
Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

202

UDK [611.018.51+615.47]:612.086.2

COOPERATIVE MULTI-THREAD SCHEDULER FOR SOLVING LARGE-SIZE

TASKS ON MULTI-CORE SYSTEMS

O.N. Karasik

Tech Lead at ISsoft Solutions

(part of Coherent Solutions) in

Minsk, Belarus, PhD in

Technical Science

А.А. Prihozhy

Professor at the Computer and System

Software Department,

Doctor of Technical Sciences,

Full Professor

Belarusian National Technical University

ISsoft Solutions (part of Coherent Solutions), Belarus

Belarusian National Technical University, Belarus

E-mail: karasik.oleg.nikolaevich@gmail.com, prihozhy@yahoo.com

O.N. Karasik

Tech Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, Belarus; PhD in Technical Science (2019).

Interested in parallel computing on multi-core and multi-processor systems.

A.A. Prihozhy

Full professor at the Computer and system software department of Belarusian national technical university, doctor

of science (1999) and full professor (2001). His research interests include programming and hardware description

languages, parallelizing compilers, and computer aided design techniques and tools for software and hardware at logic,

high and system levels, and for incompletely specified logical systems. He has over 300 publications in Eastern and

Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer, Kluwer Academic Publishers, World

Scientific and others have published his works.

Abstract. The architecture of a cooperative multi-thread scheduler for thread execution on multi-core systems that

run Windows is proposed. The architecture is implemented using the User Mode Scheduling (UMS) mechanism, which

allows the user application to organize cooperative thread execution. The architecture under development includes the

necessary set of components: a user thread for executing user code; new synchronization primitive for organizing the

interaction of user threads running on different cores of a multicore system; a control transfer mechanism between user

threads running on the same core. The architecture allows the programmer to implement cooperative multi-threaded

algorithms to accelerate the solution of large-scale problems on multi-core systems.

Keywords: multi-threaded application, multi-core system, cooperative multi-tasking, scheduler, large-size tasks.

Introduction. Solving large-scale problems in reasonable time is imposible without exploring

parallelism of modern parallel systems. Effectiveness of the parallelization depends on the existence

of a parallel solution for the problem, on the possibility to develop an effective parallel algorithm for

the problem, and on the availability of hardware and software tools, which meet the requirements of

the parallel algorithm under implementation [2]. Nowadays, a wide range of tools for the development

of parallel applications exist: Windows API, OpenMP, Cilk Plus, Portable Operating System

Interface Threads (POSIX Threads or PThreads), Threading Building Blocks (TBB), Open

Computing Language (OpenCL), different implementations of the Message Passing Interface (MPI),

and others [2-8]. Choosing the appropriate tool depends on various aspects, including the operating

system compatibility, the availability (licensing, freeware or shareware), and the specifics of the

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

203

parallel problem. In this paper, we investigate the effectiveness of the cooperative multi-thread

scheduler implementations [9] on two different parallel applications: the Gaussian Elimination

algorithms [10, 11] for solving algebraic equations, and the parallel Floyd-Warshall algorithms for

all-pairs shortest paths problem [11 – 14].

Cooperative multi-tasking in Windows. All modern versions of the Windows operating system

use a preemptive scheduler as the default thread scheduler [15]. However, starting from Windows 7

(for workstations) and Windows Server 2008 R2 (for servers), Windows provides a User-Mode

Scheduling (UMS) interface, which allows the execution of an application by operating system

scheduler in such a way as to construct a custom thread scheduler [16]. UMS interface consists of

three core entities: a worker thread – UmsWorkerThread (UMSWT), a scheduler thread -

UmsSchedulerThread (UMSST), a signature of the scheduling procedure, which is invoked by

operating system in certain circumstances (described below) – UmsSchedulerProcedure (USP) and a

completion list of worker threads– UmsCompletionList (UMSCL).

UmsSchedulerThread is responsible for execution of UMSWT. It is implemented using

standard operating system thread (executed by operating system scheduler), which is switched to

scheduling mode by the invocation of an EnterUmsSchedulingMode procedure. The parameters of

this procedure are a pointer to UMSCL and a pointer to an implementation of USP. The operating

system invokes the provided implementation of USP in the cases as follows: at the initialization of

UMSST; immediately after the call to EnterUmsSchedulingMode (using the UmsSchedulerStartup

event); after blocking UMSWT at the system call (UmsSchedulerThreadBlocked event); when

UMSWT passes the control to UMSST (UmsSchedulerThreadYield event). USP is also responsible

for handling operating system callbacks, and for maintaining a list of all UMSWT created by the

application. UMSST executes UMSWT using the ExecuteUmsThread procedure.

