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Abstract. The architecture of a cooperative multi-thread scheduler for thread execution on multi-core systems that 

run Windows is proposed. The architecture is implemented using the User Mode Scheduling (UMS) mechanism, which 

allows the user application to organize cooperative thread execution. The architecture under development includes the 

necessary set of components: a user thread for executing user code; new synchronization primitive for organizing the 

interaction of user threads running on different cores of a multicore system; a control transfer mechanism between user 

threads running on the same core. The architecture allows the programmer to implement cooperative multi-threaded 

algorithms to accelerate the solution of large-scale problems on multi-core systems. 

Keywords: multi-threaded application, multi-core system, cooperative multi-tasking, scheduler, large-size tasks. 

 

Introduction. Solving large-scale problems in reasonable time is imposible without exploring 

parallelism of modern parallel systems. Effectiveness of the parallelization depends on the existence 

of a parallel solution for the problem, on the possibility to develop an effective parallel algorithm for 

the problem, and on the availability of hardware and software tools, which meet the requirements of 

the parallel algorithm under implementation [2]. Nowadays, a wide range of tools for the development 

of parallel applications exist: Windows API, OpenMP, Cilk Plus, Portable Operating System 

Interface Threads (POSIX Threads or PThreads), Threading Building Blocks (TBB), Open 

Computing Language (OpenCL), different implementations of the Message Passing Interface (MPI), 

and others [2-8]. Choosing the appropriate tool depends on various aspects, including the operating 

system compatibility, the availability (licensing, freeware or shareware), and the specifics of the 
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parallel problem. In this paper, we investigate the effectiveness of the cooperative multi-thread 

scheduler implementations [9] on two different parallel applications: the Gaussian Elimination 

algorithms [10, 11] for solving algebraic equations, and the parallel Floyd-Warshall algorithms for 

all-pairs shortest paths problem [11 – 14]. 

Cooperative multi-tasking in Windows. All modern versions of the Windows operating system 

use a preemptive scheduler as the default thread scheduler [15]. However, starting from Windows 7 

(for workstations) and Windows Server 2008 R2 (for servers), Windows provides a User-Mode 

Scheduling (UMS) interface, which allows the execution of an application by operating system 

scheduler in such a way as to construct a custom thread scheduler [16]. UMS interface consists of 

three core entities: a worker thread – UmsWorkerThread (UMSWT), a scheduler thread - 

UmsSchedulerThread (UMSST), a signature of the scheduling procedure, which is invoked by 

operating system in certain circumstances (described below) – UmsSchedulerProcedure (USP) and a 

completion list of worker threads– UmsCompletionList (UMSCL).  

UmsSchedulerThread is responsible for execution of UMSWT. It is implemented using 

standard operating system thread (executed by operating system scheduler), which is switched to 

scheduling mode by the invocation of an EnterUmsSchedulingMode procedure. The parameters of 

this procedure are a pointer to UMSCL and a pointer to an implementation of USP. The operating 

system invokes the provided implementation of USP in the cases as follows: at the initialization of 

UMSST; immediately after the call to EnterUmsSchedulingMode (using the UmsSchedulerStartup 

event); after blocking UMSWT at the system call (UmsSchedulerThreadBlocked event); when 

UMSWT passes the control to UMSST (UmsSchedulerThreadYield event). USP is also responsible 

for handling operating system callbacks, and for maintaining a list of all UMSWT created by the 

application. UMSST executes UMSWT using the ExecuteUmsThread procedure. 

UmsWorkerThread is responsible for the execution of a user code. It is implemented with the 

standard operating system thread, which is transformed into UMSWT by setting up a set of attributes 

at the moment of creating. These attributes include pre-allocated UmsContext (used by the operating 

system and created using the CreateUmsThreadContext procedure), and a pointer to UMSCL. At the 

initialization, operating system pushes UMSWT to UMSCL previously specified as attribute. Starting 

from this moment UMSWT is under the control of UMSST bound to UMSCL (cooperative multi-

threading). UMSWT can pass the control to UMSST using the UmsThreadYield procedure. 

