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Abstract—Several algorithms were studied for transfer
learning problem for a foraging task. These algorithms are
suitable for a semiotic control system to facilitate experience
transfer between two learning agents with different agent-
space descriptions of the state in a predicate form. They
require that the target agent’s description of the task is a
subset of the source agent’s description.

The algorithms are based on the Q-learning algorithm
and uses a custom transfer function to initialize the target
agent’s state-action table, which matches the corresponding
predicates. The test problem used to test the algorithms
is a foraging task, where an agent must gather randomly
generated food in a grid world.

The results show that they provide improvement in
the learning curve for the target agent after transferring
experience from an agent with more input predicates. The
improvement is inconsistent and sometimes does not bring
noticeable difference in performance, but the target agent
performs at least as good as an agent with no prior
experience.
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I. INTRODUCTION

Robotic systems, both single- and multi-agent, need to
have adaptive properties to robustly achieve various goals
in real, uncontrolled environments, which is often the
case for mobile robots. One of the prominent research ar-
eas that can achieve that is reinforcement learning, which
views robots as agents with a predefined input space and
discrete or continuous actions that act in an environment
and receive rewards for useful actions. This allows robots
to learn and optimize goal-directed behavior. On the
other hand, semiotic control systems allow robots to have
a structured and more interpretable world models based
on rules and predicates. To use reinforcement learning
methods requires some adaptation of the corresponding
models and algorithms since semiotic control systems
use signs and connections between them as a basis for
description of the world, while reinforcement learning
mostly uses a vectorized description.

Sign has four parts, including the name, the percept,
the functional meaning and the personal meaning [6].
The percept is a set of predicates used to describe the
concept encoded by the sign. It can be used to connect
the sensors of the agent and its logical control part of the
control system by implementing some of the predicates

as algorithmic functions of the sensor data. Different
agents can have different predicates available. To use
reinforcement learning in a multi-agent system for such
agents requires a way of using different predicate de-
scriptions when transferring experience between agents.

Transfer learning in reinforcement learning deals with
the application of the knowledge about solving a problem
by an agent to another, somewhat similar problem, which
can also be used to transfer experience between different
agents. A distinction can be made between action-space
and problem-space descriptions of the task, which is
important to consider, since it can lead to more efficient
learning algorithms [3]. Problem-space descriptions are
usually full descriptions of the state of the environment
and are thus impractical for mobile robots, so the focus
in this work is on agent-space descriptions. Transfer
learning can be done in different ways, which also
depend on the problem specifics such as whether the
input representation is the same space, are there common
useful sequences of actions between tasks, etc. Transfer
learning methods can be based on modifying action
selection, for example, by adding a heuristic function that
contains the relevant knowledge [1], deep learning [7],
transfer of samples from one task to another [5]. Manual
mapping between tasks and transferring data between
approximators [10] is the most similar to the problem
considered here, since it can be used for agents with
different input spaces and also uses averaging.

The idea of the current paper is to use descriptions
of the world inherent in a semiotic control system to
facilitate experience transfer between two learning agents
with different agent-space descriptions of the state. In
terms of the taxonomy given in [4], the problem con-
sidered here is the transfer across tasks with different
domains (from the agent-space point of view) or transfer
across tasks with fixed domain (from the problem-space
point of view), while the algorithm uses a special case
of parameter transfer that accounts for the difference in
state representations of the agents.

A foraging problem is considered as a test environment
for the algorithms since it is common for multi-agent
robotic research, was used for reinforcement learning
evaluation and can serve as a model for some application
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such as resource gathering or energy collection [2], [11].

II. METHODS AND ALGORITHMS

The objective of the method is to improve the perfor-
mance of the learning agent by transferring experience
to it from a source agent with a possibly different input
space. To connect them, a description is proposed based
on the notion of a sign [6] as used in some semiotic
control systems [8].

Formally, a sign is defined as

S =< n, p,m, a >, (1)

where n is the name of the sign, p is the percept
that describes it (in this case, a corresponding sensor
description), m is the knowledge about the sign encoded
in rules (which is not important for task in this paper)
and a is the encoded personal experience of the agent,
such as actions associated with the sign. The name can
be used to match different agents’ descriptions of the
input even when the sensors used for detection of the
objects are different and the personal experience can be
used to store a combination of an agent’s state sign and
the corresponding action and results for reinforcement
learning.