UmsWorkerThread is responsible for the execution of a user code. It is implemented with the

standard operating system thread, which is transformed into UMSWT by setting up a set of attributes

at the moment of creating. These attributes include pre-allocated UmsContext (used by the operating

system and created using the CreateUmsThreadContext procedure), and a pointer to UMSCL. At the

initialization, operating system pushes UMSWT to UMSCL previously specified as attribute. Starting

from this moment UMSWT is under the control of UMSST bound to UMSCL (cooperative multi-

threading). UMSWT can pass the control to UMSST using the UmsThreadYield procedure.

Figure 1 illustrates the execution of two operating system threads T1 and T2 under the control

of operating system scheduler, the execution of one user-mode scheduling thread UMSST1, and the

execution of two user-mode scheduling worker threads UMSWT1 и UMSWT2.

Architecture of cooperative multi-thread scheduler. The cooperative multi-thread scheduler

consists of three core components: scheduler thread (CST), user thread (CUT) and synchronization

primitive (CSP).

The scheduler implements:

 the memory management, in particular, aligned memory allocation, NUMA aware memory

allocation, and memory buffering;

 procedures for creating / terminating CST, CUT and CSP as well as procedures for

interaction between these core components.

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

204

Figure 1. – Illustration of the execution of two operating system threads T1 and T2 (under control of

the operating system scheduler), one user-mode scheduler thread UMSST1, and two user-mode

scheduling worker threads UMSWT1 и UMSWT2: solid arrows represent the execution of operating

system threads; long dash dot arrows represent the execution of user-mode scheduler worker

threads; dash arrows represent the thread preemption done by the preemptive scheduler; square and

diamond glyphs represent the begin and end of the user-mode scheduler thread execution

During the initialization, the scheduler allocates the following resource on each logical

processor of the multi-core system:

 one UMSCL;

 one ready user thread queue (RUTQ);

 one CST which is bound to previously allocated UMSCL and RUTQ.

Besides the mentioned above, the scheduler also includes arrays of all created CST, CUT and

CSP. A high-level view of cooperative multi-threaded scheduler is illustrated on Figure 2.

Cooperative scheduler thread. CST is responsible for handling the operating system callbacks

and the user thread requests. It consists of UMSST, an implementation of UmsSchedulerProc, a

pointer to RUTQ and a field representing its CST state. CST is created during scheduler initialization.

During the initialization, CST switches from Created to Initializing, to Initialized and then to

Executing state (executes an implementation of UmsSchedulerProc). Starting from this point, CST

can switch between the four states as follows: Executing, WaitingWrIdle (if no requests to handle,

scheduler thread is idling), WaitingTaskExecuting (CST is executing user thread), and Terminated.

CST supports two type of CUT requests: direct control transfer between two CUT, and blocking-

unblocking CUT by using CSP.

A high-level view of the control direct transfer implementation is presented on Figure 3. It is

implemented as the following sequence of events:

1. CUT1 transfers execution back to CST using the UmsThreadYield procedure that passes

information about CUT2 over the SchedulerParam argument (Figure 3, arc 1);

2. CST uses information from SchedulerParam and finds requested CUT2;

3. CST uses the ExecuteUmsThread procedure to execute CUT2 (Figure 3, arc 2).

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

205

Figure 2. – High-level view of cooperative multi-thread scheduler architecture

Figure 3. – High-level view of control direct transfer between CUT1 and CUT2

The implementation of CUT on CSP synchronization request handler has been described in [9].

Cooperative user thread. CUT is responsible for the user thread execution. It consists of

UMSWT and a field representing the CUT state. CUT is created by a user request which includes a

pointer to the user defined procedure and an index of the logical core which CUT will execute on.

During the initialization, CUT switches from the Created state to Initializing, then to Initialized and

then to Ready states (CUT is ready for execution and currently resides in RUTQ). Starting from this

moment, CUT could switch between these five states: Ready, Executing, WaitingWrStopped (CUT is

blocked after performing the control transfer), WaitingWrBlocked (CUT is synchronized using CSP),

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

206

WaitingWrSystemTrap or WaitingWrSystemCall (CUT is blocked on a system call) and Terminated.

