Lllecmas Medxcoynapoonas nayuno-npaxmuueckas xongepenyus «BIG DATA and Advanced Analytics. BIG DATA u

aHanu3 8blcoko2o yposisy, Munck, Pecnyonuxa benapyco,
20-21 masa 2020 200a

UDK 004.6:004.632
NOSQL DATABASES. TECHNOLOGY FOR PROTECTING DATA FROM

UNAUTHORIZED ACCESS
A== = | &/
é?.; \ é..'_.“\ ’J
e -
A.V. Kuchynski U.N. Hutkouski I.1. Piletski
Student of Belarusian State Student of Belarusian PhD, Associate Professor of
University of Informatics State University of Informatics Department of the
and Radioelectronics. Informatics and BSUIR
Software engineer IBA- Radioelectronics. Software
Group. engineer IBA-Group.

Belarusian State University of Informatics and Radioelectronics, Republic of Belarus
IBA-Group, Republic of Belarus
E-mail: alexkuchinskydev@gmail.com

A.V. Kuchynski

Pre-graduate student at Belarusian State University of Informatics and Radioelectronics. Certified AWS
Architect, works as a Big Data engineer at IBA Group. Focuses on cloud computing, distributed frameworks, security of
systems.

U.N. Hutkouski
Pre-graduate student at Belarusian State University of Informatics and Radioelectronics. Works as a project
manager at IBA Group. Interested in full stack programming, high-availability and elastic architectures.

I.1. Piletski

PhD of Maths, associate professor of BSUIR. In the field of IT for more than 47 years. Participation in the
development of several dozen major projects: the chief designer of the project, the chief architect of software and
information support, the project manager, the head of the department, the head of the laboratory (Scientific Research
Institute of Computer Science, Academy of Sciences of Belarus, IBA, BSUIR). The author of dozens of research and
publications.

Abstract. Companies such as banks, medical facilities, government units does not want their data was available
and used by third parties (It can be result of hackers’ attacks, data leaks, and employee fraud). Just write encrypted data
to your data storage is not enough. This data storage has to allow business users to work with its content performing
CRUD (create, read, update, delete) operations and search queries. During encryption, we are using some function F(x)
to change content of our data, getting cyphertext as a result, after encryption takes place we lose this ability of performing
search and basic operations. We are proposing approach, which allows managing encrypted data by executing queries on
it without decryption, results returned in encrypted form to client where he/she can decrypt it using self-managed keys.

Keywords: NoSQL, graph database, protection from unauthorized access, security.

Introduction. Basically there are two states of data when it’s vulnerable for potential thieves:

1. Data at rest — is data that is not actively moving from device to device or network to
network such as data stored on a hard drive, laptop, flash drive, or archived/stored in some other way.
Data protection at rest aims to secure inactive data stored on any device or network, so in case if
somebody physically takes disks from the computer they will not be able to reveal the data stored on
it.

90

Llecmas Medxcoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
ananu3z 6blcoK020 yposisy, Munck, Pecnybiuka Benapyce,
20-21 masn 2020 200a

2. Data in transit - or data in motion, is data actively moving from one location to another
such as across the internet or through a private network. Data protection in transit is the protection of
this data while it’s traveling from network to network or being transferred from a local storage device
to a cloud storage device
There are two places where data can be encrypted:

1. On the client side (client-side encryption) - information is encrypted before it’s send to
database. Client itself chooses encryption algorithm and manages encryption keys. Data is transferred
and stored already encrypted.

2. On the server side (server-side encryption) - server performs encryption of the data when
it’s written and decryption when it’s read. In this case encryption keys can be stored by client or by
server.

Choosing the place where data is encrypted defines security level:

1. Level 0. No encryption

2. Level 1. Server side encryption, server keeps keys.

3. Level 2. Server side encryption, keys are kept by client

4. Level 3. Client-side encryption.

Challenges of search in encrypted NoSQL storages. Firstly, when encryption takes place and
we write encrypted data into database, we lose ability of standard search over this data (using of
indexes). Such operations as: greater than, less than, equals, in range, etc. become not supportable as
columns contains ciphertext [1].

Secondly, specification of NoSQL databases have to be considered. In this types of storages
search is performed based on the key (almost all NoSQL databases are key-value storages). Value
which is mapped to the key can be unstructured data (or | would prefer to name it multistructured),
so there is no definite database scheme as in relational databases. So there is a question: over which
fields exactly we are searching over? Because most of the times all business crucial information is
contained in the key (several attributes can be concatenated) [1, 2].

It’s also worth mentioning that special tools do exist for performing column search. This
services are built on the top of the database, maintain their own indexes, define their own data
schemas and mappings, provide separate interface for querying data (Example: Solr, Phoenix).

