Lllecmas Medxcoynapoonas nayuno-npaxmuueckas xongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
aHau3 8biCOK020 yposhsy, Munck, Pecnyonuxa Benapyce,
20-21 masn 2020 200a

UDK [611.018.51+615.47]:612.086.2

COOPERATIVE MULTI-THREAD SCHEDULER FOR SOLVING LARGE-SIZE
TASKS ON MULTI-CORE SYSTEMS

O.N. Karasik A.A. Prihozhy
Tech Lead at ISsoft Solutions Professor at the Computer and System
(part of Coherent Solutions) in Software Department,
Minsk, Belarus, PhD in Doctor of Technical Sciences,
Technical Science Full Professor

Belarusian National Technical University

ISsoft Solutions (part of Coherent Solutions), Belarus
Belarusian National Technical University, Belarus
E-mail: karasik.oleg.nikolaevich@gmail.com, prihozhy@yahoo.com

O.N. Karasik
Tech Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, Belarus; PhD in Technical Science (2019).
Interested in parallel computing on multi-core and multi-processor systems.

A.A. Prihozhy

Full professor at the Computer and system software department of Belarusian national technical university, doctor
of science (1999) and full professor (2001). His research interests include programming and hardware description
languages, parallelizing compilers, and computer aided design techniques and tools for software and hardware at logic,
high and system levels, and for incompletely specified logical systems. He has over 300 publications in Eastern and
Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer, Kluwer Academic Publishers, World
Scientific and others have published his works.

Abstract. The architecture of a cooperative multi-thread scheduler for thread execution on multi-core systems that
run Windows is proposed. The architecture is implemented using the User Mode Scheduling (UMS) mechanism, which
allows the user application to organize cooperative thread execution. The architecture under development includes the
necessary set of components: a user thread for executing user code; new synchronization primitive for organizing the
interaction of user threads running on different cores of a multicore system; a control transfer mechanism between user
threads running on the same core. The architecture allows the programmer to implement cooperative multi-threaded
algorithms to accelerate the solution of large-scale problems on multi-core systems.

Keywords: multi-threaded application, multi-core system, cooperative multi-tasking, scheduler, large-size tasks.

Introduction. Solving large-scale problems in reasonable time is imposible without exploring
parallelism of modern parallel systems. Effectiveness of the parallelization depends on the existence
of a parallel solution for the problem, on the possibility to develop an effective parallel algorithm for
the problem, and on the availability of hardware and software tools, which meet the requirements of
the parallel algorithm under implementation [2]. Nowadays, a wide range of tools for the development
of parallel applications exist: Windows API, OpenMP, Cilk Plus, Portable Operating System
Interface Threads (POSIX Threads or PThreads), Threading Building Blocks (TBB), Open
Computing Language (OpenCL), different implementations of the Message Passing Interface (MPI),
and others [2-8]. Choosing the appropriate tool depends on various aspects, including the operating
system compatibility, the availability (licensing, freeware or shareware), and the specifics of the

202



Llecmas Medxcoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u

ananu3z evicoko2o yposusy, Munck, Pecnybnuxa Benapyce,
20-21 mas 2020 200a

parallel problem. In this paper, we investigate the effectiveness of the cooperative multi-thread
scheduler implementations [9] on two different parallel applications: the Gaussian Elimination
algorithms [10, 11] for solving algebraic equations, and the parallel Floyd-Warshall algorithms for
all-pairs shortest paths problem [11 — 14].

Cooperative multi-tasking in Windows. All modern versions of the Windows operating system
use a preemptive scheduler as the default thread scheduler [15]. However, starting from Windows 7
(for workstations) and Windows Server 2008 R2 (for servers), Windows provides a User-Mode
Scheduling (UMS) interface, which allows the execution of an application by operating system
scheduler in such a way as to construct a custom thread scheduler [16]. UMS interface consists of
three core entities: a worker thread — UmsWorkerThread (UMSWT), a scheduler thread -
UmsSchedulerThread (UMSST), a signature of the scheduling procedure, which is invoked by
operating system in certain circumstances (described below) — UmsSchedulerProcedure (USP) and a
completion list of worker threads— UmsCompletionList (UMSCL).