A grid foraging problem is used as a test environment
in the following sections, but it is useful to introduce
some of the elements here. An agent moves on a grid
and receives the local state of the environment as input.
Two types of agents’ inputs are considered. One of them
will be called ‘type A’, which has sensors that allow it to
determine, what is located in the 3x3 square around it.
The other one, which will be called ‘type B’, does not
have diagonal sensors, so it only has 5 squares as the
input (a cross with itself in the center).

The developed transfer algorithm is based on the idea
of grouping state-action values using the common parts
of predicate descriptions or names of the corresponding
semiotic state descriptions. In the relatively simple case
considered in this work, they allow matching between
different state descriptions of agents by determining
which subset of states of one agent corresponds to a
single state description of the other agent. Let’s consider
a world description for an agent of type A shown in
“Fig. 1”. For simplicity, statements about sensor data
such as ”agent1”has”S1”; ”S1”has(”0”) will be short-
ened to S1(”0”).

If another agent ("agent 2" of type A) had a similar
description, but with more sensors (with names "S1",
"S2", ..., "S9"), so that "agent 1" has a subset of sensors
of "agent 2", then any state of "agent 2" of type A is a
part of the subset of a state of "agent 1", which can
be matched by names of the sensors. More complex
descriptions of states in an agent based on semiotic
descriptions can involve multiple signs with intersecting

Figure 1: Sign-based description of a world model for
an agent with 5 sensors that can each show an object
denoted by ”@” (name of a food item), ”0” (name of
an empty cell), etc. The agent sign connects an agent
with the name "agent 1" to its sensor objects in p,
expresses rules that determine when a certain action
can be performed in m and can store its experience as
transition rules in a.

predicate descriptions, but those cases are not considered
in this work and are a subject of further research.

The ε-greedy Q-learning algorithm [9] is used for indi-
vidual learning of the agents, while the transfer function
is custom as described further, so the individual learning
step updates the state-action value function according to
the formula

Q(s, a)← Q(s, a) + α(r +Q(s′, a′)−Q(s, a)), (2)

Action selection for the Q-learning algorithm in this
work is done in two different ways, continuous using the
softmax function

P (a′) =
eQ(s′,a′)

num_actions∑
i=0

eQ(s′,ai)

, (3)

and discontinuous using the argmax function

a′ = argmaxai
Q(s′, ai), (4)

After a mapping between different agent state spaces
has been established, a way to transfer the state-action
value function needs to be defined. In this case a simple
averaging function is used for the corresponding subset.
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So, the state-action value function of the source agent
Qs(ss, a) is transferred to the initial state-action value
function of the target agent by the formula:

Qt(st, a) =
1

nt

∑
ss⊆st

Qs(ss, a), (5)

where nt is the number of nonzero Qs(ss, a) such that
ss ⊆ st.

However, it does not take into account the probability
of the agent to end up in the corresponding state. A
useful estimate may be to track the number of visits
c(s, a) to the corresponding states by the source agent
and use a weighted average for the target agent with the
rate of visits as the weight. In this case, the initialization
is performed as:

Qt(st, a) =

∑
ss⊆st

c(ss, a)Qs(ss, a)∑
ss⊆st

c(ss, a)
. (6)

III. EXPERIMENTAL SETUP

Foraging problem was chosen to evaluate the algo-
rithms. The environment is a grid in which an agent can
move left, right, up and down (or remain in the same
place). The steps and actions are discrete. Each cell of
the grid can contain a number of objects or be empty.
The objects are: the agent, a food item, an obstacle. A
reward (1 point) is received by the agent when it picks
up a food item. Food items are automatically picked up
when the agent is in the same cell as a food item and
it only gathers one food item at a time. Food items are
initially placed randomly in cells without obstacles and
are instantly created in a random place after being picked
up. The environment is reset and generated randomly
each experiment. The size of the grid world is 15 by 15
cells with 100 units of food (“Fig. 2”).