Basic principles. During construction process of the system which supports search over
encrypted data it would be preferable to keep up in mind the following principles:

— Transparency — implementation of encryption/decryption mechanism and mechanism for
search over encrypted data shouldn’t require changes of existing components in the system or if

changes takes place it shouldn’t be huge (shown on figure 1).

Cf e—— S,

Working system with minimal
changes (or no changes) to already
existing components.

:I%

Figure 1. — Hllustration of transparency concept

— SQL-like queries. We discussed previously search constraints of NoSQL (key-value)
databases. In this types of storages we can search specific entities only by key or part of the key.
Examples of get methods for reading from NoSQL database:

91

Llecmas Mesicoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
aHau3 8biCOK020 yposhsy, Munck, Pecnyonuxa Benapyce,
20-21 masn 2020 200a

e table.get(“row identificator”)

e table.scan()

e table.scan(“A*”)

Otherwise, SQL-like query allows to search over all columns:

e SELECT * FROM People Where name like ‘A*’

e SELECT * FROM People WHERE age < 25 and 0.14*year_salary > 5000

— Proper type of algorithm. There are different classes of encryption algorithms which allows
to perform specific operations on encrypted data:

e Homomorphic encryption algorithms - allows execute arithmetic operations on two
encrypted values without decryption (without key)

¢ Order revealing encryption - allows execute comparison operations on two encrypted values
without decryption (without key)

— Rationalism between security level of algorithm and space efficiency/performance.

Proposed framework. The main problem of encrypted data in database is: we cannot use
default-indexing tool, which is based on simple values comparison. Theoretically, ORE (order
revealing encryption) algorithms have special function Compare(encl, enc2) which allows us to know
which value is greater:

Order Revealing Encryption (ORE): Three algorithms:

(sk, pk) < Keygen outputs a secret key and a public “comparison” key

c « E, (x) outputs ciphertext
b <« Compare(pk,c,,c,) outputs a bit

Correctness: x, < x, <> CompareE,, (x,), E, (x,)) =1(W.h.p.)

Our framework is aimed to make it possible to build indexes for encrypted data using graph
database and overriding comparison function (Compare(encl, enc2)) so this indexes can be balanced
and searched. Graph database also stores data entities itself. Framework components (shown on
Figure 2):

—Client — user application performing queries and CRUD operation.

—Proxy — proxy-server which handles incoming requests and responses. Performs encryption
and decryption of query and response.

—Query Engine — parses query and as a result producing execution plan in form of tree where
leaf - it’s one condition (unit, condition like a < 5); and node - logical primitives (and, or).

—Query Unit — library containing search functions (find less than, greater than, equals, etc.),
functions for maintaining indexes in graph database (insert node, balance tree, etc.).

—Database — graph database.

Technical overview of the components:

—Client Application interacts with database via http protocol, currently available
functionality:

o Write data to the database

e Send queries to the database

92

Llecmas Medxcoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
ananu3z 6blcoK020 yposisy, Munck, Pecnybiuka Benapyce,
20-21 masn 2020 200a

O poy L@ L6 @
Client %---» (encryption/ €-=------------=- En i;}; «—» Query Unit €---» Database
(7) | decryption) : (8) g (5)
Trusted Environment Untrusted Environment

- Flgure2— ”H"igh-level framework architecture

—Proxy checks incoming and outcoming responses. If there is a special symbols in url, it
changes the content of the request (encrypts data to be inserted, encrypts query, decrypts the result of
the query) and passes it further to destination or back to client (when it’s response). Proxy takes care
of encryption/decryption and key is now stored inside the proxy. Proxy also supports caching of
encryption/decryption values, so encryption/decryption function will not be used if this value already
was encrypted/decrypted in this session. If value is supposed to be indexed it’s encrypted with use of
OPE algorithm, else 3DES is used [3, 4].

—Query Engine builds tree and performs tree traversal executing each leaf, then each node
which defines logic operation is applied on the results of each child. Leafs are runned in parallel.
Query example: select * from db.table where (c <10 and r > 90) or (a=5and (min (9, 50) or k <=
0)). Execution plan of this query in form of the tree shown on Figure 3.

AND |

c<10) r=9n|

Figure 3. — Execution plan for the query.

—Query Unit s just a library of functions which are used by Query Engine and when insertion
of new data takes place.

—Database. Indexes are built using AVL Tree data structure. It allows perform search for
complexity log(n) (shown on Figure 4).

93

Lllecmas Medxcoynapoonas nayuno-npaxmuueckas xongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
aHau3 8biCOK020 yposhsy, Munck, Pecnyonuxa Benapyce,
20-21 masn 2020 200a

Figure 4. -View of AVL index tree

For each index column there is an index tree. Tree is updated on each insert operation (update,
delete in future). Each node of the tree represents encrypted value. Nodes which are not in the tree -
data entities. Inserted entity gets reference(s) to node in the tree (shown on Figure 5).

