РАЗРАБОТКА АЛГОРИТМОВ ОБНАРУЖЕНИЯ ДЛЯ РАДАРА НЕПРЕРЫВНОГО ЛЧМ ИЗЛУЧЕНИЯ

Мицкевич А. С.

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Давыденко И. Н. – канд. тех.-мат. наук, доцент

Главной целью первичной обработки РЛИ является обнаружение полезного сигнала в шумах и определение координат цели, т. е. выделение полезной информации и приведение её к необходимому виду для обработки на последующих этапах.

Радары непрерывного излучения (НИ) с частотной модуляцией зондирующего сигнала широко используются для решения различных задач в ближней зоне действия [1].

Один из наиболее популярных видов зондирующего сигнала для радара НИ — сигнал с возрастающей линейно-частотной модуляцией. При данной модуляции дальность до цели можно определить по одному периоду зондирующего сигнала, а скорость — по нескольким периодам. В результате цифровой обработки получается матрица дальность-скорость (МДС), каждый элемент которой однозначно определяет дальность и скорость цели (рисунок 1).

Особенности радаров с непрерывным ЛЧМ излучением: возможность изменения очень малых расстояний до цели (сопоставимых с длиной излучаемой волны); высокая точность измерения дальности; обработка сигналов после смесителя выполняется в диапазоне низких частот, что существенно упрощает реализация схем обработки; лучшая безопасность из-за отсутствия импульсного излучения с большой импульсной мощностью.

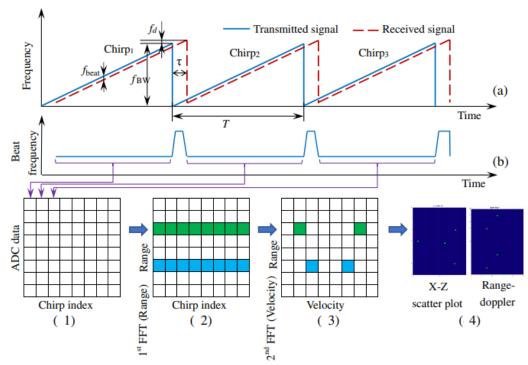


Рисунок 1 – Схема цифровой обработки возрастающего ЛЧМ

Современные решения для радара НИ включают в себя цифровую обработку сигнала, в связи с чем возникает необходимость в создании новых, более эффективных алгоритмов с низкой вычислительной сложностью. Учитывая, что обнаружение сигнала цели на фоне меняющейся радиолокационной обстановки (шума, в присутствии множества целей, помех и т. д.), а также наличие артефактов, возникающих вследствие различных ошибок округления, проникающих помех, конструктивных особенностей и т. п., синтез оптимальных алгоритмов является актуальной задачей.

В настоящее время для решения задачи обнаружения сигнала используются алгоритмы стабилизации ложной тревоги (СУЛТ) [2]. Суть алгоритма СУЛТ заключается в использовании соседних к оцениваемому разрешений по заданной координате для вычисления порогового уровня, при превышении которого сигнал считается сигналом от цели с заданной вероятностью ложной тревоги. При этом вероятность ложной тревоги не зависит от уровня шума.

Классификация наиболее популярных («классических») алгоритмов обнаружения делит их на категории, представленные в таблице 1.

Таблица 1- Общая классификация «классических» алгоритмов обнаружения [3].

таолица т- Оощая классификация «классических» алгоритмов оонаружения [3].		
Название (англ.)	Принцип работы	Применение
CA CFAR	Использует среднюю мощность шума в	Однородный шум, отсутствие мощных
	окружающих исследуемый отсчётах	маскирующих помех и целей,
		протяжённых мешающих отражений.
OS CRAF	Использует статистические методы и	Наличие группы
	ранжирование для вычисления мощности шума.	близкорасположенных целей и
		протяженных помех.
TM CFAR	Использует сумму выбранных ранжированных	Наличие групповых целей и
	отсчётов.	протяжённых помех.
GO CFAR	Выбирает большее значение мощности из	Наличие протяжённых помех. При
	опорных окон для вычисления порога	импульсных помехах значительно
		возрастает вероятность ложной
		тревоги.
SO CFAR	Выбирает меньшее значение мощности из	Наличие протяжённых помех, двух
	опорных окон для вычисления порога	близкорасположенных целей.
Нейронные сети	Используются для адаптивной оценки уровня	Наличие сложной и/или меняющейся
·	шума для последующего выбора наилучшего	помеховой обстановки.
	алгоритма.	
Свёрточные	Используются для выделения особенностей	Используются в обработке
фильтры	МДС (к примеру, краёв изображения).	изображений, служат для первичной
		обработки данных для последующего
		анализа.
Вариативные и	Используют дополнительные функциональные	Наличие протяжённых помех и
адаптивные	зависимости от текущих наборов отсчётов.	импульсных групповых целей.
CFAR		

Тем не менее, алгоритм СУЛТ, применяемый после обработки, представленной на рисунке 1, в силу ее двухмерности является более ресурсоёмким. Поэтому разработчику необходимо выбирать между наиболее эффективностью, ресурсозатратностью и вычислительной сложностью алгоритма. В зависимости от сигналов, он представляет собой комбинацию одномерных алгоритмов (гибридный) или двумерных классических алгоритмов. Современные решения также включают в себя нейронные сети и методы, применяемые для обработки изображений (вроде фильтра Собеля).

Таким образом, недостаточно использовать только алгоритм СУЛТ, следует ещё учитывать особенности конструкторских решений, что приводит к следующим этапам разработки наиболее эффективного алгоритма обнаружения:

- 1. Определение радиолокационного фона;
- 2. Определение сигнала цели;
- 3. Определение случаев, которые могут встретиться (например, мешающие отражения, импульсные помехи и т.д.);
- 4. Определение особенностей алгоритма, исходя из пунктов 1-3;
- 5. Определение задачи, которую должен выполнять алгоритм, разбиение её на этапы;
- 6. Определение существующих алгоритмов для проверки;
- 7. Создание математических моделей алгоритмов и сигналов (фона, целей, помех, эффектов и других);
- 8. Составление плана тестирования работоспособности алгоритма для различных комбинаций сигнала цели и общего радиолокационного фона;
- 9. Тестирование математических моделей;
- 10. Сравнение результатов.

Список использованных источников:

- 1. M. L. Skolink, Introduction to RADAR Systems, 3rd ed. Mc Graw Hill, New York 2001.
- 2. H. M. Finn and R. S. Jonhson, "Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates," RCA Review, no. 29, pp. 414–464, Sep 1968
- 3. J. R. P. Andrade, Hfrdware Frchitecture for Order Statistic CFAR Algorithms, a dissertation, Instituto Nacional de Astrofísica, Óptica y Electrónica October 2008 Tonantzintla, Puebla