Figure 1 illustrates the execution of two operating system threads T1 and T2 under the control 

of operating system scheduler, the execution of one user-mode scheduling thread UMSST1, and the 

execution of two user-mode scheduling worker threads UMSWT1 и UMSWT2. 

Architecture of cooperative multi-thread scheduler. The cooperative multi-thread scheduler 

consists of three core components: scheduler thread (CST), user thread (CUT) and synchronization 

primitive (CSP). 

The scheduler implements: 

 the memory management, in particular, aligned memory allocation, NUMA aware memory 

allocation, and memory buffering; 

 procedures for creating / terminating CST, CUT and CSP as well as procedures for 

interaction between these core components. 
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Figure 1.  – Illustration of the execution of two operating system threads T1 and T2 (under control of 

the operating system scheduler), one user-mode scheduler thread UMSST1, and two user-mode 

scheduling worker threads UMSWT1 и UMSWT2: solid arrows represent the execution of operating 

system threads; long dash dot arrows represent the execution of user-mode scheduler worker 

threads; dash arrows represent the thread preemption done by the preemptive scheduler; square and 

diamond glyphs represent the begin and end of the user-mode scheduler thread execution 

 

During the initialization, the scheduler allocates the following resource on each logical 

processor of the multi-core system: 

 one UMSCL; 

 one ready user thread queue (RUTQ); 

 one CST which is bound to previously allocated UMSCL and RUTQ. 

Besides the mentioned above, the scheduler also includes arrays of all created CST, CUT and 

CSP. A high-level view of cooperative multi-threaded scheduler is illustrated on Figure 2. 

Cooperative scheduler thread. CST is responsible for handling the operating system callbacks 

and the user thread requests. It consists of UMSST, an implementation of UmsSchedulerProc, a 

pointer to RUTQ and a field representing its CST state. CST is created during scheduler initialization. 

During the initialization, CST switches from Created to Initializing, to Initialized and then to 

Executing state (executes an implementation of UmsSchedulerProc). Starting from this point, CST 

can switch between the four states as follows: Executing, WaitingWrIdle (if no requests to handle, 

scheduler thread is idling), WaitingTaskExecuting (CST is executing user thread), and Terminated. 

CST supports two type of CUT requests: direct control transfer between two CUT, and blocking-

unblocking CUT by using CSP.  

A high-level view of the control direct transfer implementation is presented on Figure 3. It is 

implemented as the following sequence of events:  

1. CUT1 transfers execution back to CST using the UmsThreadYield procedure that passes 

information about CUT2 over the SchedulerParam argument (Figure 3, arc 1); 

2. CST uses information from SchedulerParam and finds requested CUT2; 

3. CST uses the ExecuteUmsThread procedure to execute CUT2 (Figure 3, arc 2). 
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Figure 2. –  High-level view of cooperative multi-thread scheduler architecture 

 

 

Figure 3. – High-level view of control direct transfer between CUT1 and CUT2 

 

The implementation of CUT on CSP synchronization request handler has been described in [9]. 

Cooperative user thread. CUT is responsible for the user thread execution. It consists of 

UMSWT and a field representing the CUT state. CUT is created by a user request which includes a 

pointer to the user defined procedure and an index of the logical core which CUT will execute on. 

During the initialization, CUT switches from the Created state to Initializing, then to Initialized and 

then to Ready states (CUT is ready for execution and currently resides in RUTQ). Starting from this 

moment, CUT could switch between these five states: Ready, Executing, WaitingWrStopped (CUT is 

blocked after performing the control transfer), WaitingWrBlocked (CUT is synchronized using CSP), 
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WaitingWrSystemTrap or WaitingWrSystemCall (CUT is blocked on a system call) and Terminated. 

When CUT is switching between the above states it sometimes holds one of the intermediate states: 

StandBy (when CUT has been selected from RUTQ but has not been executed yet, i.e. between Ready 

and Executing), and WaitingWrYielded (when CUT has transferred execution, but the request has not 

been decoded yet by CST, i.e. between Executing and WaitingWrStopped, or between Executing 

WaitingWrBlocked).  