Figure 5. —View of index and entities nodes

Conclusion. Proposed framework allows performing search queries on encrypted data without
need to decrypt it on query stage. Data is stored securely, thus cannot be used by unauthorized users.
Architecture uses NoSQL graph database as a storage for primarily data and index structures. Order
revealing encryption used for fields which have to be searched.

94

Llecmas Medxcoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u
ananu3z 6blcoK020 yposisy, Munck, Pecnybiuka Benapyce,
20-21 masn 2020 200a

References

[1.]NoSQL Data Architecture & Data Governance: Everything You Need to Know [Dnexrponwusiii pecypc] /
Pexum moctyma: https://www.dataversity.net/nosql-data-architecture-data-governance-everything-need-know/ J[lara
nocryna: 24.02.2020.

[2.]The NoSQL Ecosystem [DnekrponHsblii pecypc] / Pexxum nocryna: https://www.aosabook.org/en/nosgl.html
Hara nocrymna: 24.02.2020.

[3.]Secure Parallel Processing of Big Data Using Order-Preserving Encryption on Google BigQuery
[@nexrponnsrii pecypc] / Pexxum mocryma: https://arxiv.org/pdf/1608.07981.pdf dara nocryma: 24.02.2020.

[4.]what is 3DES encryption and how does DES work? [Onextponnsiii pecypc] / Pexum mocryma:
https://www.comparitech.com/blog/information-security/3des-encryption/ data moctyma: 24.02.2020.

NOSQL DATABASES. TECHNOLOGY FOR PROTECTING DATA FROM

UNAUTHORIZED ACCESS
A.B. Kyuunckui B.H. I'ymkoeéckuii HU.U. ITuneyxui
Cmyoenm BI'VUP. Cmyoenm BI'VUP. Joyenm xageopul
Hnorcenep-npocpammucm Unorcenep-npoecpammucm ungopmamuxu BI'VUP,
IBA Group. IBA Group. KaHouoam ¢uzuxo-

MamemMamuyeckux Hayx,
doyenm, cmapuiuii Hay4Hslil
compyoOHuK

Benopycckuii 2ocyoapcmeennwiil ynugepcumem ungopmamuxu u paouodnekmponuxu, Pecnyonruxa berapyce
IBA-Group, Pecnybauka Benapyce
E-mail: alexkuchinskydev@gmail.com

Annoranusi. Komnanuu (6aHKH, Mell. YYPEKICHHUS, FOCYAapPCTBEHHBIE KOMIIAHWMHM) HE XOTST, YTOOBI HX
uHpopMalms (B cllydae Xakep-aTakd, yTeYKH JIaHHBIX, HEOCTOPOXKHOCTH OOCIY)KHMBAIOIEro MepcoHana u T.1.) Obuia
JIOCTYITHA 3JIOYMBIIIJIEHHUKaMH M HCHOJb30Bajiack 3-i cTopoHOW. IIpocTOo ClNOXWUTH 3amM(poBaHHBIC TaHHBIEC B
XpaHWIUILE HEJOCTATOYHO. JTO XPaHMIMIIE JOJDKHO HMCIOJIb30BaThCS M JaBaTh BO3MOXKHOCTh pabOTaTh CO CBOUM
COZEPKHUMBIM ITOCPEACTBOM 00pabOTKH HMOMCKOBBIX 3arpocoB. [Ipy mudpoBaHin MBI MEHSIEM pealibHbIC 3HAUCHUS Ha
pe3ynbTar paboThl HEKOI (YHKIIMH, OJTHOBPEMEHHO C 3TUM MBI T€PSIEM BO3MOXKHOCTH IIOMCKA 110 3TUM JIaHHBIM. MBI
npeyIaraeM rojaxo, pu KOTOPOM MOKHO ObI OBLIIO OCYIIECTBIISATE IOMCK B 3aIM()POBAHHBIX JaHHBIX 0€3 BBHIIOJIHEHHS
OTIepaliy ACMN(POBAHUS IIPU HEMOCPEICTBEHHOM ITOHCKE.

KawueBbie caoBa: NoSQL, rpadoBas 06a3a maHHBIX, 3alWTa OT HECAHKIMOHHMPOBAHHOTO JIOCTYIIA,
0€30IacHOCTb.

95

https://www.dataversity.net/nosql-data-architecture-data-governance-everything-need-know/
https://www.aosabook.org/en/nosql.html
https://arxiv.org/pdf/1608.07981.pdf
https://www.comparitech.com/blog/information-security/3des-encryption/