The agent can either have a problem-space input or an
agent-space input for the problem. The problem-space
input is the coordinates of the agent in the grid. This
description of the state is a full observation of the state
of the environment. The agent-space descriptions, on the
other hand, are partial observations and consist of the
descriptions of the local surroundings of the agent. As
mentioned in algorithm descriptions, two agent-space de-
scriptions were used. Type A agent receives a description
the nearby 9 cells (its own included) with a list of objects
in each of them (“Fig. 3a”). Type B agent only receives
predicates about the up, down, left, right and its own cell
(“Fig. 3b”).

The transfer task is defined as a source agent of
type A and the target agent of type B acting in this
environment. First, the source agent learns for a fixed
amount of steps. Then, its experience is transferred to
the target agent of type B by transforming the state-
action value table according to the function defined in

Figure 2: Simulation of the foraging problem environ-
ment. The light squares around the field are the obstacles,
the bright circle is the agent, other circles are food items.

(a) (b)

(c) (d)

Figure 3: Examples of agent-space states, where dark red
circles are food items, bright pink circle in the center is
the agent, light grey squares are cells with obstacles and
dark gray are empty cells. (a) shows an example of an
agent-space state for an agent of type A. This corre-
sponds to a tuple of length 9 [@, F, 0, 0, 0,#, F, 0, 0] (b)
has the 5 elements of type B agent’s state highlighted,
which are the center, left, right, up and down cells
[@, F, 0, 0, 0]. (a), (c) and (d) are examples of agent-space
states of and agent of type A that are considered elements
of the subset of states generated by the agent-space state
of (b).
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the algorithms section and initializing the table of the
agent of type B with it. That agent then acts and learns
for the same amount of steps. The results were averaged
over a number of experiments (10 or more) and grouped
into ‘episodes’ (the task itself is continuous, not episodic)
consisting of several steps (1000 unless noted otherwise)
for a more readable plot.

To define the problem formally, the corresponding
spaces and variables must be written out. The state of
the agent in agent-space is a tuple of objects seen by
the corresponding sensors, for example, [@, F, 0, 0, 0] for
type B agent means that there is only the agent itself on
the central cell, a food item in front of it and nothing
on all other sides. Since only the ’topmost’ object is
recorded by the sensor and there are a limited amount of
objects, this state s is an element of a finite set of possible
states SB . Similarly, for the agent-space of the agent
if type A, the tuple looks like [@, F, 0, 0, 0,#, F, 0, 0],
where @ denotes the agent, F is a food item, # is an
obstacle, 0 is an empty cell, and defines a finite set SA. It
can be noted that a state sb ∈ SB forms a template for a
set of states sa ∈ SA, where the corresponding elements
of the tuple are the same. When a state sa ∈ SA is from
the corresponding set generated by sb, it is denoted in this
work as sb ⊆ sa for simplicity. For example, the state of
an agent of type B in “Fig. 3b” generates a set of states
for an agent of type A, where the corner elements can
have any object in them, like in “Fig. 3c” or “Fig. 3d”.

The possible actions are always the same for all types
of agents, available in any state (moving into an obstacle
just does not change the current state) and simply corre-
spond to a number in the set A = 0, 1, 2, 3, 4. Thus, the
state-action pairs sets SA×A and SB×A are also finite
and their value estimates can be expressed as a state-
action table {Q(s, a)|s ∈ S, a ∈ A} for the Q-learning
algorithm.

The reward function R : S × A × S 7→ R is
deterministic both in agent-space and in problem-space
and does not need to include a probability distribution.
The reward r(s, a, s′), where s is the previous state, a
is the chosen action, s′ is the state after the transition,
equals 1 when s′ includes a food item in the agent’s cell
(first element of the state tuple) and 0 otherwise.

According to the goal of maximizing the agent’s food-
gathering efficiency, the goal function to maximize is the
discounted return from the current time t:

Gt =

inf∑
k=0

γkRt+k+1 (7)

The learning algorithm used for the agent’s individ-
ual learning is ε-greedy Q-learning with the following
parameters:
• random action chance ε = 0.05;
• learning rate α = 0.1;

• reward discounting factor γ = 0.9;
• initial state-action table is generated as a uniform

distribution U(A) for each state (in target algorithm
a transfer function is used to set it).