Cooperative synchronization primitive. CSP represents an event. It is used to synchronize two 

or more CUTs executing on different cores. CSP allows to block CUT waiting for the event, and it 

resumes CUT’s execution without support from the operating system. CSP is created by a user request 

and is not tied to any logical core, CST or CUT. CSP consists of a blocked user thread queue (BUTQ), 

which is used to hold blocked CUTs, and includes a field for representing CSP state. 

At any moment of time, CSP can be in one of the following states: Reset, Signaled, Signaling, 

SignalingActSignal, SignalingActReset, Joining, JoiningActSignal and JoiningActReset. States Reset 

and Signaled are terminal states. Other states are transitional ones, which are required to support 

concurrent calls to CSP’s procedures. 

In order to better understand the role of each state, let us consider five examples. 

Example 1. CSP is in state Reset. It indicates that the event represented by CSP has not 

happened yet. CUT1 wants to notify about the event all the CUTs blocked on CSP. The notification 

should either unblock one of the CUTs or switch CSP into the Signaled state. Here is the sequence of 

events:  

Step 1. CUT1 switches CSP from state Reset to state Signaling. This is to indicate that there is 

a CUT which is executing the notify procedure. 

Step 2. CUT1 checks BUTQ for the blocked CUT. If BUTQ does not contain the blocked CUT 

then the behavior of CUT1 is described by step 3a, otherwise by step 3b. 

Step 3a. Because BUTQ does not contain a blocked CUT, CUT1 switches CSP from state 

Signaling to state Signaled. It indicates that the event represented by CSP has happened. 

Step 3b. Because BUTQ contains one or more blocked CUTs, CUT1 pops one blocked CUT 

and moves it from BUTQ to RUTQ (simultaneously switching CUT to state Ready). Then CSP 

switches to state Reset. 

Example 2. Imagine, that at the same time as CUT1 executes the “signal” action, one more 

CUT2 also want to execute the “signal” action to notify about the event. Here is how the sequence of 

events will look like: 

Step 1. CUT2 fails to switch CSP from state Reset to state Signaling. This is because CSP is 

already in state Signaling. 

Step 2. Because CUT2 cannot be sure whether CUT1 has already checked for BUTQ, it 

switches CSP from state Signaling to state SignalingActSignal. This state indicates that if CUT1 have 

not unblocked any of CUTs, then it should switch CSP back to state Signaling and repeat the check 

of BUTQ.  

Example 3. Imagine, CUT2 from the previous example executes the “reset” action rather than 
the “signal” one. In this case, the “reset” action will have the same sequence of events as the “signal” 

action has (see the previous example), with one exception, CUT2 will switch CSP to state 

SignalingActReset. This will force CUT1 to switch CSP to state Reset right after completion of the 

“signal” action. 

The blocking of CUT is performed in a similar way, with the only exception that the blocking 

operation is performed by CST. The following two examples illustrate it. 

Example 4. CUT3 transfers control to CST1 in order to synchronize itself on CSP, which is in 

state Reset. Here is how the execution of the “synchronize” action will look like: 

Step 1. CST1 switches CSP from Reset to Joining state. It indicates that CSP is now used by 

CST to synchronize CUT. 

Step 2. CST1 puts CUT3 in BUTQ. 



Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и 

анализ высокого уровня», Минск, Республика Беларусь,  

20-21 мая 2020 года 
 

207 
 

Step 3. CST1 switches CSP back to state Reset. 

Example 5. Imagine, that at the same time as CUT3 is being synchronized on CSP, other CUT1 

executes the “signal” action. In this case, the “signal” action execution is as follows: 

Step 1. CUT1 fails to switch CSP from state Reset to state Signaling, as CSP is already in state 

Joining. 

Step 2. CUT1 switches CSP from state Joining to state JoiningActSignal. This state instructs 

CST1 to switch CSP to state Signaling and to re-execute the “signal” action after the completion of 

the “synchronize” action. 

Figure 4 shows the state transfer matrix of CSP. 

