ОБРАБОТКА БЛАНКОВ ОТВЕТОВ ДЛЯ АВТОМАТИЗАЦИИ ПРОВЕДЕНИЯ БУМАЖНОГО ТЕСТИРОВАНИЯ

Харлов А.А., Парамонов А.И.

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Парамонов А.И. – канд. техн. наук, доцент

В работе описаны этапы обработки изображений подготовленных бланков для проведения бумажного тестирования. Представлены результаты проведенных экспериментов по распознаванию изображений бумажных бланков.

Рассматриваемый в работе вид бумажного тестирования предполагает ответы испытуемого на заранее подготовленном форматном бланке, для подготовки которого зачастую используется специальное программное обеспечение [1]. Пример такого бланка показан на рисунке 1. После заполнения бланка ответов экзаменуемый сдаёт его экзаменатору, который сканирует бланк и загружает изображение в систему проверки.

and an other and and		0	-		-						ə
				H			200	2			p
				1		217	-		\wedge	•	0
認識回			+	-		- in					q.
K-PASH					X	1		1		X	8
国鉄国	OT	6	8	L	9	S	4	£	z	T	

Рисунок 1 – Заполненный бланк ответов бумажного тестирования

Обработка изображений бланков бумажного тестирования включает в себя несколько этапов:

- 1. распознавание формы бланка на изображении;
- 2. выравнивание изображения по осям х, у;
- 3. распознавание QR-кода;
- 4. распознавание ответов.

Выравнивание изображения необходимо поскольку оно может быть повернуто при сканировании, как это показано на рисунке 1. Выравнивание осуществляется с помощью QR-кода, который содержит в себе выравнивающий узор. Далее происходит извлечение данных о тесте, которые зашиты в QR-коде. Для нахождения и распознавания QR-кода используется библиотека ZXing.Net [2]. Распознав QR-код и зная его координаты, рассчитывается местоположение таблицы ответов. Предполагается, что она находится на одной линии с QR-кодом. Результат выделения таблицы с ответами показан на рисунке 2. Для поиска объектов на изображении используется Accord.Net [3].

Рисунок 2 – Изображение таблицы бланка ответов

По полученному объекту таблицы далее определяются границы каждой ячейки, а внутри каждой ячейки определяется процент заполнения области. Для повышения качества распознавания ячеек применяются фильтры для изображений из библиотеки Accord.Net, а именно:

Grayscale (перевод изображения в черно-белое);

 BradleyLocalThresholding (алгоритм считает, что каждый пиксель изображения имеет черный цвет, если его яркость на t процентов ниже, чем средняя яркость окружающих пикселей в окне указанного размера, в противном случае устанавливается белый цвет);

 НотоgenityEdgeDetector (алгоритм находит края объектов, вычисляя максимальную разницу пикселей обработки с соседними пикселями в 8 направлениях);

Invert (инвертирование цвета изображения).

Все изображения, которые загружаются в систему для обработки, сохраняются в базе данных программного обеспечения, что позволяет использовать их для уточнения полученной оценки.

После успешного распознавания изображения бланка программное средство отобразит в диалоговом окне сетку распознанных ответов с пометкой о правильности ответа, полученной оценкой и кнопкой «Подтвердить оценку» (см. рисунок 3).

Отмена Подтвердить оценку

Рисунок 3 – Диалоговое окно результата обработки бланка

Перед подтверждением оценки в программе экзаменатор имеет возможность при необходимости исправить ошибки распознавания изображения бланка (таблица ответов является редактируемой). Подтверждение оценки фиксируется в базе данных. После чего оценка может быть использована для построения статистики по экзаменуемым, либо для заполнения табеля аттестации при условии ввода/выбора ФИО испытуемого (см. рисунок 4).

Поскольку точность распознавания зависит от исходного изображения, полученного при сканировании бланка ответов, был проведен эксперимент для выяснения минимально допустимого качества изображения. В результате ряда экспериментов установлено, что параметр разрешения изображения при сканировании должен быть не менее 200 dpi.

В ходе экспериментов были рассмотрены варианта получения изображения для обработки с распознаванием фотографии бланка с телефона. На данный момент программное средство показывает низкую точность распознавания бланков с фото, так как изображение, полученное на камеру телефона, получается неоднородным по цвету, а также, в отличие от изображения со сканера, имеет искажения в наклоне. Полученные результаты были оформлены в виде дополнительных технических требований, которые необходимо учитывать при разработке программных средств по обработке бумажных бланков.

56-я научная конференция аспирантов, магистрантов и студентов БГУИР, 2020 г.

Выбор студента	×
Студент	
артем	
Овощников Евгений Артем ович	
Свалов Артем Святославович	
Серов Панкратий Артем ович	
Мирзоян Терентий Артем иевич	
Аксёнов Евстигней Артем ович	
Калдярв Артем ий Валерьянович	
Лукьяненко Фока Артем иевич	
Эрдели Рубен Артем ович	
Буклин Артем Олегович	
Соловьева Марина Артем овна	

Рисунок 4 – Диалоговое окно выбора экзаменуемого

Список использованных источников:

1. Парамонов А.И. Программное обеспечение для автоматизации проведения бумажного тестирования / А.И. Парамонов А.И. Программное осеспечение для автоматизации проведения оумажного тестирования / А.И. Парамонов, А.А. Харлов // Вычислительные методы, модели и образовательные технологии: сб. материалов VII междунар. НПК, Брест, 18.10.201; под общ. ред. А.А.Козинского. – Брест: БрГУ, 2019. – С. 188-190.
2. ZXing.Net [Электронный ресурс]. – Режим доступа: https://github.com/micjahn/ZXing.Net/blob/master/README.md. Дата

доступа: 22.03.2020.

3. Accord.Net [Электронный ресурс]. – Режим доступа: http://accord-framework.net/. Дата доступа: 22.03.2020.