the output is

y(t0) = f(X(t0)) = f(x
(t0)
1 ), ..., x(t0)n ).

In the next time instance t1 we have final value of inputs

X(t1) = (x
(t1)
1 , ..., x(t1)n )

and output

y(t1) = f(X(t1)) = f(x
(t1)
1 ), ..., x(t1)n ),

here x(t1)i = x
(t0)
i + ∆xi, i = 1, ..., n.

It follows, that

∆y = y(t1) − y(t0) = f(X(t1))− f(X(t0)) =

= f(..., x
(t0)
i + ∆xi, ...)− f(..., x

(t0)
i , ...). (5)

But according to the Lagrange mean value theorem
the same function increment could be estimated as

∆y =

n∑
i=1

(
∂f

∂xi

(
..., x

(t0)
i + α ·∆xi, ...

)
·∆xi

)
, (6)

and, applying notations Ai =
∂f

∂xi
(..., x

(t0)
i +α·∆xi, ...),

the formula becomes

∆y =

n∑
i=1

(Ai ·∆xi) =

= A1∆x1 +A2∆x2 + ...+An∆xn. (7)

Equating (5) and (6) and obtaining (7), it is resolved
the resultant equation according to the unknown parame-
ter α, finding which and, respectively, estimating impact
indexes Ai, determining the influence, that each input
factor fluctuation has on the output fluctuation.

Sensitivity Analysis based on applying Analysis of
Finite Fluctuations was implemented to Model (3) to
gain importance estimates of factors affecting capacity. It
should be mentioned, that for this approach there were
obtained N − 1 estimates (cf. Table II-C) (because of
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Table I
COMPARING RESULTS OF SENSITIVITY ANALYSIS FOR MODEL (3)

OBTAINED BY DIFFERENT APPROACHES

Affecting
factors

Importance measure, %

Analysis of Finite
Fluctuations Garson Algorithm

Speed limit 2,8 1,1
Work zone layout 4,3 2,2
Area 11,1 7,4
Lane widths 5,0 7,7
% of heavy vehicles 9,9 8,1
Grade 11,6 8,5
Lane reduction 12,0 8,5
Number of lanes 43,3 56,5

existing N − 1 finite fluctuations for N input values
realizations in the dataset) and their median values were
taken as a sensitivity measure. It is also important, that
signs of obtained measures were ignored, so the only
degree of sensitivity without its direction was considered.
To prove the correctness of the proposed approach the
obtained results were compared with Garson algorithm
which is common way to estimate the importance of
inputs of neural network model.

Analyzing obtained results (cf. Table II-C) we could
see, that the number of lanes and the percentage of heavy
vehicles are factors which are firstly have the highest
impact on the capacity and secondly they are could
be controlled to deliver better quality of transportation
system functioning. The first parameter (number of lanes)
could be varied within the corridor for example by using
the hard shoulder as an additional lane or by using
reversing traffic lane); the possible way to control the
second parameter (the percentage of heavy vehicles)
is using ramp metering system to limit access to the
corridor from entry-ramps (cf. study [15]).

III. CONCEPTION MODEL OF EXPERT TRAFFIC FLOW
CONTROL SYSTEM WITHIN HIGH-SPEED

TRANSPORTATION CORRIDORS

According to the results of the study given above, the
following factors describing the current and predicted
state of the transportation corridor are used in the ex-
pert system as input parameters: the estimated capacity
(which can be calculated by the proposed neural network
model (3)), the average vehicles speed in lanes, the high-
speed transportation corridor location, the grade of the
highway, the percentage of heavy vehicles, the repair
zone layout, the number of lanes in one direction, the
lane widths, the lane reduction, the speed limit. The
percentage of heavy vehicles, the number of lanes in
one direction (shoulders or reverse lanes can be used as
additional lanes), the speed limit (using variable traffic
signs) are used as the output parameters of the expert
system.

Figure 2. Conceptual model of the Expert Traffic Flow Control System

Task-specific knowledge of experts can be presented as
a set of IF-THEN production. Each production rule can
include information about one or several input factors
in the condition part and in the conclusion part. These
parameters can be involved in the production rules in the
following forms: linguistic variable, quantitative variable,
string variable.

The Figure 2 shows a conceptual model of the Expert
Traffic Flow Control System. The values of the input
system parameters are calculated and aggregated into
Data collecting and aggregating subsystem. Then data
is transferred to the data warehouse. In the Prediction
subsystem, the estimated capacity is determined using a
neural network model. Data coming from the database
as a crisp values and corresponding linguistic variables
are converted into fuzzy values in the Fuzziffication
subsystem. Then, the values of the variable parameters
(the percentage of heavy vehicles, the speed limit, the
number of lanes) are determined into the Logical in-
ference subsystem using the Mamdani algorithm. In the
Defuzziffication subsystem fuzzy values of the output
factors are converted to the crisp values. The Recommen-
dation transmission subsystem send recommendations to
the devices of road users and road infrastructure objects
via wireless interfaces and the Internet.