When CUT is switching between the above states it sometimes holds one of the intermediate states:

StandBy (when CUT has been selected from RUTQ but has not been executed yet, i.e. between Ready

and Executing), and WaitingWrYielded (when CUT has transferred execution, but the request has not

been decoded yet by CST, i.e. between Executing and WaitingWrStopped, or between Executing

WaitingWrBlocked).

Cooperative synchronization primitive. CSP represents an event. It is used to synchronize two

or more CUTs executing on different cores. CSP allows to block CUT waiting for the event, and it

resumes CUT’s execution without support from the operating system. CSP is created by a user request

and is not tied to any logical core, CST or CUT. CSP consists of a blocked user thread queue (BUTQ),

which is used to hold blocked CUTs, and includes a field for representing CSP state.

At any moment of time, CSP can be in one of the following states: Reset, Signaled, Signaling,

SignalingActSignal, SignalingActReset, Joining, JoiningActSignal and JoiningActReset. States Reset

and Signaled are terminal states. Other states are transitional ones, which are required to support

concurrent calls to CSP’s procedures.

In order to better understand the role of each state, let us consider five examples.

Example 1. CSP is in state Reset. It indicates that the event represented by CSP has not

happened yet. CUT1 wants to notify about the event all the CUTs blocked on CSP. The notification

should either unblock one of the CUTs or switch CSP into the Signaled state. Here is the sequence of

events:

Step 1. CUT1 switches CSP from state Reset to state Signaling. This is to indicate that there is

a CUT which is executing the notify procedure.

Step 2. CUT1 checks BUTQ for the blocked CUT. If BUTQ does not contain the blocked CUT

then the behavior of CUT1 is described by step 3a, otherwise by step 3b.

Step 3a. Because BUTQ does not contain a blocked CUT, CUT1 switches CSP from state

Signaling to state Signaled. It indicates that the event represented by CSP has happened.

Step 3b. Because BUTQ contains one or more blocked CUTs, CUT1 pops one blocked CUT

and moves it from BUTQ to RUTQ (simultaneously switching CUT to state Ready). Then CSP

switches to state Reset.

Example 2. Imagine, that at the same time as CUT1 executes the “signal” action, one more

CUT2 also want to execute the “signal” action to notify about the event. Here is how the sequence of

events will look like:

Step 1. CUT2 fails to switch CSP from state Reset to state Signaling. This is because CSP is

already in state Signaling.

Step 2. Because CUT2 cannot be sure whether CUT1 has already checked for BUTQ, it

switches CSP from state Signaling to state SignalingActSignal. This state indicates that if CUT1 have

not unblocked any of CUTs, then it should switch CSP back to state Signaling and repeat the check

of BUTQ.

Example 3. Imagine, CUT2 from the previous example executes the “reset” action rather than
the “signal” one. In this case, the “reset” action will have the same sequence of events as the “signal”

action has (see the previous example), with one exception, CUT2 will switch CSP to state

SignalingActReset. This will force CUT1 to switch CSP to state Reset right after completion of the

“signal” action.

The blocking of CUT is performed in a similar way, with the only exception that the blocking

operation is performed by CST. The following two examples illustrate it.

Example 4. CUT3 transfers control to CST1 in order to synchronize itself on CSP, which is in

state Reset. Here is how the execution of the “synchronize” action will look like:

Step 1. CST1 switches CSP from Reset to Joining state. It indicates that CSP is now used by

CST to synchronize CUT.

Step 2. CST1 puts CUT3 in BUTQ.

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

207

Step 3. CST1 switches CSP back to state Reset.

Example 5. Imagine, that at the same time as CUT3 is being synchronized on CSP, other CUT1

executes the “signal” action. In this case, the “signal” action execution is as follows:

Step 1. CUT1 fails to switch CSP from state Reset to state Signaling, as CSP is already in state

Joining.

Step 2. CUT1 switches CSP from state Joining to state JoiningActSignal. This state instructs

CST1 to switch CSP to state Signaling and to re-execute the “signal” action after the completion of

the “synchronize” action.

Figure 4 shows the state transfer matrix of CSP.