UmsSchedulerThread is responsible for execution of UMSWT. It is implemented using
standard operating system thread (executed by operating system scheduler), which is switched to
scheduling mode by the invocation of an EnterUmsSchedulingMode procedure. The parameters of
this procedure are a pointer to UMSCL and a pointer to an implementation of USP. The operating
system invokes the provided implementation of USP in the cases as follows: at the initialization of
UMSST; immediately after the call to EnterUmsSchedulingMode (using the UmsSchedulerStartup
event); after blocking UMSWT at the system call (UmsSchedulerThreadBlocked event); when
UMSWT passes the control to UMSST (UmsSchedulerThreadYield event). USP is also responsible
for handling operating system callbacks, and for maintaining a list of all UMSWT created by the
application. UMSST executes UMSWT using the ExecuteUmsThread procedure.

UmsWorkerThread is responsible for the execution of a user code. It is implemented with the
standard operating system thread, which is transformed into UMSWT by setting up a set of attributes
at the moment of creating. These attributes include pre-allocated UmsContext (used by the operating
system and created using the CreateUmsThreadContext procedure), and a pointer to UMSCL. At the
initialization, operating system pushes UMSWT to UMSCL previously specified as attribute. Starting
from this moment UMSWT is under the control of UMSST bound to UMSCL (cooperative multi-
threading). UMSWT can pass the control to UMSST using the UmsThreadYield procedure.

Figure 1 illustrates the execution of two operating system threads T1 and T2 under the control
of operating system scheduler, the execution of one user-mode scheduling thread UMSST;, and the
execution of two user-mode scheduling worker threads UMSWT1; u UMSWTo.

Architecture of cooperative multi-thread scheduler. The cooperative multi-thread scheduler
consists of three core components: scheduler thread (CST), user thread (CUT) and synchronization
primitive (CSP).

The scheduler implements:

—the memory management, in particular, aligned memory allocation, NUMA aware memory
allocation, and memory buffering;

—procedures for creating / terminating CST, CUT and CSP as well as procedures for
interaction between these core components.

203



Llecmas Mesicoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
aHau3 8biCOK020 yposhsy, Munck, Pecnyonuxa Benapyce,
20-21 masn 2020 200a

Thread is waiting for execution

l 7) 8)
T, o -I;I—H;f """ -
D | :
I, e e P
! | !
1
1 1 , . 3 . .
Thread is ! ! Thread is preemptied by OS
. . | 1 scheduler
executing : | 1
: o
3) H 5 ! 10)
UMSST -1 @——eo—@>» |- —EI—Q—»D 11) UMSWT is vielding
2y - | ) 9) - execution back to

UMSIT, ! | ——— ol UMSST
I :
UMSIIT, - ’, >

UMSWT is executing by UMSST

Figure 1. — Illlustration of the execution of two operating system threads T1 and T (under control of
the operating system scheduler), one user-mode scheduler thread UMSST, and two user-mode
scheduling worker threads UMSWT1 u UMSWT2: solid arrows represent the execution of operating
system threads; long dash dot arrows represent the execution of user-mode scheduler worker
threads; dash arrows represent the thread preemption done by the preemptive scheduler; square and
diamond glyphs represent the begin and end of the user-mode scheduler thread execution

During the initialization, the scheduler allocates the following resource on each logical
processor of the multi-core system:

— one UMSCL,

— one ready user thread queue (RUTQ);

— one CST which is bound to previously allocated UMSCL and RUTQ.

Besides the mentioned above, the scheduler also includes arrays of all created CST, CUT and
CSP. A high-level view of cooperative multi-threaded scheduler is illustrated on Figure 2.

Cooperative scheduler thread. CST is responsible for handling the operating system callbacks
and the user thread requests. It consists of UMSST, an implementation of UmsSchedulerProc, a
pointer to RUTQ and a field representing its CST state. CST is created during scheduler initialization.
During the initialization, CST switches from Created to Initializing, to Initialized and then to
Executing state (executes an implementation of UmsSchedulerProc). Starting from this point, CST
can switch between the four states as follows: Executing, WaitingWrldle (if no requests to handle,
scheduler thread is idling), WaitingTaskExecuting (CST is executing user thread), and Terminated.
CST supports two type of CUT requests: direct control transfer between two CUT, and blocking-
unblocking CUT by using CSP.