Due to fuzzy logic algorithms and model describing
in a natural language, expert systems have a number
of advantages when they are used to solve problems in
which information about the system, its parameters, as
well as about the inputs, outputs, and system states is
unreliable and poorly formalized. However, there is a
significant drawback for such systems: the fuzzy rules
set is formulated by experts and may be incomplete
or contradictory. Therefore, the task of automatically
knowledge base construction based on the observable
data is urgent.
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Figure 3. Conceptual scheme of Forming Production Rules in Intelli-
gent Transportation System algorithm

IV. SCHEME OF FORMING PRODUCTION RULES IN
INTELLIGENT TRANSPORTATION SYSTEM BASED ON

APPLYING NEURAL NETWORKS MODELS

On the 3 is shown a conceptual scheme of the auto-
mated knowledge base building process.

Step 1. Terms definition of the linguistic variables
based on an experimental data set and sensitivity analysis
results. The sensitivity analysis results determine the
number of fuzzy values that each linguistic variable can
initially accept. Also, the fuzzy membership functions
are defined on this step.

At this step, we get the term sets of input parameters
Ii, i = 1, . . . , N , where N is the number of input
parameters, and output parameters Ol, l = 1, . . . , L,
where L is the number of output parameters.

Each input parameter Ii and output parameter Ol can
take fuzzy values (“small”, “large”, etc.) from their term
sets (Ni and Ml are the number of corresponding fuzzy
values for input and output linguistic variables).

Step 2. Fuzzification of crisp values in an experimental
data set.

Step 3. The experimental array pre-processing: nor-
malizing input values that are included in the model
as quantitative variables; encoding possible input values
that are included in the model as string variables; rows
aggregation in the data set which has the same values of
the all input parameters and the different values of the
output parameters.

Step 4. Determining the structure of a neural network.
To solve the task, a neural network can be used without
hidden layers [16] or with hidden layers.

To solve the task of expert system knowledge base
building for the intelligent transportation system it is
considered to use the neural network with one hidden
layer (cf. 4).

Input neurons correspond to every possible fuzzy value
of input parameters:

xij =

{
1 if Ii is j-fuzzy value from Ii term set
0 if Ii is not j-fuzzy value from Ii term set

where j = 1, . . . , Ni. If the value of the parameter
I1 is “small”, then it cannot be any different fuzzy
value at the same time. In other words, only one of
x11, x12, . . . , x1Ni can take the value 1 at a given time.

Similarly, output neurons correspond to every possible
fuzzy value of output parameters:

yls =

{
1 if Ol is s-fuzzy value from Ol term set
0 if Ol is not s-fuzzy value from Ol term set

where s = 1, . . . , Ml.
Hidden layer neurons are designated hk, k =

1, . . . ,K, K ≥ L – number of hidden layer neurons
which shouldn’t be less then output neurons.

Step 5. Neural network training.
At this stage, the neural network weights will be

calculated:
• Vijk - weights of the trained neural network (input

– hidden layer)
• Wkls - weights of the trained neural network (hid-

den layer - output)
Step 6. Production rules extraction from the results

of parametric identification of a neural network. The
number of rules matches the output neurons number.
Extracting production rules can be reduced to selecting
the most dominant rule for each neuron.

the hidden layer neuron is selected for every output
layer neuron as follows

hs = max
s

(hk ∗ wksl) (8)

Then, for this hidden layer neuron a combination of input
neurons is selected (one for each input parameter) as
follows:

∀Ii : max
j

(xij ∗ vijk − bk), (9)

where k is the index of the hidden neuron (8) which is
chosen for every output layer neuron.

Step 7. Simplifying the knowledge base: removing
duplicate rules, merging rules, etc.

V. CONCLUSION

The article presents an algorithm and results of sen-
sitivity analysis for the model of estimate capacity,
describes an expert system which is designed to control
traffic flows in high-speed transportation corridors. The
scheme of the algorithm for automated knowledge base
building based on a neural network is also proposed.
A distinctive feature of the algorithm is the neural net-
work structure with a single hidden layer. The proposed
extracting production rules algorithm provides the most
dominant rule selecting for each output neuron: selecting
a neuron from a hidden layer, and then a combination of
fuzzy values selecting for each input parameter included
in the rule, based on the analysis of weights obtained as
a neural network training result.
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Figure 4. Example of the Neural Network Structure for Forming
Semantic Rules Task

In the future, it is planned to study the required neu-
rons number on the hidden layer and build a knowledge
base for transport corridors in the research region.
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Построение семантических правил для
управления транспортным потоком в

интеллектуальной транспортной системе
Хабибуллина Е.Л., Сысоев А.С.

В статье приводится подход кматематическому ремодели-
рованию пропускной способности участков высокоскорост-
ных транспортных коридоров. Предложенный метод основан
на применении нейросетевой модели, сочетающий результа-
ты оценки стохастической пропускной способности в период
транспортного затора и свободного движения транспортных
средств. Основываясь на полученной модели предлагается
проводить анализ важностифакторов, оказывающих влияние
на оцененную пропускную способность с использованием
методов анализа конечных изменений. Также на основании
предлагаемых подходов представлена схема формирования
продукционных правил в интеллектуальной транспортной
системе.
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