 R S SG SR SS JG JR JS

R fs fj

S fr fs

SG fs fs, fcr fs, fcs

SR -

SS -

JG - fj, fcr fj, fcs

JR -

JS -

State abbreviations:

S – Signaled

R – Reset

SG – Signaling

SR – SignalingActReset

SS – SignalingActSignal

J – Joining

JR – JoiningActReset

JS – JoiningActSignal

Conditional flags:

fr – flag, indicating a reset operation was taken

fs – flag, indicating a signal operation was taken

fj – flag, indicating a join operation was taken

fcr – flag, indicating a concurrent reset operation was taken

fcs – flag, indicating a concurrent signal operation was taken

fcj – flag, indicating a concurrent join operation was taken

Figure 4. – State transfer matrix of cooperative synchronization primitive

Experimental environment. All experiments were done on two multi-core systems. The first

multi-core system was equipped with two Intel Xeon E5520 processors. Each processor has 4 cores.

Each core runs on 2.26 GHz frequency and has high-speed hierarchical cache memory (L1 – 64 KB,

L2 – 256 KB). Besides that, each core has the Intel Hyper-Threading technology built in, which

allows the execution of two hardware threads on the single core. Each processor has access to shared

L3 cache of 8 MB size, and access to local and remote memory with NUMA memory organization.

The system is equipped with 16 GB of RAM and is controlled by Windows Server 2012 R2 (64 bits).

The second multi-core system is equipped by one Intel Core i5-3450 processor (4 cores). Each core

runs on 3.10 GHz frequency and has access to the high-speed local hierarchical cache memory (L1 –

256 KB and L2 - 1 MB), and the shared L3 cache memory with capacity of 6 MB. The system is

equipped with 16 GB RAM and is controlled by Windows 10 Professional 1809.

Cooperative scheduler and algorithms implementation. Cooperative multi-thread scheduler is

implemented in C/C++ language as dynamically linked library (.dll) using Visual C++ 14.1 compiler.

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

208

Parallel Gaussian Elimination algorithms (1, 2) [13, 17] are implemented using the native

Windows threads and the AutoResetEvent synchronization primitive. Cooperative algorithms (1 и

2) [10, 11] are implemented using the developed scheduler library. The source code of 1, 2, 1

and 2 algorithms are written in C/C++ language and compiled into executions (.exe) using Visual

C++ 14.1 compiler. Block-parallel all pairs shortest path Floyd-Warshall algorithm (BFW) is

implemented using OpenMP directives for the task-based parallelism. The cooperative threaded

block-parallel algorithm CTBPA [12] is implemented using the scheduler library. The source code of

both algorithms is written in C/C++ language and is compiled using Intel Compiler 18 that is

configured on maximum optimization (OV3) with additional options to do maximum optimization

for underlying multi-core system (IvyBridge specific optimization and vectorization using Intel

AVX).

Experimental results. In order to demonstrate the effectiveness of the cooperative multi-thread

scheduler and the developed cooperative algorithms, we conducted experiments using two different

parallel implementations of the Gaussian Elimination and the block-parallel implementation of all-

pairs shortest path Floyd-Warshall algorithm. Figures 5, a and 5, b report experimental results

obtained in series of 1000 runs for each of four 1, 2, 1 and 2 algorithms depending on the

number of threads. All experiments use linear algebraic equations of 2400 variables. The obtained

results are compared against the results obtained for single-threaded implementations on both multi-

core systems. The best execution time of the single-threaded implementation is 10.43 sec on the first

multi-core system and is 4.91 sec on the second multi-core system. On first multi-core system, the

cooperative algorithms 1 and 2 have shown a maximum speed up of 6.00 and 6.12 times, which

exceeds the maximum speedup shown by the 1 and 2 algorithms (5.30 and 1.82 times respectively).

On the second multi-core system, cooperative algorithms 1 and 2 have shown the maximum

speed up of 10.68 and 11.23 times, which significantly overcomes the speed up obtained by the 1

and 2 algorithms (8.47 and 3.83 times respectively).

In addition to the execution time of four algorithms µ1, µ2, µ1к and µ2к, we have analyzed

the execution time distribution in series of 1000 runs of each algorithm. Figure 6 presents histograms

of the execution time and time intervals (in sec) for both multi-core systems. Table 1 reports the

execution time intervals of best runs of the algorithms.