 

 R S SG SR SS JG JR JS 

R   fs   fj   

S fr  fs      

SG  fs  fs, fcr fs, fcs    

SR -        

SS   -      

JG -      fj, fcr fj, fcs 

JR -        

JS   -      
 

State abbreviations: 

S – Signaled 

R – Reset 

SG – Signaling 

SR – SignalingActReset 

SS – SignalingActSignal 

J – Joining 

JR – JoiningActReset 

JS – JoiningActSignal 
 

Conditional flags: 

fr – flag, indicating a reset operation was taken 

fs – flag, indicating a signal operation was taken 

fj – flag, indicating a join operation was taken 

fcr – flag, indicating a concurrent reset operation was taken 

fcs – flag, indicating a concurrent signal operation was taken 

fcj – flag, indicating a concurrent join operation was taken 
 

 

Figure 4. – State transfer matrix of cooperative synchronization primitive 

 
Experimental environment. All experiments were done on two multi-core systems. The first 

multi-core system was equipped with two Intel Xeon E5520 processors. Each processor has 4 cores. 

Each core runs on 2.26 GHz frequency and has high-speed hierarchical cache memory (L1 – 64 KB, 

L2 – 256 KB). Besides that, each core has the Intel Hyper-Threading technology built in, which 

allows the execution of two hardware threads on the single core. Each processor has access to shared 

L3 cache of 8 MB size, and access to local and remote memory with NUMA memory organization. 

The system is equipped with 16 GB of RAM and is controlled by Windows Server 2012 R2 (64 bits). 

The second multi-core system is equipped by one Intel Core i5-3450 processor (4 cores). Each core 

runs on 3.10 GHz frequency and has access to the high-speed local hierarchical cache memory (L1 – 

256 KB and L2 - 1 MB), and the shared L3 cache memory with capacity of 6 MB. The system is 

equipped with 16 GB RAM and is controlled by Windows 10 Professional 1809. 

Cooperative scheduler and algorithms implementation. Cooperative multi-thread scheduler is 

implemented in C/C++ language as dynamically linked library (.dll) using Visual C++ 14.1 compiler. 
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Parallel Gaussian Elimination algorithms (1, 2) [13, 17] are implemented using the native 

Windows threads and the AutoResetEvent synchronization primitive. Cooperative algorithms (1 и 

2) [10, 11] are implemented using the developed scheduler library. The source code of 1, 2, 1 

and 2 algorithms are written in C/C++ language and compiled into executions (.exe) using Visual 

C++ 14.1 compiler. Block-parallel all pairs shortest path Floyd-Warshall algorithm (BFW) is 

implemented using OpenMP directives for the task-based parallelism. The cooperative threaded 

block-parallel algorithm CTBPA [12] is implemented using the scheduler library. The source code of 

both algorithms is written in C/C++ language and is compiled using Intel Compiler 18 that is 

configured on maximum optimization (OV3) with additional options to do maximum optimization 

for underlying multi-core system (IvyBridge specific optimization and vectorization using Intel 

AVX). 

Experimental results. In order to demonstrate the effectiveness of the cooperative multi-thread 

scheduler and the developed cooperative algorithms, we conducted experiments using two different 

parallel implementations of the Gaussian Elimination and the block-parallel implementation of all-

pairs shortest path Floyd-Warshall algorithm. Figures 5, a and 5, b report experimental results 

obtained in series of 1000 runs for each of four 1, 2, 1 and 2 algorithms depending on the 

number of threads. All experiments use linear algebraic equations of 2400 variables. The obtained 

results are compared against the results obtained for single-threaded implementations on both multi-

core systems. The best execution time of the single-threaded implementation is 10.43 sec on the first 

multi-core system and is 4.91 sec on the second multi-core system. On first multi-core system, the 

cooperative algorithms 1 and 2 have shown a maximum speed up of 6.00 and 6.12 times, which 

exceeds the maximum speedup shown by the 1 and 2 algorithms (5.30 and 1.82 times respectively). 

On the second multi-core system, cooperative algorithms 1 and 2 have shown the maximum 

speed up of 10.68 and 11.23 times, which significantly overcomes the speed up obtained by the 1 

and 2 algorithms (8.47 and 3.83 times respectively).  