The corresponding policies that govern the agent’s
choice of actions are the ε-greedy and softmax Q-
learning alternatives respectively:

π(s, a) =
ε

num_actions
+ (1− ε)1argmaxai

Q(s′,ai) (8)

π(s, a) =
eQ(s′,a′)

num_actions∑
i=0

eQ(s′,ai)

(9)

For comparison, during the evaluation of performance
of the algorithms, the performance of the agent of type
B without transfer is also plotted so that the effects of
experience transfer can be compared directly to the same
type of agent.

Computational experiments were carried out in a cus-
tom Python simulation system.

IV. RESULTS AND DISCUSSION

The transfer algorithm based on averaging of state-
action values grouped by common parts of predicate
descriptions for the source agent of type A and the target
agent of type B had the learning curve in “Fig. 4” for
argmax action selection and “Fig. 5” for softmax action
selection.

Figure 4: The asymptotically best performing algorithm
of these three is the source algorithm which is in full
agent-space (type A), its experience is transferred to the
target algorithm with limited agent-space (type B) which
shows a better starting efficiency and the worst per-
forming algorithm is a type B agent without transferred
experience that is a baseline for comparison. The source
and target algorithms use argmax for action selection.
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Figure 5: The full agent-space agent (type A) acts as a
source and has its experience is transferred to the target
algorithm with limited agent-space (type B) which shows
a better starting efficiency and the worst performing
algorithm is the baseline agent. The source and target
algorithms use softmax for action selection.

Figure 6: The weighted averaging algorithm alternative.
The source agent with full agent-space (type A) here
did not learn its optimal performance and the subsequent
transfer to the agent of type B shows no improvement
over the base non-transferred agent. The source and
target algorithms use softmax for action selection.

The weighted average alternative did not show any
improvement over the base algorithm “Fig. 6”

The transferred experience immediately improves the
efficiency of the agent in some cases (in the argmax
experiment) while the learning speed is mostly improved
in the softmax experiment. These results may indicate
that continuous action selection benefits more from use-
ful hints for better learning and exploration, while non-
continuous argmax selection can get stuck on the initial
strategy for some time before adjusting the estimations

enough and thus needs a good initial strategy. For the
foraging environment with agent-space input the full
state is only partially observable, which favors proba-
bilistic (softmax) strategies over deterministic (argmax).
Both the target agent and the untrained type B agent
eventually learn policies with similar efficiency. The
alternative weighted algorithm may have overestimated
common but not beneficial situations and thus not given
any improvement over an untrained agent.

V. CONCLUSION

Several algorithms were studied for transfer learning
problem for a foraging task. These algorithms can be
used for special cases of agents with a semiotic control
description of world models. The results show that they
provide improvement in the learning curve for the target
agent after transferring experience from an agent with
more sensors (in the form of input predicates), but this
improvement is inconsistent and sometimes does not
bring noticeable difference in performance.

The most noticeable limitation of the method is the
requirement of the target agent’s description of the task
to be a subset of the source agent’s description. This
constraint may be relaxed by making better use of the
connections between signs within the agents’ world mod-
els, and applying logical inference, which is a subject of
further research.
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Передача опыта в задаче обучения в
пространстве агента для знаковых

моделей мира
Ровбо М.А.

Исследовано несколько алгоритмов для задачи передачи
опыта при обучении на примере задачи фуражировки. Эти
алгоритмы подходят для семиотической системы управле-
ния, чтобы облегчить передачу опыта между двумя обу-
чающимися агентами с различными описаниями состояния
в пространстве агента в форме предикатов. Они требуют,
чтобы описание задачи целевого агента было подмножеством
описания исходного агента.

Алгоритмы основаны на алгоритме Q-обучения и ис-
пользуют специальную функцию передачи опыта, инициа-
лизирующую таблицу состояний-действий целевого агента,
которая сопоставляет соответствующие предикаты. Тесто-
вая задача, используемая для оценки алгоритмов, является
задачейфуражировки, когда агент должен собирать случайно
сгенерированную пищу в мире-сетке.

Результаты показывают, что они обеспечивают улучшение
кривой обучения для целевого агента после передачи опыта
от агента с большим количеством входных предикатов.
Улучшение непостоянно и иногда не приносит заметной
разницы в производительности, но целевой агент работает по
крайнеймере также хорошо, как агент без предшествующего
опыта.
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