A high-level view of the control direct transfer implementation is presented on Figure 3. It is
implemented as the following sequence of events:

1. CUT; transfers execution back to CST using the UmsThreadYield procedure that passes
information about CUT, over the SchedulerParam argument (Figure 3, arc 1);

2. CST uses information from SchedulerParam and finds requested CUT>;

3. CST uses the ExecuteUmsThread procedure to execute CUT (Figure 3, arc 2).

204



Llecmas Medxcoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
ananu3z 6blcoK020 yposisy, Munck, Pecnybiuka Benapyce,
20-21 masn 2020 200a

User Thread

Pointer to

UmsWorkerThread

Pointer to next CUT

Configuration

State

Cm(';perati\'e > CUT, — . —p CUT,
multi-threaded
scheduler | |
UmsWorkerThread, UmsWorkerThread,
List of CUT . .
v v
Arrayv of pointers t R Lo
1 m'::&(:ﬂ::;:::{::;I:: > UmsCompletionListy UmsCompletionList,
i i
o 1 1
Array of CST
UmsSchedulerThready UmsSchedulerThread,
3 3 |
I 1 Operating
> CST, CST, system objects
QP '<1
CSPy C8Pp Pointer to Pointer to
[ UmsSchedulerThread UmsCompletionList
BUTQ Configuration RUTQ
TmsSe T Proc
State State L 1lnsb‘.hec.lulel.P1 oc
implementation

Synchronization Primitive

Scheduler Thread

Figure 2. — High-level view of cooperative multi-thread scheduler architecture

UmsThreadYield

1)

CUT,

[
P

CST

2)

A 4

CUT:

ExecuteUmsThread

Figure 3. — High-level view of control direct transfer between CUT and CUT;

The implementation of CUT on CSP synchronization request handler has been described in [9].
Cooperative user thread. CUT is responsible for the user thread execution. It consists of
UMSWT and a field representing the CUT state. CUT is created by a user request which includes a
pointer to the user defined procedure and an index of the logical core which CUT will execute on.
During the initialization, CUT switches from the Created state to Initializing, then to Initialized and
then to Ready states (CUT is ready for execution and currently resides in RUTQ). Starting from this
moment, CUT could switch between these five states: Ready, Executing, WaitingWrStopped (CUT is
blocked after performing the control transfer), WaitingWrBlocked (CUT is synchronized using CSP),

205



Llecmas Meowcoynapoonas nayuno-npaxmuveckas kongpepernyus «BIG DATA and Advanced Analytics. BIG DATA u
aHau3 8biCOK020 yposhsy, Munck, Pecnyonuxa Benapyce,
20-21 masn 2020 200a

WaitingWrSystemTrap or WaitingWrSystemCall (CUT is blocked on a system call) and Terminated.
When CUT is switching between the above states it sometimes holds one of the intermediate states:
StandBy (when CUT has been selected from RUTQ but has not been executed yet, i.e. between Ready
and Executing), and WaitingWrYielded (when CUT has transferred execution, but the request has not
been decoded yet by CST, i.e. between Executing and WaitingWrStopped, or between Executing
WaitingWrBlocked).

Cooperative synchronization primitive. CSP represents an event. It is used to synchronize two
or more CUTSs executing on different cores. CSP allows to block CUT waiting for the event, and it
resumes CUT’s execution without support from the operating system. CSP is created by a user request
and is not tied to any logical core, CST or CUT. CSP consists of a blocked user thread queue (BUTQ),
which is used to hold blocked CUTs, and includes a field for representing CSP state.

At any moment of time, CSP can be in one of the following states: Reset, Signaled, Signaling,
SignalingActSignal, SignalingActReset, Joining, JoiningActSignal and JoiningActReset. States Reset
and Signaled are terminal states. Other states are transitional ones, which are required to support
concurrent calls to CSP’s procedures.

In order to better understand the role of each state, let us consider five examples.

Example 1. CSP is in state Reset. It indicates that the event represented by CSP has not
happened yet. CUT; wants to notify about the event all the CUTs blocked on CSP. The notification
should either unblock one of the CUTs or switch CSP into the Signaled state. Here is the sequence of
events:

Step 1. CUTq switches CSP from state Reset to state Signaling. This is to indicate that there is
a CUT which is executing the notify procedure.