Figure 7 presents the execution speedup of algorithm CTBPA comparing to BFW algorithm

depending on block size for graph of 2400 vertexes in series of 1000 runs done on Intel Core i5-3450

multi-core system. CTBPA demonstrated speedup for all block sizes with maximum speedup in

26.8% (0.842 vs. 0.664 seconds) for block size of 120x120. Histograms of execution intervals of both

algorithms are presented on picture 8. Table 2 demonstrates significant advantage of developed (using

developed cooperative multi-threading scheduler) CTBPA algorithm against existing parallel

implementation of BFW, done using operating system scheduler.

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

209

a)

b)

a) – Intel Core i5-3450; b) – Intel Xeon E5520

Figure 5. – Speedup in times between execution time of 1 (solid), 2 (dash), 1 (dash dot), 2

(dot) algorithms and best execution time of single-threaded algorithm in series of 1000 runs

depending on number of threads on SLAE of 2400 variables size

Table 1. – Execution time intervals of 1, 2, 1 и 2 algorithms for both experimental multi-core

systems
Intel Core i5-3450, 4 cores 2 x Intel Xeon E5520, 8 cores

Algorithm
from

(seconds)

to

(seconds)

width

(seconds)

from

(seconds)

to

(seconds)

length

(seconds)

µ1 (160 threads) 0.89 1.05 0.16 1.09 1.85 0.76

µ2 (48 threads) 2.49 3.19 0.70 2.61 2.95 0.34

µ1к (160 threads) 0.80 1.35 0.55 0.969 1.005 0.044

µ2к (160 threads) 0.79 0.99 0.20 0.912 0.952 0.040

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

210

a) b)

c) d)

e) f)

g) h)

Figure 6. – Histograms of execution time intervals (in seconds) of µ1, µ2, µ1 and µ2 algorithms

in series of 1000 runs for SLAE of 2400 variables size on Intel Core i5-3450 (4 cores) a), b), c), d)

and Intel Xeon E5520 (8 cores) e), f), g), h)

a) – µ1 (160 threads); b) – µ2 (48 threads); c) – µ1к (160 threads); d) – µ2к (160

threads);

e) – µ1 (48 threads); f) – µ2 (96 threads); g) – µ1к (400 threads); h) – µ2к (400

threads)

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

211

Figure 7. – Speedup in % given by algorithm CTBPA comparing to algorithm BFW vs. block size

on graphs of 2400 vertices in series of 1000 runs done on Intel Core i5-3450

Table 2. – Execution time intervals given by algorithms BFW and CTBPA on block size 120х120

Intel Core i5-3450, 4 core

Algorithm from (sec) to (sec) width (sec)

BFW 0.836 1.176 0.340

CTBPA 0.655 0.755 0.100

Conclusion When solving a large task, the performance of a multi-core system depends

heavily on the operating system and the system software built into it, on the one hand, and depends

on the method of constructing parallel multi-threaded algorithms that solve the application problems

and perform calculations on a large amount of data, on the other hand. In the paper, a cooperative

multi-thread scheduler is proposed and experimentally investigated, which reduces the execution time

compared to the preemptive scheduler of the operating system, and is used to create multi-threaded

algorithms in such a way that the threads running on one core directly transfer control to each other,

and the threads running on different cores interact with each other through the proposed

synchronization primitive, that speeds up the processes of thread lock-unlock.

a) b)

Figure 8. – Histograms of the execution time (sec) of a) BFW and b) CTBPA algorithms in series of

1000 runs on graphs of 2400 vertices and block size of 120120

Шестая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и

анализ высокого уровня», Минск, Республика Беларусь,

20-21 мая 2020 года

212

References
[1.]Prihozhy, A.A. Analysis, transformation and optimization for high performance parallel computing / A.A.

Prihozhy / Minsk: BNTU, 2019. – 229 p.

[2.]Richter, J. M. Windows via C/C++ / J. M. Richter, C. Nasarre. – 5th ed. – Microsoft Press, 2007. – 848 p.

[3.]OpenMP. OpenMP [Электронный ресурс]. – Режим доступа: https://www.openmp.org. – Дата доступа:

24.02.2020.