In addition to the execution time of four algorithms µ1, µ2, µ1к and µ2к, we have analyzed 

the execution time distribution in series of 1000 runs of each algorithm. Figure 6 presents histograms 

of the execution time and time intervals (in sec) for both multi-core systems. Table 1 reports the 

execution time intervals of best runs of the algorithms. 

Figure 7 presents the execution speedup of algorithm CTBPA comparing to BFW algorithm 

depending on block size for graph of 2400 vertexes in series of 1000 runs done on Intel Core i5-3450 

multi-core system. CTBPA demonstrated speedup for all block sizes with maximum speedup in 

26.8% (0.842 vs. 0.664 seconds) for block size of 120x120. Histograms of execution intervals of both 

algorithms are presented on picture 8. Table 2 demonstrates significant advantage of developed (using 

developed cooperative multi-threading scheduler) CTBPA algorithm against existing parallel 

implementation of BFW, done using operating system scheduler.  
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a) 

 
b) 

a) – Intel Core i5-3450; b) – Intel Xeon E5520 

Figure 5. – Speedup in times between execution time of 1 (solid), 2 (dash), 1 (dash dot), 2 

(dot) algorithms and best execution time of single-threaded algorithm in series of 1000 runs 

depending on number of threads on SLAE of 2400 variables size 

 

Table 1. – Execution time intervals of 1, 2, 1 и 2 algorithms for both experimental multi-core 

systems 
Intel Core i5-3450, 4 cores 2 x Intel Xeon E5520, 8 cores 

Algorithm 
from 

(seconds) 

to 

(seconds) 

width 

(seconds) 

from 

(seconds) 

to 

(seconds) 

length 

(seconds) 

µ1 (160 threads) 0.89 1.05 0.16 1.09 1.85 0.76 

µ2 (48 threads) 2.49 3.19 0.70 2.61 2.95 0.34 

µ1к (160 threads) 0.80 1.35 0.55 0.969 1.005 0.044 

µ2к (160 threads) 0.79 0.99 0.20 0.912 0.952 0.040 
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a) b) 

  
c) d) 

  
e) f) 

  

g) h) 

Figure 6. – Histograms of execution time intervals (in seconds) of µ1, µ2, µ1 and µ2 algorithms 

in series of 1000 runs for SLAE of 2400 variables size on Intel Core i5-3450 (4 cores) a), b), c), d) 

and Intel Xeon E5520 (8 cores) e), f), g), h)  

a) – µ1 (160 threads); b) – µ2 (48 threads); c) – µ1к (160 threads); d) – µ2к (160 

threads);  

e) – µ1 (48 threads); f) – µ2 (96 threads); g) – µ1к (400 threads); h) – µ2к (400 

threads) 
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Figure 7. – Speedup in % given by algorithm CTBPA comparing to algorithm BFW vs. block size 

on graphs of 2400 vertices in series of 1000 runs done on Intel Core i5-3450  

 

 

Table 2. – Execution time intervals given by algorithms BFW and CTBPA on block size 120х120 

Intel Core i5-3450, 4 core 

Algorithm from (sec) to (sec) width (sec) 

BFW 0.836 1.176 0.340 

CTBPA 0.655 0.755 0.100 
 

 

Conclusion When solving a large task, the performance of a multi-core system depends 

heavily on the operating system and the system software built into it, on the one hand, and depends 

on the method of constructing parallel multi-threaded algorithms that solve the application problems 

and perform calculations on a large amount of data, on the other hand. In the paper, a cooperative 

multi-thread scheduler is proposed and experimentally investigated, which reduces the execution time 

compared to the preemptive scheduler of the operating system, and is used to create multi-threaded 

algorithms in such a way that the threads running on one core directly transfer control to each other, 

and the threads running on different cores interact with each other through the proposed 

synchronization primitive, that speeds up the processes of thread lock-unlock. 
 

 

  

  

a) b) 

Figure 8. – Histograms of the execution time (sec) of a) BFW and b) CTBPA algorithms in series of 

1000 runs on graphs of 2400 vertices and block size of 120120 
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