Step 2. CUT1 checks BUTQ for the blocked CUT. If BUTQ does not contain the blocked CUT
then the behavior of CUT is described by step 3a, otherwise by step 3b.

Step 3a. Because BUTQ does not contain a blocked CUT, CUT; switches CSP from state
Signaling to state Signaled. It indicates that the event represented by CSP has happened.

Step 3b. Because BUTQ contains one or more blocked CUTs, CUT1 pops one blocked CUT
and moves it from BUTQ to RUTQ (simultaneously switching CUT to state Ready). Then CSP
switches to state Reset.

Example 2. Imagine, that at the same time as CUT: executes the “signal” action, one more
CUT also want to execute the “signal” action to notify about the event. Here is how the sequence of
events will look like:

Step 1. CUT? fails to switch CSP from state Reset to state Signaling. This is because CSP is
already in state Signaling.

Step 2. Because CUT, cannot be sure whether CUT; has already checked for BUTQ, it
switches CSP from state Signaling to state SignalingActSignal. This state indicates that if CUT1 have
not unblocked any of CUTSs, then it should switch CSP back to state Signaling and repeat the check
of BUTQ.

Example 3. Imagine, CUT: from the previous example executes the “reset” action rather than
the “signal” one. In this case, the “reset” action will have the same sequence of events as the “signal”
action has (see the previous example), with one exception, CUT. will switch CSP to state
SignalingActReset. This will force CUT; to switch CSP to state Reset right after completion of the
“signal” action.

The blocking of CUT is performed in a similar way, with the only exception that the blocking
operation is performed by CST. The following two examples illustrate it.

Example 4. CUT3 transfers control to CSTy in order to synchronize itself on CSP, which is in
state Reset. Here is how the execution of the “synchronize” action will look like:

Step 1. CSTy switches CSP from Reset to Joining state. It indicates that CSP is now used by
CST to synchronize CUT.

Step 2. CST1 puts CUT3 in BUTQ.

206



Llecmas Medxcoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
ananu3z 6blcoK020 yposisy, Munck, Pecnybiuka Benapyce,
20-21 masn 2020 200a

Step 3. CST1 switches CSP back to state Reset.

Example 5. Imagine, that at the same time as CUT3 is being synchronized on CSP, other CUT,
executes the “signal” action. In this case, the “signal” action execution is as follows:

Step 1. CUT: fails to switch CSP from state Reset to state Signaling, as CSP is already in state
Joining.

Step 2. CUT: switches CSP from state Joining to state JoiningActSignal. This state instructs
CST1 to switch CSP to state Signaling and to re-execute the “signal” action after the completion of
the “synchronize” action.

Figure 4 shows the state transfer matrix of CSP.

JG | JR | JS State abbreviations:
S —Signaled

ﬁ ‘ R — Reset
SG - Signaling

SR - SignalingActReset
SS - SignalingActSignal

J —Joining
JR - JoiningActReset
JS - JoiningActSignal

£, fur , fus|

Conditional flags:

fr — flag, indicating a reset operation was taken

fs — flag, indicating a signal operation was taken

fi — flag, indicating a join operation was taken

foer — flag, indicating a concurrent reset operation was taken
fes — flag, indicating a concurrent signal operation was taken
f — flag, indicating a concurrent join operation was taken

Figure 4. — State transfer matrix of cooperative synchronization primitive

Experimental environment. All experiments were done on two multi-core systems. The first
multi-core system was equipped with two Intel Xeon E5520 processors. Each processor has 4 cores.
Each core runs on 2.26 GHz frequency and has high-speed hierarchical cache memory (L1 — 64 KB,
L2 — 256 KB). Besides that, each core has the Intel Hyper-Threading technology built in, which
allows the execution of two hardware threads on the single core. Each processor has access to shared
L3 cache of 8 MB size, and access to local and remote memory with NUMA memory organization.
The system is equipped with 16 GB of RAM and is controlled by Windows Server 2012 R2 (64 bits).
The second multi-core system is equipped by one Intel Core i5-3450 processor (4 cores). Each core
runs on 3.10 GHz frequency and has access to the high-speed local hierarchical cache memory (L1 —
256 KB and L2 - 1 MB), and the shared L3 cache memory with capacity of 6 MB. The system is
equipped with 16 GB RAM and is controlled by Windows 10 Professional 1809.