[4.]ISO/IEC/IEEE 9945:2009 Information technology — Portable Operating System Interface (POSIX®) Base

Specifications, Issue 7 [Электронный ресурс]. – Режим доступа: https://www.iso.org/standard/50516.html. – Дата

доступа: 24.02.2020

[5.]MPI Forum. MPI Forum [Электронный ресурс]. – Режим доступа: www.mpi-forum.org. – Дата доступа:

24.02.2020.

[6.]Google. The Go Programming Language [Электронный ресурс]. – Режим доступа: https://golang.org. –

Дата доступа: 24.02.2020.

[7.]The Khronos Group Inc. OpenCL [Электронный ресурс]. – Режим доступа:

https://www.khronos.org/opencl/. – Дата доступа: 24.02.2020.

[8.]Berkeley Lab. Berkeley UPC - Unified Parallel C [Электронный ресурс]. – Режим доступа:

http://upc.lbl.gov/. – Дата доступа: 24.02.2020.

[9.]Карасик, О. Н. Усовершенствованный планировщик кооперативного выполнения потоков на

многоядерной системе / О. Н. Карасик, А. А. Прихожий // Системный анализ и прикладная математика. – 2017. –

№ 1. – С. 4–11.

[10.] Прыхожы, А. А. Кааператыўныя блочна-паралельныя алгарытмы рашэння задач на шмат'ядравых

сістэмах / А. А. Прыхожы, А. М. Карасік // Сістэмны аналіз і прыкладная інфарматыка. – 2015. – № 2. – С. 10–18.

[11.] Прихожий, А.А. Кооперативная модель оптимизации выполнения потоков на многоядерной

системе / А.А. Прихожий, О.Н. Карасик // Системный анализ и прикладная информатика, 2014, № 4, с. 13-20.

[12.] Карасик, О. Н. Потоковый блочно-параллельный алгоритм поиска кратчайших путей на графе /

О. Н. Карасик, А. А. Прихожий // Доклады БГУИР. – 2018. – № 2. – С. 77–84.

[13.] Прихожий, А.А. Исследование методов реализации многопоточных приложений на многоядерных

системах / А.А. Прихожий, О.Н. Карасик // Информатизация образования, 2014, № 1, с. 43-62.

[14.] Прихожий, А. А. Кооперативная потоковая модель решения задач большой размерности на

многоядерных системах / А. А. Прихожий, О. Н. Карасик // Big Data and Advanced Analytics. – 2018. – №. 4. –

С. 381–386.

[15.] Probert, D. Dave Probert: Inside Windows 7 - User Mode Scheduler (UMS) [Электронный ресурс]. /

D. Probert. – Режим доступа: https://channel9.msdn.com/shows/Going+Deep/Dave-Probert-Inside-Windows-7-User-

Mode-Scheduler-UMS/. – Дата доступа: 01.11.2019.

[16.] Microsoft. User-Mode Scheduling [Электронный ресурс]. – Режим доступа:

https://docs.microsoft.com/en-us/windows/desktop/ProcThread/user-mode-scheduling. – Дата доступа: 24.02.2020.

[17.] Howe, J. Parallel Gaussian Elimination [Электронный ресурс]. / J. Howe, S. Bratcher. – Режим доступа:

http://www.cse.ucsd.edu/classes/fa98/cse164b/Projects/PastProjects/LU. – Дата доступа: 01.11.2018

[18.] Venkataraman, G. Blocked All-Pairs Shortest Paths Algorithm / G. Venkataraman, S. Sahni, S.

Mukhopadhyaya // Journal of Experimental Algorithmics (JEA). – 2003. – Vol. 8. – P. 857–874

[19.] Tang, P. Rapid development of parallel blocked all-pairs shortest paths code for multi-core computers / P.

Tang // IEEE SOUTHEASTCON 2014. – Lexington, KY, USA: IEEE, 2014. – P. 1–7

[20.] Park, J. Optimizing graph algorithms for improved cache performance / J. Park, M. Penner, V. K. Prasanna

// IEEE Transactions on Parallel and Distributed Systems. – 2004. – Vol. 15, №. 9. – P. 769–782

https://www.iso.org/standard/50516.html
https://cyberleninka.ru/article/n/15992345
https://cyberleninka.ru/article/n/15992345
http://scholar.google.com/scholar?cluster=13501638488297176683&hl=en&oi=scholarr
http://scholar.google.com/scholar?cluster=13501638488297176683&hl=en&oi=scholarr