Cooperative scheduler and algorithms implementation. Cooperative multi-thread scheduler is
implemented in C/C++ language as dynamically linked library (.dll) using Visual C++ 14.1 compiler.

207



Llecmas Meowcoynapoonas nayuno-npaxmuveckas kongpepernyus «BIG DATA and Advanced Analytics. BIG DATA u

aHanu3 8blcoko2o yposisy, Munck, Pecnyonuxa benapyco,
20-21 masa 2020 200a

Parallel Gaussian Elimination algorithms (ul, p2) [13,17] are implemented using the native
Windows threads and the AutoResetEvent synchronization primitive. Cooperative algorithms (ulx u
u2k) [10, 11] are implemented using the developed scheduler library. The source code of pl, n2, ulk
and p2« algorithms are written in C/C++ language and compiled into executions (.exe) using Visual
C++ 14.1 compiler. Block-parallel all pairs shortest path Floyd-Warshall algorithm (BFW) is
implemented using OpenMP directives for the task-based parallelism. The cooperative threaded
block-parallel algorithm CTBPA [12] is implemented using the scheduler library. The source code of
both algorithms is written in C/C++ language and is compiled using Intel Compiler 18 that is
configured on maximum optimization (OV3) with additional options to do maximum optimization
for underlying multi-core system (IvyBridge specific optimization and vectorization using Intel
AVX).

Experimental results. In order to demonstrate the effectiveness of the cooperative multi-thread
scheduler and the developed cooperative algorithms, we conducted experiments using two different
parallel implementations of the Gaussian Elimination and the block-parallel implementation of all-
pairs shortest path Floyd-Warshall algorithm. Figures 5,a and 5, b report experimental results
obtained in series of 1000 runs for each of four ul, u2, ulx and u2x algorithms depending on the
number of threads. All experiments use linear algebraic equations of 2400 variables. The obtained
results are compared against the results obtained for single-threaded implementations on both multi-
core systems. The best execution time of the single-threaded implementation is 10.43 sec on the first
multi-core system and is 4.91 sec on the second multi-core system. On first multi-core system, the
cooperative algorithms plx and u2« have shown a maximum speed up of 6.00 and 6.12 times, which
exceeds the maximum speedup shown by the u1 and u2 algorithms (5.30 and 1.82 times respectively).
On the second multi-core system, cooperative algorithms plx and pu2k have shown the maximum
speed up of 10.68 and 11.23 times, which significantly overcomes the speed up obtained by the ul
and p2 algorithms (8.47 and 3.83 times respectively).

In addition to the execution time of four algorithms p1, pu2, ulk and p2k, we have analyzed
the execution time distribution in series of 1000 runs of each algorithm. Figure 6 presents histograms
of the execution time and time intervals (in sec) for both multi-core systems. Table 1 reports the
execution time intervals of best runs of the algorithms.

Figure 7 presents the execution speedup of algorithm CTBPA comparing to BFW algorithm
depending on block size for graph of 2400 vertexes in series of 1000 runs done on Intel Core i15-3450
multi-core system. CTBPA demonstrated speedup for all block sizes with maximum speedup in
26.8% (0.842 vs. 0.664 seconds) for block size of 120x120. Histograms of execution intervals of both
algorithms are presented on picture 8. Table 2 demonstrates significant advantage of developed (using
developed cooperative multi-threading scheduler) CTBPA algorithm against existing parallel
implementation of BFW, done using operating system scheduler.

208



Llecmas Medxcoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
ananu3z 6blcoK020 yposisy, Munck, Pecnybiuka Benapyce,
20-21 masn 2020 200a

5.00

4.00

Speedup (times)

3.00

1.00
0.00
0 200 400 600 800 1000 1200
Number of threads
a)
12.00
1000 == -
3 = =0 -
E T=~a
= 800 T
=8
3 -. o
o -
& 6.00 ~i
- —
1 - o
4.00 pmmmemm—a el
ST e, e - - .
2.00 et S
0.00
0 200 400 600 800 1000 1200
Number of threads
b)

a) — Intel Core 15-3450; b) — Intel Xeon E5520
Figure 5. — Speedup in times between execution time of plk (solid), u2k (dash), ul (dash dot), u2
(dot) algorithms and best execution time of single-threaded algorithm in series of 1000 runs
depending on number of threads on SLAE of 2400 variables size

Table 1. — Execution time intervals of pul, u2, ulx u u2« algorithms for both experimental multi-core

systems
Intel Core i5-3450, 4 cores 2 x Intel Xeon E5520, 8 cores
Algorithm from to width from to length
(seconds) (seconds) (seconds) (seconds) (seconds) (seconds)

ul (160 threads) 0.89 1.05 0.16 1.09 1.85 0.76
u2 (48 threads) 2.49 3.19 0.70 2.61 2.95 0.34
plx (160 threads) 0.80 1.35 0.55 0.969 1.005 0.044
u2x (160 threads) 0.79 0.99 0.20 0.912 0.952 0.040

209



Lllecmas Medxcoynapoonas nayuno-npaxmuueckas xongepenyus «BIG DATA and Advanced Analytics. BIG DATA u

aHanu3 8blcoko2o yposisy, Munck, Pecnyonuxa benapyco,
20-21 masa 2020 200a

450 450
400 400 398
350 350
300 300
250 250
200 188 183 200 151 190
150 150
98 111
1(_)3 56 - 100 -
0 [ | = U 5 o 5 o m I 1 1 2
B e LA T A S A R T E SN _Lﬂ,(\ ,‘q’t\ ..ré\ QN qq%\_\ A0 LA A
a9 ol \q",- b o gl o Qp~ [N o B _‘1\3 —‘. o2 _‘q ,‘.3,1-\« B Lo
Q- [\ (\\E [\2 [\ [\E [\2 S NS QO L [ O O 2 & & [eX [EX
a) b)
1200 1000 881
995 900
1000 200
300 T00
600
600 500
400
400 200
. 200
200 100 B 0 10
0 3 [i] 1 i i 0 0 0 1 o [ ] 10 10 2 0 1 2 1 1
FENIR SR \Q,\ \@\ RO \1&\ N B T I N N L TP LA
OO S RN A > NCIRICS - - S o oFl oF oo SR 1
QFT @R @ @ RS o O RS Q' "4 AR S S S S S [\Y I\ I\ ]
c) d)
600 300
) 509 -
500 250 232
400 200 176
300 150 124
200 = 191 100 99
51
100 I I 61 50 13 27 I 16
o m 5 ¥ 35 2 0o 1 o = =m N -
N A \}L\} \-;\,A q_g\q \ ;;‘.\1 o8 @‘L\ﬂ o \Tn\ FEN ﬂbs\g_‘tn\“,\b%\ 7'“\\3"?'1\‘» ﬁ?h\.!. ey q_f.,%\% EO) cp\
. . RN . . 1 Y. o N @ s Al a®e " ald.”
g\\.(‘ \\.\b k\‘:" \-\.- \\'.1-‘ k.\:x \-\.‘-\ .\.h k.\‘b \\. \"\’ "\’,b ) s] (—I sl (L. \'L. \'L \:L. 'L. \- Q"
e) f)
350 318 300 71
300 5
250 2 > 2L T
226 200
200 -
150 136 10 127 94
100 100
lgg s 352 W 35 50 3% 2
o a s I 0 o v . | m 5 o 1
S &P e E LSS S P DL HE S
SFESFFFsFsssFsy I
<N ~ ~ ~ ~ ~
‘U £ el o Lo " ol =0 el ol foa FAS ol ~ G kel AT o o el
& 55§ &g F & F & F £ 9§ s
& & & ¢&© ¢ T T T T 7T g & ¢ ¢ & & & & & ¢

Figure 6. — Histograms of execution time intervals (in seconds) of pu1, u2, ulx and p2« algorithms
in series of 1000 runs for SLAE of 2400 variables size on Intel Core i5-3450 (4 cores) a), b), ¢), d)

and Intel Xeon E5520 (8 cores) e), f), g), h)

a) - pl (160 threads); b) — p2 (48 threads); c) - plk (160 threads); d) - p2x (160
threads) ;

e) — pl (48 threads); f) - p2 (96 threads); g) - plx (400 threads); h) - p2x (400
threads)

210



Llecmas Medxcoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u

ananu3z evicoko2o yposusy, Munck, Pecnybnuxa Benapyce,
20-21 mas 2020 200a

80%
70%
60%
50%

= 40%
'; 30%
T 20%
Q
& 10% I I
(0%
’ 25 50 100 120 150 200 300 600
12400 1521% 18.24% 30.09% 26.80% 12.65% 18.33% 73.79% 2731%
Block size

Figure 7. — Speedup in % given by algorithm CTBPA comparing to algorithm BFW vs. block size
on graphs of 2400 vertices in series of 1000 runs done on Intel Core 15-3450

1200 00 g47
100 975 600
200 500
400
600 307
300
400 200
200 100 36
0 5 8 8 1 0 0 1 1 1 0 - 4 2 3 0 0 0 1
SR A M ST~ S - R B L - L L o N -
F & & &g ¥y f & § § §&F & 88N &
5 @ > > w7 ~ ~ o ~ ~ < X 2 ) s ) N} i) ) =)
. N . . . . . N " - o - [ - " tan
S &PEFFEFFIEsy g & & & & &F T ER
SN SO ¥ g & & & & o ¢ @& g
& & & & & ¢ ¢ oo v 7 < 8 S $ S $ S $ e $
a) b)

Figure 8. — Histograms of the execution time (sec) of a) BFW and b) CTBPA algorithms in series of
1000 runs on graphs of 2400 vertices and block size of 120x120

Table 2. — Execution time intervals given by algorithms BFW and CTBPA on block size 120x120

Intel Core i5-3450, 4 core
Algorithm from (sec) to (sec) width (sec)
BFW 0.836 1.176 0.340
CTBPA 0.655 0.755 0.100

Conclusion When solving a large task, the performance of a multi-core system depends
heavily on the operating system and the system software built into it, on the one hand, and depends
on the method of constructing parallel multi-threaded algorithms that solve the application problems
and perform calculations on a large amount of data, on the other hand. In the paper, a cooperative
multi-thread scheduler is proposed and experimentally investigated, which reduces the execution time
compared to the preemptive scheduler of the operating system, and is used to create multi-threaded
algorithms in such a way that the threads running on one core directly transfer control to each other,
and the threads running on different cores interact with each other through the proposed
synchronization primitive, that speeds up the processes of thread lock-unlock.

211



Llecmas Mesicoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
aHau3 8biCOK020 yposhsy, Munck, Pecnyonuxa Benapyce,
20-21 masn 2020 200a

References

[1.]Prihozhy, A.A. Analysis, transformation and optimization for high performance parallel computing / A.A.
Prihozhy / Minsk: BNTU, 2019. — 229 p.

[2.]Richter, J. M. Windows via C/C++/J. M. Richter, C. Nasarre. — 5th ed. — Microsoft Press, 2007. — 848 p.

[3.J0OpenMP. OpenMP [DnextpoHrHblit pecypc]. — Pexxum mocrtyma: https://www.openmp.org. — Jlara gocrymna:
24.02.2020.

[4.]1SO/IEC/IEEE 9945:2009 Information technology — Portable Operating System Interface (POSIX®) Base
Specifications, Issue 7 [Dnexrpounsiii pecypc]. — Pexxum mocryma: https://www.iso.org/standard/50516.html. — Jlara
noctymna: 24.02.2020

[5.]MPI Forum. MPI Forum [DnektpoHHslii pecypc]. — Pexxum noctyma: www.mpi-forum.org. — Jlara goctymna:
24.02.2020.

[6.]Google. The Go Programming Language [OnexTpoHHsIil pecypc]. — Pexxum noctyma: https://golang.org. —
[Hara noctyma: 24.02.2020.

[7]The  Khronos  Group Inc. OpenCL  [DnekrpomHblii  pecypc]. —  Pexxum  moctyma:
https://www.khronos.org/opencl/. — Jlata goctyma: 24.02.2020.

[8.]Berkeley Lab. Berkeley UPC - Unified Parallel C [Omexrpounsiii pecypc]. — Pexxum mocryma:
http://upc.Ibl.gov/. — lata goctyma: 24.02.2020.

[9.]Kapacuxk, O. H. YcoBepiieHCTBOBaHHBIN ILIAHUPOBIIMK KOOIIEPATHBHOTO BBIIOJHCHUS IOTOKOB Ha
MHorosiepHoi cucreme / O. H. Kapacuk, A. A. [Ipuxoxuii / CucTeMHBII aHaNU3 U IPUKJIagHas Matemaruka. — 2017, —
Ne 1. - C. 4-11.

[10.] IMpsixoxsl, A. A. KaanepaTslyHbIsl OJ0YHA-IAPATEITBHBIS AITrapbITMbI PAIHHS 3a/1a4 HA IMIMAT'SPaBbIX
cicramax / A. A. IIpeixoxsl, A. M. Kapacik / CictamHbI aHami3 i npbeikinaanas ingapmatsika. — 2015, — Ne 2. — C. 10-18.

[11.] Tpuxoxuii, A.A. KoomepaTuBHas MOICTh ONTHMHU3AINKM BBIMOJHEHHUS MOTOKOB HA MHOTOSIAEPHOM
cucreme / A.A. Tlpuxoxuii, O.H. Kapacuk / CucremHbIi aHanu3 1 npuknaaHas nHpopmarnka, 2014, Ne 4, c. 13-20.

[12.] Kapacuk, O. H. TToToKOBBIi GI0YHO-TIApaIeIbHbIA arOPUTM MOWCKA KpaT4alinux ImyTei Ha rpade /
O. H. Kapacuxk, A. A. Ipuxoxwuii // Jokmanet BI'YUP. — 2018. — Ne 2. — C. 77-84.

[13.] TIpuxoxuii, A.A. ccrenoBaHne METOIOB PeaU3aliiil MHOTOTIOTOYHBIX PHIOKCHHUH Ha MHOTOSIICPHBIX
cucreMax / A.A. Ilpuxoxuit, O.H. Kapacuk // Uadopmaruzamms odpazoBanus, 2014, Ne 1, c. 43-62.

[14.] TIpuxoxuii, A. A. KoomeparuBHas MOTOKOBas MOJETb PEHICHHUsS 3amad OONBIION pasMEpPHOCTH Ha
MHOTOsIepHBIX cuctemax / A. A. Ipuxoxwuit, O. H. Kapacuk // Big Data and Advanced Analytics. — 2018. — Ne. 4. —
C. 381-386.

[15.] Probert, D. Dave Probert: Inside Windows 7 - User Mode Scheduler (UMS) [Dxaekrponnsrii pecypc]. /
D. Probert. — Pexxum moctyma: https://channel9.msdn.com/shows/Going+Deep/Dave-Probert-Inside-Windows-7-User-
Mode-Scheduler-UMS/. — Tata moctyma: 01.11.2019.

[16.] Microsoft. User-Mode Scheduling [ DeKTpOHHBIH pecypc]. — Pesxum JIOCTYTIa:
https://docs.microsoft.com/en-us/windows/desktop/ProcThread/user-mode-scheduling. — Tata nocryma: 24.02.2020.

[17.] Howe, J. Parallel Gaussian Elimination [Qnextponnsiit pecypc]. / J. Howe, S. Bratcher. — Pexxum moctyma:
http://www.cse.ucsd.edu/classes/fa98/cse164b/Projects/PastProjects/LU. — lata noctyma: 01.11.2018

[18.] Venkataraman, G. Blocked All-Pairs Shortest Paths Algorithm / G. Venkataraman, S. Sahni, S.
Mukhopadhyaya // Journal of Experimental Algorithmics (JEA). — 2003. —Vol. 8. — P. 857-874

[19.] Tang, P. Rapid development of parallel blocked all-pairs shortest paths code for multi-core computers / P.
Tang // IEEE SOUTHEASTCON 2014. — Lexington, KY, USA: IEEE, 2014. —P. 1-7

[20.] Park, J. Optimizing graph algorithms for improved cache performance / J. Park, M. Penner, V. K. Prasanna
/I |EEE Transactions on Parallel and Distributed Systems. — 2004. — Vol. 15, Ne. 9. — P. 769-782

212


https://www.iso.org/standard/50516.html
https://cyberleninka.ru/article/n/15992345
https://cyberleninka.ru/article/n/15992345
http://scholar.google.com/scholar?cluster=13501638488297176683&hl=en&oi=scholarr
http://scholar.google.com/scholar?cluster=13501638488297176683&hl=en&oi=scholarr

